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Introduction to Linear Systems, Part 2: The Fre-
quency Domain

Now that we have examined the processing of signals in linear systems using
time as the essential variable, we come to the fundamentals of Fourier theory.
The basic insight is that linear systems, being subject to superposition and
scaling, can be analyzed in terms of their frequency response, that is, in terms
of their effect on purely sinusoidal or exponential inputs, where the essential
variable is frequency rather than time.

Consider the response, g(t), of a linear system, φ(t), to a unit-amplitude,
complex input of frequency f , eı2πft. The convolution expression for the time
response of any such system says that the response as a function of time will be

g(t) =
∫ ∞

−∞
φ(τ)eı2πf(t−τ) dτ . (1)

However, because a time shift in the argument of an exponential is equivalent
to a multiplication by another exponential, we can write this as

g(t) = eı2πft

∫ ∞

−∞
φ(τ)e−ı2πfτ dτ ≡ eı2πft · Φ(f) . (2)

Thus, the response of a linear system to a complex sinusoidal input is just
a complex sinusoidal signal of the same frequency, modified in amplitude and
phase by a complex factor Φ(f). As the frequency is arbitrary in (2), if an
arbitrary input ψ(t) can be decomposed into a sum of sinusoidal components,
then, because of superposition, the relationship between ψ(t) and g(t) = ψ(t) ∗
φ(t) can be characterized by Φ(f), which is called the transfer function of the
system, and is the Fourier transform or spectrum of the impulse response of the
system, φ(t).

The Fourier transform conventions which we will use are those most com-
monly encountered in geophysics

Φ(f) = F [φ(t)] =
∫ ∞

−∞
φ(t)e−ı2πftdt (3)
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φ(t) = F−1[Φ(f)] =
∫ ∞

−∞
Φ(f)eı2πftdf (4)

where F denotes the Fourier transform operation, and F−1 denotes the inverse
Fourier transform operation. Be aware that in some other areas of physics and
in exploration geophysics the sign convention on the complex exponentials of
(3) and (4) is reversed, so that the forward transform has a plus sign in the
exponent and the inverse transform has a minus sign in the exponent. This will
of course not affect any fundamentals of the analysis, only the phase convention.

Differential equations and Fourier theory. A particularly tractable and not
uncommon situation in the physical sciences occurs when a system relating two
time functions, x(t) and y(t), is characterizable by a linear differential equation
with constant coefficients. For time functions of a single variable, the general
form is

an
dny

dtn
+an−1

dn−1y

dtn−1
+· · ·+a1

dy

dt
+a0y = bm

dmx

dtm
+bm−1

dm−1x

dtm−1
+· · ·+b1dx

dt
+b0x .

(5)
As none of the coefficients (the ai and bi) depend on t, (5) describes a time-
invariant system. Because all of the terms are linear (there are no powers
or other nonlinear functions of x, y, or their derivatives), it is also a linear
system, which obeys superposition and scaling (because differentiation itself is
a linear operation). To obtain an expression for the transfer function for (5),
we substitute an exponential unit amplitude exponential of arbitrary frequency
for the input, x(t), and output, y(t), so that

x(t) = eı2πft (6)

and, as must be the case for any linear, time-invariant system (2),

y(t) = Φ(f)eı2πft . (7)

Substituting (6) and (7) into (5), dividing both sides by eı2πft, and solving for
Φ(f) gives the system transfer function as a ratio of two complex polynomials
in f .

Φ(f) =

∑m
j=0 bj(2πıf)j∑n
k=0 ak(2πıf)k

(8)

The values of f (or equivalently, of the angular frequency, ω = 2πf) where the
numerator is zero are referred to as zeros of Φ(f), as the response is zero at
this frequency, regardless of the amplitude of the input signal. Frequencies for
which the denominator is zero are called poles, as the response becomes very
large at these frequencies. Note that we don’t have to worry about any mysteries
regarding eı2πft being a complex number, as

eı2πft = cos(ωt) + ı sin(ωt) (9)

and we could almost have just as easily chosen to propagate the real or the imag-
inary part of the input signal alone through the system to reach an equivalent
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Figure 1: A Mechanical Seismometer

conclusion; in this case an input (cosine, sine) signal simply produces a scaled
output (cosine, sin) with a phase shift. Note that the frequencies for which we
have zero or infinite response may be imaginary or complex, in which case the
corresponding input function may be an increasing or decreasing exponential,
or an increasing or decreasing exponentially damped sinusoid, respectively.

Example: Response of a seismometer. As an important example of such a
linear system from geophysical instrumentation, consider (Figure 1) a damped
vertical harmonic oscillator with a case that is fixed to the Earth, where a
mass is supported by a spring in parallel with a damping or dashpot component
that produces Newtonian damping (i.e., a retarding force that is proportional
to velocity). Intuitively, it is obvious that the motion of the mass relative to
the Earth will provide some sort of representation of the true vertical ground
motion. For example, if the mass somehow were completely decoupled so that
it remained stationary in its inertial reference frame while the Earth moved,
then the motion of the mass relative to its case (which is rigidly attached to the
Earth) would be exactly the negative of the ground motion).

