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Process of Bayesian data analysis

The steps of a Bayesian data analysis are

1 specify a full probability model: the joint distribution of observations
and unknowns (parameter) or, which is the same, the prior and the
likelihood

2 condition on the data: use Bayes theorem to obtain the posterior
distribution

3 evaluate the �t of the model and the conclusions which the posterior
implies.
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Notation

The main characters

we denote with Greek letters, typically θ, the parameter(s),
unobservable quantities. θ can be a scalar or a vector.

the observed data are denoted by y , if data are gathered on n units

y = (y1, . . . , yn)

where yi can be a scalar or a vector (if more than one variable is
observed on each unit).
y can then be a scalar, a vector or a matrix.

we will also use unknown but potentially observable quantities, that is,
future observations, these will be denoted as ỹ

if covariates are available these will be denoted by x .
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Model speci�cation

Specifying a Bayesian model means specifying

the distribution of y conditional on the parameter θ

y |θ ∼ p(y |θ)

note that this is (proportional to) the likelihood
p(y |θ) ∝ L(θ)(= L(θ, y))

the prior distribution on θ
θ ∼ π(θ)

Putting these together, we have speci�ed the joint distribution of (y , θ)

p(y , θ) = π(θ)p(y |θ)

and we can obtain the marginal distribution of y as

p(y) =

∫
Θ
p(y , θ)dθ =

∫
Θ
π(θ)p(y |θ)dθ
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Posterior distribution

Inference on θ will be based on the posterior distribution, which is derived
through a straightforward application of Bayes theorem

π(θ|y) =
p(y , θ)

p(y)
=

p(y |θ)π(θ)

p(y)

The posterior distribution contains all the information on θ we have (from
the data and prior to observing the data).

The work will have to do is to understand

how to summarize the information in π(θ|y), to obtain for instance
point and interval estimates or to perform hypotheses testing;
how to explore the distribution, but for simple examples p(y) is
di�cult to derive (impossible to derive analytically), so exploration of
the posterior will be based on computational machinery (MCMC and
other stu�) whose starting point is

π(θ|y) ∝ p(y |θ)π(θ)
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Predictive distribution

We are sometimes interested on �unknown but potentially observable
quantities� ỹ (think of prediction of y on new statistical units).

We assume that they behave like the data y , that is

ỹ |θ ∼ p(ỹ |θ)

hence, unconditionally, the distribution of ỹ is

p(ỹ) =

∫
Θ
p(ỹ |θ)π(θ)dθ

the same as y . This is also called the prior predictive distribution
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Predictive distribution

We are sometimes interested on �unknown but potentially observable
quantities� ỹ (think of prediction of y on new statistical units).

After the data y have been observed, we can compute the posterior

predictive distribution

p(ỹ |y) =

∫
Θ
p(ỹ , θ|y)dθ

=

∫
Θ
p(ỹ |θ, y)π(θ|y)dθ

=

∫
Θ
p(ỹ |θ)π(θ|y)dθ

where we note that the conditional iid assumption implies that

p(ỹ |θ, y) = p(ỹ |θ).
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Exchangeability

A common hypotheses in statistical inference is that observations are
independent and identically distributed, that is, we consider n statistical
units, collect y1, . . . , yn and assume these to be IID.

In Bayesian inference, where the inference process itself is fully probabilistic
independence of observations would imply that we can not learn about
future observations based on the past (since yn+1 would be independent of
y1, . . . , yn).

The common hypotheses in Bayesian inference is that observations are
exchangeable meaning that the joint distribution of (y1, . . . , yn) is invariant
to permutations of the indexes; in formulas

p(y1, . . . , yn) = p(yi1 , . . . , yin)

for any (i1, . . . , in) permutation of 1, . . . , n.
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Exchangeability and conditional independence

We will usually specify the model assuming that

y1, . . . , yn iid conditional on θ

θ ∼ π(θ)

this implies that y1, . . . , yn is exchangeable.

In fact consider the unconditional distribution

p(yi1 , . . . , yin) =

∫
p(yi1 , . . . , yin |θ)π(θ)dθ

=

∫ n∏
j=1

p(yij |θ)π(θ)dθ

=

∫ n∏
i=1

p(yi |θ)π(θ)dθ = π(y1, . . . , yn)
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de Finetti's theorem

In the special case of y1, . . . , yn binary variables it can be shown that
exchangeability is equivalent to conditional iid.