The differential equation of motion for such a seismometer can be obtained
by equating the (upward) forces due to the spring and damper with the (upward)
acceleration of the bob times its mass

Fup = Maup (10)
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or

−Ddξ(t)
dt

+K[ξ0 − ξ(t)] = M
d2

dt2
[ξ(t) + u(t)] (11)

which gives rise to a homogeneous differential equation:

M
d2

dt2
[ξ(t) + u(t)] +D

dξ(t)
dt

+K[ξ(t)− ξ0] = 0 . (12)

Here, u is the motion of the Earth (up positive), ξ is the position of the mass,
which has an equilibrium position in the Earth’s gravity field of ξ0 (both mea-
sured up positive relative to the surface of the Earth), M is the mass of the
inertial component, D is the dashpot constant (units of force per velocity), and
K is the spring constant (units of force per distance).

We can simplify (12) somewhat by writing the equation of motion for the
mass in an upward positive coordinate system (z) where z = 0 is the equilibrium
position in the Earth’s gravitational field, so that z(t) = ξ(t)− ξ0. This gives

z̈ + 2ζż + ω2
sz = −ü (13)

where the damping coefficient is

2ζ ≡ D/M (14)

and
ωs ≡ (K/M)1/2 (15)

is the undamped or natural period of the system. (13) is a linear homogeneous
equation describing the seismometer, where the input is the displacement of
the earth, u, and the output is the deviation of the mass from its equilibrium
position, z.

Using (8), we can now write the transfer function of the seismometer sys-
tem (for a displacement response to a displacement input) in terms of angular
frequency

Φ(ω) =
z(ω)
u(ω)

=
−(ıω)2

(ıω)2 + 2ζ(ıω) + ω2
s

=
−ω2

ω2 − 2ıζω − ω2
s

(16)

or, in terms of the amplitude and phase

|Φ(ω)| = ω2

[(ω2 − ω2
s)2 + 4ζ2ω2]1/2

(17)

θ = arg[Φ(ω)] = π − tan−1 −2ζω
ω2 − ω2

s

. (18)

At very high frequencies (ω � ωs), |Φ(ω)| ≈ 1, and θ ≈ π, so the seismome-
ter displacement from equilibrium is the negative of the Earth displacement,
z ≈ −u. In this case, the Earth moves so rapidly that the mass cannot follow
the motion at all, and the position of the mass relative to the frame is indeed
just −u, as described earlier.
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Figure 2: Frequency Response of the Mechanical Seismometer

At very low frequencies (ω � ωs) we have |φ(ω)| ≈ ω2/ω2
s , so that the

amplitude of the response falls off quadratically with frequency. From the time
domain representation (13), we see that this response is proportional to the
negative of the Earth’s acceleration, z ∝ −ü. The seismometer, if coupled to
a recording displacement sensor, thus acts like a displacement sensor at short
periods and as an accelerometer at long periods.

The frequency response for displacement input and displacement output
[(17) and (18)] is plotted in Figure 2 for various damping factors, where the
complex response is plotted in terms of its amplitude and phase.

In examining Figure 2, first consider the amplitude response. When the
damping ζ is small, the system exhibits a large amplitude response for frequen-
cies near ωs. This occurs because the system is being excited near its natural
resonant period and has little energy loss through the dashpot. When ζ becomes
larger than ωs, the resonance peak in the amplitude response disappears, and
the system will no longer oscillate freely. At very long periods, the amplitude
response of the system goes to zero, and at very short periods it goes to -1, as
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we intuited earlier.
Next consider the phase response. At the undamped resonance period, the

phase is always −90◦, implying that the output is phase-shifted by that amount
(or by -π/2 radians) relative to the input. A cosine Earth motion of frequency
ωs would be phase shifted into a sine mass displacement. Regardless of damp-
ing, the phase shift approaches zero at long periods and approaches π at short
periods.

Purely mechanical seismometers such as that described above were the first
such instruments used to record accurate ground motion from earthquakes or
other sources (they were first widely deployed starting in the 1890’s). In many
modern seismometers the mass motion is sensed as a voltage which is propor-
tional to the velocity of the mass using an inductive coil and a magnetized mass.
If the mass motion is small, the voltage induced in the coil is just proportional
to the change in magnetic flux times the number of coils. In this situation the
output of the system is a voltage that is proportional to the relative velocity, ż,
of the mass relative to its frame or case. The voltage output is thus the time
derivative of the displacement response. The system response of a differentiator,
which is characterized by the differential equation

y(t) = ẋ(t) , (19)

can be trivially seen by (8) to be just iω, so that the transfer function of an
inductive seismometer system as voltage out versus Earth displacement is

Φinduction(ω) =
ż(ω)
u(ω)

=
−ıω3

ω2 − 2ıζω − ω2
s

(20)

Note that if we consider the Earth velocity, u̇ instead of the Earth displacement,
u as the input signal the response of the inductive seismometer is

Φinduction(ω) =
ż(ω)
u̇(ω)

=
−ω2

ω2 − 2ıζω − ω2
s

(21)

which is identical to (16), and the same discussion of the response as above
applies, except that the response is output volts relative to Earth velocity rather
than output displacement relative to ground displacement. For this reason, most
seismometers are referred to as velocimiters.

Note that the inverse Fourier transform of Φ(ω) will give the time domain
impulse response of the system (this arises because, as we shall shortly show, the
Fourier transform of a delta function is 1), however we will approach the inverse
Fourier transform from a different tack, as the straightforward integral for the
displacement seismometer response doesn’t converge (the response function of
Figure 2 has infinite area under it).