Theorem (de Finetti)

Let Y1, . . . ,Yn be Bernoulli r.v., then they are exchangeable if and only if

there exist a random variable θ valued in [0, 1] such that

p(y1, . . . , yn) =

∫
1

0

θ
∑

yi (1− θ)n−
∑

yidP(θ)

An extension of this theorem to general random variables exist.
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Exchangeability and conditional independence

So the following are equivalent

y1, . . . , yn exchangeable

y1, . . . , yn iid conditional on θ

in other words we assume that

observations are iid if we know the data generating mechanism

since we do not know it the observations are not independent, on the
contrary

y1 gives informations on y2 because it gives information on the

data generating mechanism θ.
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Which example

We do not need complicated model and data to illustrate the application of
Bayesian statistics.

In what follows we consider inference for discrete quantities (rather than
parameters), framed as a Bayesian inference.
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Inference about a genetic status: prior and model

Hemophilia is due to a recessive gene in the X -chromosome, that is, if X ∗

denotes an X -chromosome with the hemophilia gene,

X ∗X ∗ is a female with the disease

X ∗X is a female without the disease but with the gene

X ∗Y a male with the disease

Mary has

an a�ected brother ⇒ X ∗Y

an una�ected mother ⇒ XX ∗ or XX

an una�ected father ⇒ XY

overall the mother must be XX ∗.
Let θ = 1 if Mary has the gene (is XX ∗) and 0 otherwise (XX ), then

based on the above information, prior to any observation,

P(θ = 1) = 1/2
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Inference about a genetic status: data and likelihood

Data consist of the status of Mary's two sons, who are not a�ected.

Let then yi be an indicator equal to 1 if the i-th son is a�ected

P(yi = 1|θ) =

{
0.5 if θ = 1

0 otherwise

The likelihood function corresponding to Mary's two sons is

L(θ) = P(y1 = y2 = 0|θ) =

{
0.25 if θ = 1

1 otherwise
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Inference about a genetic status: posterior

Prior and likelihood are combined to obtain the posterior, let
D = (y1 = y2 = 0),

P(θ = 1|D) =
P(D|θ = 1)P(θ = 1)

P(D|θ = 1)P(θ = 1) + P(D|θ = 0)P(θ = 0)

=
0.25× 0.5

0.25× 0.5 + 1× 0.5
= 0.20

with a discrete parameter it is useful also to express the above formula in
terms of odds

π(θ1|y)

π(θ2|y)
=

p(y |θ1)

p(y |θ2)

π(θ1)

π(θ2)

the posterior odds of θ1 over θ2 are given by the prior odds times the
likelihood ratio

P(θ = 1|D)

P(θ = 0|D)
=

P(D|θ = 1)

P(D|θ = 0)

P(θ = 1)

P(θ = 0)
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Inference about a genetic status: predictive distributions

Prior to the observations the predictive distribution is

P(y1 = 1) = P(y1 = 1|θ = 1)P(θ = 1) + P(y1 = 1|θ = 0)P(θ = 0)

= 0.5× 0.5 + 0× 0.5 = 0.25

Given the data the posterior predictive is

P(ỹ3 = 1|D) = P(ỹ3 = 1|θ = 1,D)P(θ = 1|D) + P(ỹ3 = 1|θ = 0,D)P(θ = 0|D)

= P(ỹ3 = 1|θ = 1)P(θ = 1|D) + P(ỹ3 = 1|θ = 1)P(θ = 0|D)

= 0.5× 0.2 + 0× 0.8 = 0.1
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Inference about a genetic status: update

Suppose a third son is born and he is not a�ected, that is we have a new
observation y3 = 0, in order to obtain the new posterior distribution we can
use the old posterior P(θ = 1|D) as a prior and update it based on the
likelihood P(yi = 0|θ)

P(θ = 1|D, y3 = 0) =
P(y3 = 0|θ = 1)P(θ = 1|D)

P(y3 = 0|θ = 1)P(θ = 1|D) + P(y3 = 0|θ = 0)P(θ = 0|D)

=
0.5× 0.2

0.5× 0.2 + 1× 0.8
= 0.111

A similar mechanism works with the odds

P(θ = 1|D, y3 = 0)