In general, like the autocorrelation, the Fourier transform or its inverse will
not exist if the integral definition does not converge. The following conditions
are sufficient for existence:

1. φ(t) has only a finite number of maxima and minima in any finite time
interval. This eliminates very wiggly functions (e.g., sin(1/x)).
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2. φ(t) has only a finite number of finite discontinuities in any finite time
interval.

3. φ(t) is has finite “energy”, so that∫ ∞

−∞
|φ(t)|2 dt (22)

is bounded.

Clearly, (22) is not satisfied for the displacement transfer function in the
seismometer system, and we consequently run into convergence problems if we
try to directly evaluate the inverse Fourier transform of Φ(ω) in (16). We can,
however obtain the displacement response to an impulsive Earth acceleration
(where ü = δ(t)) by solving

ä+ 2ζȧ+ ω2
sa = −δ(t) (23)

which is shown in Figure 3 (we’ll do the detailed calculation later). The in-
verse Fourier transform of a(ω) converges, so this will provide a tractable route
to obtain an analytic expression for the displacement impulse response of the
seismometer system.

Parseval’s theorem. As time domain signals can be expressed as an infinite
summation of complex exponentials, (this is what the inverse Fourier transform
(4) says). We might therefore expect that there is a simple relationship between
signal energy expressed in the time and frequency domains. Consider the total
energy of a complex or real time domain signal, φ(t)

E =
∫ ∞

−∞
φ(t)φ∗(t)dt (24)

where the asterisk denotes complex conjugation (which has no effect if φ(t) is
real. This can be written as

E =
∫ ∞

−∞
φ(t)

(∫ ∞

−∞
Φ∗(f)e−ı2πftdf

)
dt (25)

using (4). Interchanging the order of integration, we get

E =
∫ ∞

−∞
Φ∗(f)

(∫ ∞

−∞
φ(t)e−ı2πftdt

)
df (26)

which gives

E =
∫ ∞

−∞
Φ∗(f)Φ(f) df =

∫ ∞

−∞
φ(t)φ∗(t) dt (27)

Equation (27) is variously referred to as Parseval’s, Rayleigh’s or Plancherel’s
theorem. It says that one can evaluate the total energy in a signal as either an
integral of its amplitude squared time domain representation over all time, or as
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Figure 3: Response of the Mechanical Seismometer to an Acceleration Impulse
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an integral across all of its amplitude squared frequency components across all
frequencies. In a more general sense, Parseval’s theorem says that the Fourier
transform is length preserving, i.e., the “size” of the function (in the size-sense
of the integral of the amplitude squared) is the same in the time and frequency
domains.

Properties of the Fourier transform. Consider the Fourier transforms of
some of our canonical functions and general symmetries and other properties.
An important function in time series analysis is the boxcar function, Π(t), which
has the Fourier transform (Figure 4)

F [Π(t)] =
∫ ∞

−∞
Π(t)e−ı2πftdt (28)

=
∫ 1/2

−1/2

e−ı2πftdt =
∫ 1/2

−1/2

cos(2πft)dt (29)

=
sin(πf)
πf

≡ sinc(f) . (30)

The corresponding inverse transform is

F−1[sinc(f)] =
∫ ∞

−∞
sinc(f)eı2πftdf = Π(t) . (31)

Taking the complex conjugate and interchanging f and t, we get the Fourier
transform of sinc(t)

Π(f) =
∫ ∞

−∞
sinc(t)e−ı2πftdt . (32)

Note that (30) and (31) show, remarkably, that we can get discontinuous func-
tions by integrating smooth functions.

The Fourier transform of a delta function is

F [δ(t)] =
∫ ∞

−∞
δ(t)e−ı2πftdt = 1 . (33)

So a delta function contains an equal proportion of all frequencies with no
relative phase shifts. Correspondingly

F−1(1) =
∫ ∞

−∞
eı2πftdf = δ(t) . (34)

One can get better a grasp on (34) by imagining the oscillating terms in the
integral all averaging out to zero, except at t = 0, where they all reinforce each
other, i.e.,

F−1(1) = lim
ε→0

∫ −ε

−∞
eı2πftdf +

∫ ∞

ε

eı2πft df = 2 lim
ε→0

∫ ∞

ε

cos(2πft) df (35)
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Figure 4: The Boxcar-Sinc Fourier Transform Pair
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A fundamental property of the Fourier transform is its shifting property,
which says that a simple time shift of a function only changes the phase of its
Fourier transform. Consider

F [φ(t− t0)] =
∫ ∞

−∞
φ(t− t0)e−ı2πftdt . (36)

Substituting τ = t− t0, we get

=
∫ ∞

−∞
φ(τ)e−ı2πf(τ+t0)dτ = e−ı2πft0

∫ ∞

−∞
φ(τ)e−ı2πfτdτ (37)

= e−ı2πft0Φ(f) (38)

so that time shifts in the time domain correspond to linear (with respect to
frequency) phase shifts in the frequency domain.