P(θ = 0|D, y3 = 0)
=

P(y3 = 0|θ = 1)

P(y3 = 0|θ = 0)

P(θ = 1|D)

P(θ = 0|D)

1

8
=

1

2

1

4

The same result is obtained by starting from the prior and considering the
data D ′ = (y1 = y2 = y3 = 0).
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Data

We observe
y1, . . . , yn

where yi ∈ {0, 1}, and, conditional on θ the y1, . . . , yn are

independent: y1, . . . , yn independent conditional on θ

identically distributed: P(yi = 1|θ) = θ ∀i .
Equivalently, we could say that y1, . . . , yn are exchangeable:

p(y1, . . . , yn) = p(yi1 , . . . , yin) for any permutation i1, . . . , in of 1, . . . , n

(note that here p(y1, . . . , yn) = P(Y1 = y1 ∧ Y2 = y2 ∧ . . . ∧ Yn = yn)).
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Likelihood

By virtue of exchangeability, data can be summarized by the number of
successes

y =
n∑

i=1

yi

which, conditional on θ (and on n), has a binomial distribution

p(y |θ) =

(
n

y

)
θy (1− θ)n−y

(note that here p(y |θ) = P(Y = y |θ)).
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Inference for a probability

Although a very simple model, it has relevant applications. Also, it was
dealt with by many of the �rst scholars working in probability.

In fact, it was the motivating example to develop Bayesian statistics both
for T. Bayes and for Laplace.

The former considered it in an abstract context, the latter had the aim of
estimating the probability of a female birth.

Francesco Pauli Single param models 21 / 123



• 1st example • Binomial • con-exp • Mean • Poisson • Prior • Uniform • App •

Posterior distribution

Let us assume, for the moment without discussion, a uniform prior on θ

π(θ) = I[0,1](θ)

then

p(y , θ) = p(y |θ) =

(
n

y

)
θy (1− θ)n−y

and
π(θ|y) ∝ θy (1− θ)n−y

where we recognize the kernel of a Beta distribution with parameters
y + 1 and n − y + 1, so

π(θ|y) =
Γ(n + 2)

Γ(y + 1)Γ(n − y + 1)
θy (1− θ)n−y .

and can also write

θ|y ∼ Beta(y + 1, n − y + 1).
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Posterior distributions
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Laplace example, revisited

Laplace observed 241 945 females and 251 527 males, that is if

θ = probability of a female birth

he had
n = 241 945 + 251 527 = 493 472; y = 241 945

hence the posterior distribution for θ is a Beta(241 946, 251 528) and

P(θ ≥ 0.5|y) ≈ 1.15× 10−42

We ought to appreciate the fact that to get to this number Laplace had to
develop appropriate approximations, it is not immediate even today (R may
give 0 depending on how the problem is formulated due to machine
precision).
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Posterior distribution for Laplace
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Prediction

Consider a new observation ỹ , which behaves like the yi , that is

is independent of y1, . . . , yn conditional on θ

P(yi = 1|θ) = θ

then the prior predictive distribution is

P(ỹ = 1) =

∫
1

0

θπ(θ)dθ =

∫
1

0

θdθ = E (θ) = 1/2

while the posterior predictive distribution is

P(ỹ = 1|y) =

∫
1

0

θπ(θ|y)dθ = E (θ|y) =
y + 1

n + 2
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[Detail]

P(ỹ = 1|y) =

∫
1

0

θπ(θ|y)dθ

=

∫
1

0

θ
Γ(n + 2)

Γ(y + 1)Γ(n − y + 1)
θy (1− θ)n−ydθ

=
Γ(n + 2)

Γ(y + 1)Γ(n − y + 1)

∫
1

0

θy+1(1− θ)n−ydθ

=
Γ(n + 2)

Γ(y + 1)Γ(n − y + 1)

Γ(y + 2)Γ(n − y + 1)

Γ(n + 3)

=
y + 1

n + 2
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Detail: prior predictive distribution for y

Consider the distribution of y prior to observing the data (based on the
uniform prior on θ)

p(y) =

∫
1

0

p(y , θ)π(θ)dθ

=

∫
1

0

(
n

y

)
θy (1− θ)n−ydθ

=

(
n

y

)∫
1

0

θy (1− θ)n−ydθ

=

(
n

y

)
Γ(y + 1)Γ(n − y + 1)

Γ(n + 2)

=
1

n + 1
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Summaries of the posterior distribution

The posterior is the result of the inference on θ, it is relevant to summarize
the information it contains, this can be done in the usual ways in which we
summarize a probability distribution, so we summarize the position with

the mean

the median

the mode

and the variability with the

variance (standard deviation)
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Posterior mean and mode for the binomial model

The posterior mean is

E (θ|y) =
y + 1

n + 2

which is a compromise between the observed proportion y/n and the prior
mean 1/2 (more on this later).