Another basic relationship is time-frequency scaling or similarity, consider

F [φ(αt)] =
∫ ∞

−∞
φ(αt)e−ı2πftdt . (39)

For α > 0, this gives

=
1
α

∫ ∞

−∞
φ(τ)e−ı2πfτ/αdτ =

1
α

Φ
(
f

α

)
, (40)

using the substitution τ = αt. For α < 0, the limits on the definite integral are
reversed upon the change of variable, so we get

F [φ(αt)] = − 1
α

Φ
(
f

α

)
(41)

so that, in general

F [φ(αt)] =
1
|α|Φ

(
f

α

)
. (42)

Thus, when we “squeeze” a function in the time domain, its Fourier transform
“spreads out” in the frequency domain (and vice-versa). An extreme end mem-
ber showing this behavior is the delta function, which is an infinitely squeezed
function in the time domain with an infinitely spread out transform (the 1
function; (33)) in the frequency domain.

As you have probably already suspected, there is a duality between the two
domains, the precise relationship is

F [φ(t)] = Φ(f) (43)

F [Φ(t)] = φ(−f) , (44)

where the proof is left as an exercise.
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Because any signal can be decomposed into even and odd parts

φ(t) = φe(t) + φo(t) (45)

=
1
2
[φ(t) + φ(−t)] +

1
2
[φ(t)− φ(−t)] (46)

the Fourier transform exhibits important symmetry relations. Consider the
transform of a general real, even function, φe.

F [φe(t)] =
∫ ∞

−∞
φe(t)e−ı2πftdt (47)

=
∫ ∞

−∞
φe(t) cos(2πft) dt− ı

∫ ∞

−∞
φe(t) sin(2πft) dt (48)

= 2
∫ ∞

0

φe(t) cos(2πft)dt (49)

which is even and is purely real. Similarly, for an odd, real function, φo, the
Fourier transform is

F [φo(t)] =
∫ ∞

−∞
φo(t)e−ı2πftdt (50)

=
∫ ∞

−∞
φo(t) cos(2πft)dt− ı

∫ ∞

−∞
φo(t) sin(2πft) dt (51)

= −2ı
∫ ∞

0

φo(t) sin(2πft) dt (52)

which is odd and purely imaginary. Thus, the Fourier transform of an arbi-
trary function may be evaluated as a superposition of (49) and (52), frequently
referred to as the cosine transform and sine transform, respectively. Using su-
perposition, one can derive a list of basic symmetry relationships between the
time and frequency domains

φ(t) Φ(f)
even even
odd odd
real, even real, even
real, odd imaginary, odd
imaginary, even imaginary, even
imaginary, odd real, odd
complex, even complex, even
complex, odd complex, odd
real, asymmetrical complex, Hermitian
imaginary, asymmetrical complex, anti-Hermitian
Hermitian real
anti-Hermitian imaginary
even even
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where a Hermitian function has an even real part and an odd imaginary
part, so that Φ(f) = Φ∗(−f). Correspondingly, an anti-Hermitian function has
an odd real part and an even imaginary part.

We are now ready to demonstrate one of the most important relationships
between the time and frequency domains, the convolution theorem.

Consider the Fourier transform of the convolution of two functions

F [φ1(t) ∗ φ2(t)] =
∫ ∞

−∞

(∫ ∞

−∞
φ1(τ)φ2(t− τ)dτ

)
e−ı2πftdt . (53)

Reversing the order of integration gives

F [φ1(t) ∗ φ2(t)] =
∫ ∞

−∞
φ1(τ)

(∫ ∞

−∞
φ2(t− τ)e−ı2πftdt

)
dτ . (54)

However, by the time shift property (38), this is just∫ ∞

−∞
φ1(τ)Φ2(f)e−ı2πfτdτ = Φ1(f)Φ2(f) (55)

so that convolution in the time domain corresponds to multiplication in the fre-
quency domain! Similarly, we can show that multiplication in the time domain
corresponds to convolution in the frequency domain

F [φ1(t)φ2(t)] = Φ1(f) ∗ Φ2(f) . (56)

This should make sense, as the response of a linear system at each frequency
is just the complex amplitude of that frequency component in the input, times
the complex value of the response function of the system at that frequency.

As already mentioned, time differentiation has a remarkably simple form in
the frequency domain

d

dt
φ(t) =

d

dt

∫ ∞

−∞
Φ(f)eı2πftdf (57)

=
∫ ∞

−∞

∂

∂t
[Φ(f)eı2πft]df =

∫ ∞

−∞
2πıfΦ(f)eı2πftdf = F−1[2πıfΦ(f)] (58)

taking the Fourier transform of both sides gives:

= F [
d

dt
φ(t)] = 2πıfΦ(f) . (59)

Note that differentiation, as we’d expect, reinforces high frequency signal compo-
nents relative to those at low frequency, and thus belongs to a class of operators
generally referred to as high-pass filters.

The situation for integration is somewhat more complex

F

(∫ t

−∞
φ(τ)dτ

)
=

Φ(f)
2πıf

+
δ(f)

2

∫ ∞

−∞
φ(t)dt (60)
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Figure 5: A Buoyant, Rigid Plate with a Spatial Load

where the delta function term accommodates the contribution of any non-zero
mean value in φ(t). A definite integrator is thus a low-pass filter, as it reinforces
low frequencies relative to high frequencies.

(59) and (60) are helpful in computing Fourier transforms, especially for
discontinuous functions. Consider the step function. Using (60) gives

F [H(t)] = F

(∫ t

−∞
δ(τ)dτ

)
(61)

=
1

2πıf
+
δ(f)

2
. (62)

The Fourier transform of the sign function is thus

F [2H(t)− 1] =
1
πıf

. (63)

Example: Equilibrium elastic response of a loaded, buoyantly supported crust.
The differentiation and integration properties of the Fourier transform provide
a useful method for obtaining solutions to ordinary linear integrodifferential
equations. An example of geophysical interest is the downward deflection of a
rigid plate (such as the Earth’s crust) buoyantly supported by an underlying
liquid (to first order, the mantle) to a distributed load (such as an ice cap,
volcano, or reservoir) (Figure 5.

The equation for the equilibrium of a deformed plate is (e.g., Banks et al.,
Geophys J., B51, 431-452, 1977; Turcotte and Shubert, Geodynamics, 1982)

D54w(r) = p(r) (64)

where w(r) is the upward deflection of the plate and p(r) is the upward force
per unit area. The forcing term, p(r), arises from a topographic load, hl(r) and
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from a buoyancy term due to the displaced mantle. D is the flextural rigidity,
which depends on the thickness and elastic moduli of the plate

D ≡ Eτ3

12(1− ν2)
(65)

where τ is the plate thickness, E is Young’s Modulus, and ν is Poisson’s Ratio.
In one spatial dimension, x, (64) becomes

D
∂4w(x)
∂x4

= p(x) . (66)

The total forcing function for a load of homogeneous density is

p(x) = −ρlghl(x) +B(x) (67)

where ρl is the density of the added material, g is the acceleration of gravity,
and B(x) is the buoyancy term due to mantle material of density ρm .

B(x) = −w(x)ρmg . (68)

As the net observed topography is just the topography of the load plus the
topography of the deflected crust

h(x) = hl(x) + w(x) , (69)

we can write the forcing term in terms of h(x) as

p(x) = −g(ρlh(x) + ∆ρw(x)) (70)

where
∆ρ = ρm − ρc (71)

and ρc is the density of the rigid crust. Now we can solve for the deformation
by separating w and h and taking a spatial Fourier transform

[(2πık)4D + g∆ρ]W (k) = −ρlgH(k) (72)

where k is the spatial frequency (units of 1/length), the spatial counterpart of
f . Note that H(k) is the spatial Fourier transform of the input

H(k) =
∫ ∞

−∞
h(x)e(−ı2πkx) dx (73)

(not the step function). The (spatial) frequency domain solution is thus

W (k) = −H(k)

(
ρl

g∆ρ

)
(
1 + 16π4k4D

g∆ρ

) . (74)
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Note that (74) depends strongly on the wavenumber k. For k large, the response
of the system becomes becomes negligible. Conversely, for k small, the response
becomes increasingly significant, up to a maximum value of

Wmax = −ρl/(gδρ) . (75)

Thus, for long-wavelength (small k) spatial components of the landscape, we say
that we have a large degree of buoyant compensation, as the topographic load is
primarily supported by mantle buoyancy. At short spatial wavelengths, on the
other hand (large k), the landscape is almost totally supported by the flextural
rigidity of the crust. The degree of compensation for a spatial component of
wavelength λ = 1/k, is the deflection of the system relative to Wmax

C =
W (k)max

Wmax
. (76)

We can evaluate the impulse response in the x domain by taking the inverse
Fourier transform of W (k)/H(k) (preferably with the assistance of a table of
integral transforms), to obtain

q(x) = F−1[W (k)/H(k)] = F−1

(
ρl

D

(
g∆ρ
D

+ (2πk)4
)−1

)
=
−2ρl

D

∫ ∞

0

cos(2πkx) dk
α4 + (2πk)4

(77)
where

α =
(
g∆ρ
D

)1/4

(78)

so that (e.g., Erdelyn et al., Tables of Integral Transforms, Volume 1, 1954):

q(x) =
−√2ρl

4α3D
e
−α|x|√

2

(
sin

α|x|√
2

+ cos
α|x|√

2

)
. (79)

This function is plotted in Figure 6, which shows a central depression and an
outboard peripheral bulge or upwarp. Note that (79) is the impulse response
of this system, as W (k) is the response for H(k) = 1 (74), so that any 1-d
deformation of a rigid plate to a load (assumed to be infinitely extending in
the out-of plane direction) can thus be calculated by convolving q(x) and the
specific linear mass distribution.

Time domain seismometer response. We can obtain a result for the dis-
placement response of the vertical seismometer in the time domain in a similar
manner by noting that the time domain response to an impulsive acceleration
is characterized by ü = δ(t), so that

ä+ 2ζȧ+ ω2
s = −δ(t) . (80)

Taking the Fourier transform of both sides and solving for a(ω), the displacement
response to an acceleration impulse input, gives the frequency domain expression

a(ω) =
1

ω2 − 2ıζω − ω2
s

(81)
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Figure 6: Response of a Buoyant, Rigid Plate to an Spatial Impulse Load
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Note that this is just the response of the seismometer system to the displacement
impulse (16), divided by −ω2; appropriate, as the input function has been twice
differentiated in the time domain.