The posterior mode is

Mode(θ|y) =
y

n

which is the maximum likelihood estimator.
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Posterior variance for the binomial model

The posterior variance is

V (θ|y) =
(y + 1)(n − y + 1)

(n + 2)2(n + 3)

which is less readable, we notice that it has n3 at the denominator and n2

at the numerator.

We may compute the average over y

E (V (θ|y)) =
1

(n + 2)2(n + 3)
E ((y + 1)(n − y + 1))

=
1

(n + 2)2(n + 3)
E (ny + n − y2 + 1)

=
1

(n + 2)2(n + 3)
(n2/6 + 5n/6 + 1)
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Posterior intervals

Another common way to summarize the posterior conveying uncertainty is
to use intervals of a given posterior probability, say 100(1− α)%, this is
any interval [θL, θU ] such that

P(θL ≤ θ ≤ θU |y) = 1− α

(This is also called a credibility interval.)

It is somehow the analogue of a con�dence interval in classical statistics,
but notice the di�erent interpretation, here we say that the unknown
parameter lies in the interval with the given probability (rather than saying
that the interval is random ...).

Francesco Pauli Single param models 32 / 123



• 1st example • Binomial • con-exp • Mean • Poisson • Prior • Uniform • App •

Central posterior intervals

The easiest way to obtain a posterior interval of probability 1− α is to set

θL α/2 quantile of π(θ|y)

θU 1− α/2 quantile of π(θ|y)

Below, two examples of central posterior intervals based on quantiles.

θL θU

1 − α

θL θU

1 − α
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High posterior density regions

A di�erent summary of posterior uncertainty is the highest posterior density
region: the set of values that contains probability 1− α but also have
posterior density higher than values outside.

In formulas
{θ|π(θ|y) > cα}

where cα is such that ∫
θ|π(θ|y)>cα

π(θ|y) = 1− α
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HPD regions v. Central posterior intervals

θL θU

1 − α

θL θU

1 − α

θL θU

1 − α

θL θU

1 − α
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Prior

We considered a uniform prior on θ, this has been the choice of both Bayes
and Laplace, who (loosely speaking) justi�ed it

Bayes based on the fact that it implies a uniform predictive prior on y

Laplace based on the so called 'principle of insu�cient reason' because
he had no information about θ

Afterwards di�erent approaches to the prior speci�cation have been
considered, in what follows we discuss di�erent choices and look at their
consequences, keeping in mind the following

a prior need only to reasonably summarize the knowledge we have on θ

if this information is scarce, the e�ect of the prior should vanish as
enough data are collected
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Conjugate prior

A convenient type of prior is the kind that leads to a posterior in the same
family, this property is called conjugacy.

This is not available for any likelihood (more on that later), for the
Binomial model it is represented by the Beta distribution:

If θ ∼ Beta(α, β) then θ|y ∼ Beta(α + y , β + n)

as is easily checked:

π(θ|y) ∝ θy (1− θ)n−yθα−1(1− θ)β−1

= θy+α−1(1− θ)n+β−1
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Posterior mean

Let us synthesize the posterior distribution using the expectation

E (θ|y) =

∫
θπ(θ|y)d(θ) =

α + y

α + β + n

=
α + β

α + β + n

α

α + β
+

n

α + β + n

y

n

=
α + β

α + β + n
+

n

α + β + n

The posterior mean is a weighted average of the prior expectation and the
ML estimate, where

ML estimate prevails if n is large;

ML estimate prevails if α and β are small (the variance of the prior
distribution is large). It is worth noting that α + β can be interpreted
as the equivalent number of observation of the prior distribution.
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Posterior variance

The posterior variance is

V (θ|y) =
(α + y)(β + n − y)

(α + β + n)2(α + β + n + 1)
=

E (θ|y)(1− E (θ|y))

α + β + n + 1

As y and n gets big

E (θ|y) ≈ y/n

V (θ|y) ≈ 1

n
y
n

(
1− y

n

)
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Di�erent priors

With a uniform prior we get this
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Di�erent priors

We may have a di�erent opinion: we may think that θ is more likely not to
be extreme
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Di�erent priors

... or more likely to be extreme
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Di�erent priors

Furthermore, we may prefer value below 0.5
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Di�erent priors

Di�erent priors ⇒ di�erent posteriors
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Prior e�ect as n increases

The e�ect of the prior, however, tend to disappear as enough sample
information is entered.