The time domain displacement response to an acceleration impulse input is
therefore

φ(t) = F−1 (a(ω)) = F−1

(
1

ω2 − 2ıζω − ω2
s

)
(82)

=
1
2π

∫ ∞

−∞

eıωt dω

ω2 − 2ıζω − ω2
s

=
1
2π

∫ ∞

−∞

eıωt dω

(ω − ω1 − ıζ)(ω + ω1 − ıζ)
(83)

where
ω1 =

√
ω2

s − ζ2 (84)

Solving this integral is relatively straightforward using the residue theorem, and
separation into three cases. For ωs > ζ, the system exhibits a distinct resonance
near ω = ωs (as we have already seen from examining the frequency response)
and is referred to as underdamped. In this case, the poles of the integrand in
(83) occur at (ω1, ıζ) and (−ω1, ıζ). The time domain solution is found from
the residues of the two complex poles of the integrand to be

a(t) =
−H(t)
ω1

e−ζt sin(ω1t) . (85)

When ωs < ζ, the system does not exhibit resonant behavior (the complex
poles of the integrand are now on the negative real axis), and is referred to as
being overdamped. ω2

1 is negative in this case, and the integrand produces an
impulse function that is a sum of real exponentials

a(t) =
−H(t)

2(ζ2 − ω2
s)1/2

(
e−(ζ−(ζ2−ω2

s)1/2)t − e−(ζ+(ζ2+ω2
s)1/2)t

)
(86)

The case ωs = ζ is referred to as critically damped. Because there is a double
pole, a special case of the residue theorem must be applied to obtain the impulse
response, which is

a(t) = −H(t)te−ζt . (87)

How do we evaluate the displacement impulse response of the system to Earth
displacement? Remember that a(t) is the time domain solution for the system
response to an Earth acceleration of a0(t) = δ(t). Because the seismometer
system and differentiation are linear, we can evaluate the seismometer displace-
ment response from a displacement impulse by twice differentiating, a(t) with
respect to time. For the underdamped system, for example, this gives (Figure
7)

d(t) =
d2a(t)
dt2

=
d2

dt2

(−H(t)
ω1

e−ζt sin(ω1t)
)

(88)

= −2δ(t)−H(t)
e−ζt

ω1

(
(ζ2 − ω2

1) sin(ω1t) − 2ζω1 cos(ω1t)
)

(89)
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Figure 7: Displacement Response of an Underdamped Seismometer (ζ = 0.3ωs;
ω0 = 2π Hz) to a Displacement Impulse
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Note that as the resonant frequency, ω1 becomes small (the resonant period
becomes large), (7 approaches the perfect instrument response of a delta func-
tion. Because seismolgists frequently want to know the true ground displace-
ment (its long-period asymptotic spectral level is proportional to the seismic
moment, among other reasons), seismometers with very long natural periods
are desirable and constitute the instrumental backbone of much of modern seis-
mology.

Moment-spectral relationships. As an additional example showing the rich
mathematics of Fourier theory, consider another remarkable feature of the Fourier
transform is that all of the moments of the time domain function, φ(t), can be
expressed in terms of the behavior of Φ(f) at the origin. Consider the nth

moment
φn(t) ≡

∫ ∞

−∞
tnφ(t)dt . (90)

The nth derivative of Φ(f) with respect to f is

∂nΦ(f)
∂fn

=
∫ ∞

−∞
(−2πıt)nφ(t)e−ı2πftdt (91)

so that
1

(−2πı)n

(
∂nΦ(f)
∂fn

)
=
∫ ∞

−∞
tnφ(t)e−ı2πftdt . (92)

Evaluating both sides gives

1
(−2πı)n

(
∂nΦ(0)
∂fn

)
=
∫ ∞

−∞
tnφ(t) dt = φn(t) . (93)

Thus, we can now see that the 0th moment of φ(t), the total area under φ(t), is
just Φ(0). Similarly, the 1st moment of φ(t) is just∫ ∞

−∞
tφ(t)dt =

1
−2πı

(Φ′(f))f=0 (94)

where

Φ′(f) ≡ ∂Φ(f)
∂f

(95)

so that the slope of Φ(f) at the origin is proportional to the expectation value
of t

< t >φ(t)=

∫∞
−∞ tφ(t) dt∫∞
−∞ φ(t) dt

. (96)

Time functions which which are symmetrical must therefore have Fourier trans-
forms with zero slope at f = 0 (we can also see this from the aforementioned
symmetry relations).

The 2nd moment is∫ ∞

−∞
t2φ(t)dt = − 1

4π2
(Φ′′(f))f=0 (97)
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so that the curvature of Φ(f) at the origin is proportional to the second mo-
ment of φ(t). For functions which have an infinite second moment, the Fourier
transform has a cusp at the origin, for example,

F

(
1

α2 + t2

)
=
e−α|f |

2α
. (98)

Consider the variance of φ(t)

σ2[φ(t)] =< (t− < t >)2 >φ(t)=

∫∞
−∞(t2 − 2t < t > + < t >2)φ(t) dt∫∞

−∞ φ(t) dt
(99)

=
1

Φ(0)

(
Φ′′(0)

(−2πı)2
− 2

Φ′(0)
−2πı

· Φ′(0)
−2πıΦ(0)

+
[Φ′(0)]2

(−2πı)2
· Φ(0)
Φ(0)2

)
(100)

=
1

4π2Φ(0)

(
−Φ′′(0) +

[Φ′(0)]2

Φ(0)

)
. (101)

What is the variance, then, of φ1(t)∗φ2(t)? Using the convolution theorem (55)
makes this straightforward, as

σ2[φ1(t) ∗ φ2(t)] =
1

4π2Φ1(0)Φ2(0)

(
−(Φ1Φ2)′′(0) +

[(Φ1Φ2)′(0)]2

Φ1(0)Φ2(0)

)
(102)

=
1

4π2

[
−Φ′′

1(0)
Φ1(0)

− Φ′′
2(0)

Φ2(0)
+
(

Φ′
1(0)

Φ1(0)

)2

+
(

Φ′
2(0)

Φ2(0)

)2
]

= σ2[φ1(t)] + σ2[φ2(t)]

(103)
which gives the important result that the variance of a convolution result is just
the sum of the variances of the two constituent functions.

Causal systems and the Hilbert transform. An important relationship exists
between the real and imaginary parts of a real causal function, φc(t), that is, a
real function that is zero for all t < 0. To see this, we first decompose φc(t) into
its even and odd parts

φc(t) = φe(t) + φo(t) = 1/2(φc(t) + φc(−t)) + 1/2(φc(t)− φc(−t)). (104)

For the causal function, we can express φo(t) in terms of φe(t), as:

φo(t) = φe(t) (t > 0) (105)

and
φo(t) = −φe(t) (t < 0) (106)

Thus
φc(t) = [1 + sgn(t)]φe(t) . (107)

By superposition and the frequency domain convolution theorem (56),

Φc(f) = Φe(f) + F [sgn(t)] ∗ Φe(f) (108)
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and using the Fourier transform of the sign function (63), we finally obtain the
Fourier transform of φc(t) explicitly in terms of the Fourier transform of φe(t)

Φc(f) = Φe(f) · −ı
πf

∗ Φe(f) . (109)

Note that because φe(t) is real and even, so is Φe(f). Thus, the real and imag-
inary parts of Φc(f) are related to each other by the real convolution operator
(−1/πf). This relationship can be summarized by

=[Φc(f)] =
1
π

∫ ∞

−∞

<[Φc(ξ)]
ξ − f

dξ = <[Φc(f)] ∗ −1
πf

≡ H[<[Φc(f)]] . (110)

and conversely,

<[Φc(f)] = − 1
π

∫ ∞

−∞

=[Φc(ξ)]
ξ − f

dξ = =[Φc(f)] ∗ 1
πf

≡ H−1[=[Φc(f)]] . (111)

We can confirm (111) by showing that:

− 1
πf

∗ 1
πf

= δ(f) (112)

which is left as an exercise.
(110) is the Hilbert transform and (111) is the inverse Hilbert transform op-

erator, acting on <[Φc(f)] and =[Φc(f)], respectively. This relationship puts
constraints on the frequency response of all physical (causal) transfer functions.
If we take the Hilbert transform of a time function, we get the associated quadra-
ture function.

H[φ(t)] = φ̂(t) . (113)

The Fourier transform of the quadrature function has the same amplitude in-
formation as the original function, but its phase is multiplied by ı sgn(f), so
that it is phase shifted by −π/2 for negative frequencies and by π/2 for positive
frequencies.

An analytic signal is one in which the real and imaginary parts are related
by the Hilbert transform

A(t) = φ(t) − ıφ̂(t) . (114)

The modulus of an analytic time series is useful in evaluating the instantaneous
envelope of a function.

A example of a causal physical system is the attenuation which occurs when
a wave propagates through a lossy medium. In seismology, such media (which
of course include all real materials) are referred to as anelastic. The loss mech-
anisms need not concern us in detail here, but they include work done at grain
boundaries and other irreversible changes in the material. The observational
result of attenuation is that the energy arriving at the receiver is less than that
which one would expect from considering the effects of geometrical spreading
and other ray path effects alone.
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For the idealized case of a one-dimensional plane wave propagating through
a lossless medium (e.g., an electromagnetic wave propagating through a perfect
vacuum, or a seismic wave propagating through a perfectly elastic medium) the
signal, β, at position x and time t is simply the signal at the source delayed by
the propagation time x/v

a(x, t) = a(t− x/v) (115)

where v is the phase velocity. If the time function at the source is a(t), then we
can express the signal at an arbitrary time and place as

a(x, t) = a0(t) ∗ δ(t− t0) (116)

where t0 = x/v and a0(t) is the signal at x = 0. We are assuming here that
all frequency components propagate at a single velocity, v. Such a medium is
referred to as nondispersive. The transfer function of a lossless, nondispersive
system is therefore just that of a time delay

a(x, f) =
∫ ∞

−∞
δ(t− t0)e−ı2πft df = e−ı2πft0 = e−ı2πfx/v . (117)

The quality factor, Q, of an oscillating system is given by

1
Q(f)

=
δE

2πE
(118)

where E is the peak energy of the system and δE is the energy lost in each
cycle, assuming Q� 1. For a propagating sinusoidal disturbance, then, the loss
relationship as a function of x is

δE =
dE

dx
λ (119)

as the field goes through one oscillation in a wavelength, λ = v/f . Combining
(119) and (118), we have

2πE
Q

=
dE

dx
λ (120)

which has a solution for propagating energy of

E(x, f) = E0(t)e−2πfx/Qv (121)

or for propagating amplitude of

b(x, f) = b0(t)e−πfx/Qv . (122)

The combined transfer function for the system is thus, by the convolution the-
orem (55)

c(x, f) = F

(
1

a0(t)
a(x, t) ∗ 1

b0(t)
b(x, t)