In the following we observe the e�ect on the posterior of two distinct priors
samples of n = 5, 20, 50, 200, always with y/n = 0.8 and dif
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Prior e�ect as α + β increases

We can see things from another point of view and consider di�erent priors
with the same sample.

We observe a sample with n = 100 and y = 50, the prior mean is 0.25,
α + β is 2, 20, 50, 200
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Posterior mean

Posterior mean as n increases for di�erent priors

y/n= 0.75

n
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Posterior variance

Posterior mean as n increases for di�erent priors

y/n= 0.75
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Posterior mean: con�icting priors

Posterior mean as n increases for di�erent priors
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Posterior variance: con�icting priors

Posterior mean as n increases for di�erent priors
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Exponential family: de�nition

Recall that a family of distributions F = {p(y |θ) : θ ∈ Θ ⊂ Rd} is an
exponential family if its elements can be written as

p(y |θ) = f (y)g(θ)eφ(θ)Tu(y)

where

f : R→ R
g : Rd → R
φ : Rd → Rd

u : Rd → Rd

are known functions.

φ(θ) is called the natural parameter of F .
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Exponential family: likelihood and su�cient statistic

If a vector of observations y = (y1, . . . , yn) is observed and yi are IID
following a distribution from F

p(y |θ) =

(
n∏

i=1

f (yi )

)
g(θ)n exp

{
φ(θ)T

n∑
i=1

u(yi )

}

hence
p(y |θ) ∝ g(θ)n exp

{
φ(θ)T t(y)

}
where

t(y) =
n∑

i=1

u(yi )

is a su�cient statistic.
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Conjugate distribution for an exponential family

If the prior is of the form

π(θ) ∝ g(θ)ηeφ(θ)T ν

then the posterior is

π(θ|y) ∝ g(θ)ηeφ(θ)T νg(θ)n exp
{
φ(θ)T t(y)

}
∝ g(θ)η+neφ(θ)T (ν+t(y))

which has the same form as the prior.

It can be shown that only exponential families of distributions have natural
conjugate priors.
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Likelihood

Assume that observations come from a Gaussian distribution with a known
variance (σ2), so

y1, . . . , yn ∼ IID
(
N
(
θ, σ2

))
conditional on θ

the likelihood is given by

p(y |θ) =
n∏

i=1

(
1√
2πσ

exp

{
− 1

2σ2
(yi − θ)2

})
It is well known that

p(y |θ) ∝ exp
{
− n

2σ2
(ȳ − θ)2

}
where

ȳ =
1

n

n∑
i=1

yi is the sample mean
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Conjugate prior

The Gaussian distribution in exponential form is, for a single observation

p(yi |θ) =

(
1√
2πσ

e−
y2i
2σ2

)
e−

θ2

2σ2 e
θ
σ2

yi

the likelihood is then, letting ȳ = 1

n

∑n
i=1

yi

p(y |θ) ∝ e−n
θ2

2σ2 e
θ
σ2

nȳ

and the conjugate prior is

π(θ) ∝ g(θ)ηeφ
T ν = e−η

θ2

2σ2 e
θ
σ2
ν = exp

{
− η

2σ2

(
θ2 − 2

ν

η
θ

)}
that is, the conjugate family is the Gaussian family:

θ ∼ N
(
µ0, σ

2

0

)
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Posterior distribution

π(θ|y) ∝ p(y |θ)π(θ) ∝ exp
{
− n

2σ2
(ȳ − θ)2

}
exp

{
− 1

2σ2
0

(θ − µ0)2
}

∝ exp

{
− n

2σ2
θ2 − 1

2σ2
0

θ2 +
θȳn

σ2
+
θµ0
σ2
0

}
∝ exp

{
−1

2

(
n

σ2
+

1

σ2
0

)
θ2 + θ

(
n

σ2
ȳ +

1

σ2
0

µ0

)}

∝ exp

− 1

2
(

n
σ2

+ 1

σ20

)−1
θ2 − 2θ

n
σ2
ȳ + 1

σ20
µ0

n
σ2

+ 1

σ20




∝ exp

− 1

2
(

n
σ2

+ 1

σ20

)−1
θ − n

σ2
ȳ + 1

σ20
µ0

n
σ2

+ 1

σ20

2

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Posterior distribution (cont.)

π(θ|y) ∝ p(y |θ)π(θ)

∝ exp

{
− 1

2(σn)2
(θ − θn)2

} [
N
(
θn, (σn)2

)]
that is, we obtain a gaussian posterior distribution with parameters θn and
σn which are a function of prior distribution's parameters and of the data:

θn =

n
σ2
ȳ + 1

σ20
µ0

n
σ2

+ 1

σ20

=
µ0σ

2 + ȳnσ2
0

σ2 + nσ2
0

(σn)2 =

(
n

σ2
+

1

σ2
0

)−1
=

σ2σ2
0

σ2 + nσ2
0
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Posterior distribution (cont.)

The posterior mean is a weighted average of the prior mean and of the ML
estimate, where the weights are the reciprocal of the respective variances

θn =

n
σ2
ȳ + 1

σ20
µ0

n
σ2

+ 1

σ20

=

1

V (ȳ) ȳ + 1

V (θ)µ0
1

V (ȳ) + 1

V (θ)

θn −→
n→∞

ȳ as n grows, the ML estimates weighs more

θn −→
σ0→0

µ0 the more concentrated is the prior distribution, the more

the prior mean weighs.
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Posterior distribution (cont.)

It is interesting to write the posterior mean as

θn = µ0 + (ȳ − µ0)
nσ2

0

σ2 + nσ2
0

the posterior mean is the prior mean plus an adjustment toward the sample
mean.

θn = ȳ − (ȳ − µ0)
σ2

σ2 + nσ2
0

the posterior mean is the sample mean shrunken toward the prior mean.
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Posterior distribution (cont.)

The reciprocal of the posterior variance is the sum of the reciprocals of the
prior variance and the variance of ML estimator

(σn)2 =

(
n

σ2
+

1

σ2
0

)−1
=

(
1

V (ȳ)
+

1

V (θ)

)−1

σn −→
n→∞

0 as n grows the variance of the posterior diminish (it is more

concentrated, where?).

σn −→
σ0→0

0 also if the variance of the prior is reduced the posterior is

more concentrated, where?
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Model for gaussian data: predictive distribution

Consider a new observation ỹ , then

p(ỹ |y) =

∫
p(ỹ |θ)p(θ|y)dθ

∝
∫

exp

{
− 1

2σ2
(ỹ − θ)2

}
exp

{
− 1

2σ2n
(θ − µn)2

}
dθ

or, in other words,

ỹ |θ ∼ N
(
θ, σ2

)
θ ∼ N

(
µn, σ

2
n

)
Then (see here)

ỹ |y ∼ N
(
µn, σ

2

n + σ2
)

The uncertainty in the predictive distribution is the uncertainty from the
model (σ2) plus the uncertainty �on� the model (σ2n).
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Model for gaussian data: predictive distribution mean and
variance

Note that the mean of the predictive distribution for ỹ can be derived
considering that

E (ỹ |y) = E (E (ỹ |θ, y)|y) = E (θ|y) = µn

While the variance is derived from

V (ỹ |y) = E (V (ỹ |θ, y)|y) + V (E (ỹ |θ, y)|y)

= E (σ2|y) + V (θ|y)

= σ2 + σ2n

which makes the interpretation of the decomposition more transparent.
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Note: updates

Let, a priori, θ ∼ N (µ0, σ
2

0
).

given an observation y1 ∼ N
(
θ, σ2

)
the posterior is

(θ|y1) ∼ N

µ1 =

µ0
σ20

+ y1
σ2

1

σ20
+ 1

σ2

, σ21 =
1

1

σ20
+ 1

σ2


A second observation y2 ∼ N

(
θ, σ2

)
becomes available, we can

update the posterior using (θ|y1) as the prior distribution

π(θ|y1, y2) ∝ π(θ|y1)f (y2|θ)

so

(θ|y1, y2) ∼ N

µ2 =

µ1
σ21

+ y2
σ2

1

σ21
+ 1

σ2

, σ22 =
1

1

σ21
+ 1

σ2


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Note: updates (cont.)