)
(123)
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Figure 8: Attenuated Pulses, Constant Q

1
a0
a(x, f) · 1

b0
b(x, f) = e−πfx/Qv · e−ı2πfx/v (124)

Taking the inverse Fourier transform of c(x, f) to obtain the impulse response
of the system, we have (taking the absolute value of f so that negative and
positive frequencies are treated equally)

c(x, t) =
∫ ∞

−∞
e2π(−|f |t0/2Q+ıf(t−t0)) df (125)

=
∫ ∞

0

e2π(−ft0/2Q+ıf(t−t0)) df +
∫ 0

−∞
e2π(ft0/2Q+ıf(t−t0)) df (126)

= − 1
2π

[
1

(ıt− (ı+ 1/2Q)t0
− 1

(ıt− (ı− 1/2Q)t0

]
(127)

=
1
π

(
(t0/2Q)

(t− t0)2 + (t0/2Q)2

)
(128)

which is plotted in Figure 8
(128) is a symmetrical pulse with a maximum at t = t0. Note, however, that

c(x, t) is not zero for t < t0. This solution is therefore noncausal and cannot
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correspond to the behavior of the real world. Reexamining our assumptions,
we find that we must reassess both the nondispersiveness of the medium and
the constancy of Q for all frequencies. A moment’s reflection reveals that we
cannot get an asymmetrical, causal pulse by simply allowing Q to vary as an
even function of frequency, as the Q operator will affect positive and negative
frequencies equally and hence will not alter the symmetry of the pulse. Thus,
we are led to the conclusion that all real media must be dispersive!

The general transfer function for a wave propagating towards positive x is
thus a generalization of (124)

c(x, f) = e−π|f |x/Q(f)v(f) · e−ı2πfx/v(f) (129)

where v and Q are now functions of f . We can write this as

c(x, f) = e−2πıKx (130)

if we define the complex wavenumber, K as

K =
−ı|f |

2Q(f)v(f)
+

f

v(f)
≡ f

v(f)
+ ıα(f) (131)

where α(f) is the attenuation factor. The impulse response is thus the inverse
Fourier transform of this

c(x, t) =
∫ ∞

−∞
eı2π(−Kx+ft) df (132)

It can be shown (e.g., Aki and Richards, v. I) that constraining c(x, t) to be
causal, i.e., equal to zero for t < t1 = x/v∞ places the following constraint on
the dispersive velocity function

f

v(f)
=

f

v∞
+ H[α(f)] (133)

where v∞ is the phase velocity at infinite frequency and H is the Hilbert trans-
form. Finding solutions to (133) is non-trivial, and there is no solution for con-
stant Q. If we take Q to be constant over the seismic frequency range, however,
we can arrive at the useful solution proposed by Azimi et al. (Izvestiya, Physics
of the Solid Earth, pp. 88-93, 1968), where the phase velocity is approximately
given by

1
v(f)

=
1
v∞

+
2α0

π
ln
(

1
2πfα1

)
(134)

where α0 and α1 are constants. Using

α0 ≈ (2v∞Q)−1. (135)

and
α1 = 0.01 s (136)

25



Figure 9: Attenuated Pulses, Quasi-Causal Q
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Figure 10: A linear system with feedback

Figure 9 showns the results of numerically integrating (134) for various values
of Q to obtain attenuation pulses which are asymmetrical and exhibit a much
better approximation to causal behavior than the nondispersive pulses of Figure
8.

The effect of feedback on the transfer function. An important phenomenon
to understand is the effect of feedback on the transfer function of a system.
Figure 10 shows the basic situation where a filtered portion of an output signal,
modified by the feedback transfer function Φ2 is subtracted from the input signal
(negative feedback). The effect of feedback can alter the response significantly
and, in the case of engineering applications, in several highly desireable ways.
Consider the net transfer function for the system of Figure 10

y(ω) = (x(ω) − Φ2(ω)y(ω))Φ1(ω) (137)

which gives

Φ(ω) =
y(ω)
x(ω)

=
Φ1(ω)

1 + Φ1(ω)Φ2(ω)
. (138)

For example, consider Φ1 being the displacement transfer function for a
seismometer (16) with damping ζ and natural frequency ωs, and the feed back
transfer function being a constant Φ2 = k

Φfb(ω) =
−ω2

ω2−2ıζω−ω2
s

1− kω2

ω2−2ıζω−ω2
s

=
−ω2

(1− k)ω2 − 2ıζω − ω2
s

(139)

which has poles at
pfb = ıζ ±

√
(1− k)ω2

s − ζ2 (140)

instead of the original poles given by

p = ıζ ±
√
ω2

s − ζ2 ≡ ıζ ± ω1 . (141)

If the non-fedback seismometer is critically damped, for example, so that ζ =
ωs/

√
2, then the fedback poles are now at

p = ωs

(
ı√
2
±
√

1/2− k

)
(142)
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and the resonant frequency of the fedback system is

ω1f b = ωs

√
1/2− k . (143)

By chosing 1/2 > k > 0, the resonant period can be substantially reduced, and
hence the long-period response can be much improved. This is the essence of
how modern broadband seismometers function, where feedback makes it possible
to build portable stable, low noise instruments with fedback periods of as long
as several hundred seconds.
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