we note that

σ22 =
1

1

σ21
+ 1

σ2

=
1

1

σ20
+ 1

σ2
+ 1

σ2

=
1

1

σ20
+ 2

σ2

µ2 =

µ0
σ20

+ y1+y2
σ2

1

σ20
+ 2

σ2

That is, the same results is obtained either updating the information
in two steps as above and starting from the prior N

(
µ0, σ

2

0

)
and

updating it using the likelihood of the pairs (y1, y2).
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Note: sequential updates

Let p(y |θ) be the model and π(θ) the prior, the posterior is then

π(θ|y) ∝ π(θ)p(y |θ)

If a further observation y∗, independent of y and distributed according to
p(y |θ), becomes available, the posterior

π(θ|y , x) ∝ π(θ)p(y∗|θ, y)

is obtained, being y∗ and y independent we can write

π(θ|y , x) ∝ π(θ)p(y∗|θ)p(y |θ)

∝ π(θ|y)p(y∗|θ)

which is also obtained combining the prior distribution π(θ|y) and the
likelihood for y∗.
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Note 2: su�cient statistics

Note that, given the prior distribution θ ∼ N
(
µ0, σ

2

0

)
the same posterior

distribution is obtained with the following observations

n observations y1, . . . , yn IID from N
(
θ, σ2

)
;

1 observation ȳ from a N
(
θ, σ2/n

)
.

where the second is nothing but the su�cient statistics for the sample
y1, . . . , yn.

This is intuitive, the posterior depends on the sample only through the
likelihood, and the likelihood of the su�cient statistics is equal to the one
of the entire sample.

Francesco Pauli Single param models 64 / 123



• 1st example • Binomial • con-exp • Mean • Poisson • Prior • Uniform • App •

Note 2: su�cient statistics

We can substitute the sample y with any su�cient statistics t(y), we will
obtain the same posterior distribution.
If t(y) is su�cient, then the factorization theorem tells us that

p(y |θ) = h(y)g(t(y); θ)

hence

π(θ|y) ∝ π(θ)p(y |θ)

∝ π(θ)h(y)g(t(y); θ)

∝ π(θ)g(t(y); θ)

∝ π(θ|t(y))
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Likelihood

Although not a realistic situation, this is relevant both as

an example of inference for a scale parameter

a building block for the model on Gaussian data with both the mean
and the variance unknown

Let then θ be known and

y1, . . . , yn ∼ IID
(
N
(
θ, σ2

))
conditional on σ2

so the likelihood is

p(y |σ2) ∝
n∏

i=1

(
1√
2πσ

exp

{
− 1

2σ2
(yi − θ)2

})

∝ (σ2)−n/2 exp

{
− n

2σ2

n∑
i=1

(yi − θ)2

}

Francesco Pauli Single param models 67 / 123



• 1st example • Binomial • con-exp • Mean • Poisson • Prior • Uniform • App •

Prior

Assume an inverse gamma prior on σ2,

σ2 ∼ invGamma(γ, δ)

π(σ2) ∝ (σ2)−(γ+1)e−δ/σ
2

which is the same as saying that

1

σ2
∼ Gamma(γ, δ)
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Posterior

The posterior distribution is then

π(σ2|y) ∝ p(y |σ2)π(σ2)

π(σ2|y) ∝ (σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − θ)2

}
(σ2)−γ−1e−δ/σ

2

∝ (σ2)−n/2−γ−1 exp

{
− 1

σ2

[
1

2

n∑
i=1

(yi − θ)2 + δ

]}

that is,

σ2|y ∼ inv-Gamma

(
γ + n/2,

1

2

n∑
i=1

(yi − θ)2 + δ

)
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Reparametrization 1

It is convenient to reparametrize the model with the precision τ = 1/σ2, so
the prior assumption is

τ ∼ Gamma(γ, δ),

the likelihood is

p(y |τ) ∝ (τ)n/2 exp

{
−τ
2

n∑
i=1

(yi − θ)2

}

and the posterior is Gamma(n/2 + γ, 1
2

∑n
i=1

(yi − θ)2 + δ)

π(τ |y) ∝ τn/2 exp

{
−1

2
τ

n∑
i=1

(yi − θ)2

}
τγ−1e−δτ

∝ τn/2+γ−1 exp

{
−τ

[
1

2

n∑
i=1

(yi − θ)2 + δ

]}
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Inference for σ2

Prior is an inverse gamma with parameters γ = δ = 10−3, sample variance
is 0.5, n = 10
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Inference for τ = 1/σ2

Prior is a gamma with parameters γ = δ = 10−3, sample variance is 0.5,
n = 10
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Inference for σ2

Prior is an inverse gamma with parameters γ = δ = 1, sample variance is
0.5, n = 10
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Inference for τ = 1/σ2

Prior is a gamma with parameters γ = δ = 1, sample variance is 0.5,
n = 10
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Reparametrization 2

Another convenient parametrization is to write

σ2 =d
σ2
0
ν0
X

, X ∼ χ2ν0

following Gelman we call this inv-χ2(ν0, σ
2

0
).

(This corresponds to ν0 = 2γ and σ2
0

= δ/γ.)

The posterior is then

σ2|y ∼ inv-χ2
(
ν0 + n,

ν0σ
2

0
+ nσ̂2MLE

ν0 + n

)
the scale parameter being a weighted average of the prior variance σ2

0
and

the MLE with weight given by ν0 and n.
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Count data: Poisson

Assume that yi |θ ∼ Poisson(θ), that is

p(yi |θ) =
θyi e−θ

yi !

then if y = (y1, . . . , yn) are observed and these are iid conditionally on θ,
then, if we let

t(y) =
n∑

i=1

yi

the likelihood is

p(y |θ) =
n∏

i=1

θyi e−θ

yi !

∝ θt(y)e−nθ

= (e−θ)net(y) log θ
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Posterior for Poisson data

The likelihood
p(y |θ) ∝ (e−θ)net(y) log θ

belongs to an exponential family with natural parameter φ(θ) = log θ, the
conjugate prior is a Gamma distribution, let

π(θ) ∝ θα−1e−βθ

then the posterior is

θ|y ∼ Gamma(α + nȳ , β + n)
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Distribution of y

Note that

p(y)π(θ|y) = p(y |θ)π(θ)⇒ p(y) =
p(y |θ)π(θ)

π(θ|y)

which in the Poisson case means, for a single observation y

p(y) =
Poisson(θ)Gamma(α, β)

Gamma(α + y , 1 + β)

=
Γ(α + y)βα

Γ(α)y !(1 + β)α+y

=

(
α + y − 1

y

)(
β

β + 1

)α( 1

β + 1

)y

which is a Negative binomial
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Extension of the Poisson model: exposure

Assume data yi are such that

yi |θ ∼ Poisson(xiθ)

where xi > 0, which is observed, is the exposure of unit i .
The likelihood is

p(y |θ) ∝ θ
∑

i yi e−θ
∑

i xi

if the prior is again a Gamma(α, β) then the posterior is

θ|y ∼ Gamma(α +
∑
i

yi , β +
∑
i

xi )
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Poisson example: inference for an incidence rate

In a US city with a population of 200 000 we observed 3 deaths of asthma
in a year, that is an observed mortality rate for asthma of 1.5 per 100 000.

We want to combine this datum with prior information on asthma mortality
and we use the Bayesian paradigm.

We assume a Poisson model (typical in the epidemiology context), the
likelihood is

y |θ ∼ Poisson(2θ)

where θ is the asthma mortality rate in cases per 100 000.
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Poisson example: prior elicitation

We want to choose a prior within the conjugate family, so

π(θ) = Gamma(α, β)

In order to assess appropriate hyperparameters α and β we use the fact
that according to epidemiological literature

(1) rates above 1.5 per 100 000 are rare

(2) typical mortality rate is around 0.6 per 100 000

Fact (2) suggests

E (θ) =
α

β
= 0.6

Fact (1) suggests that we should keep P(θ < 1.5), for example

α = 3; β = 5

leads to P(θ < 1.44) = 0.975.
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Poisson example: prior elicitation

Starting from a prior π(θ) = Gamma(3, 5) the observation y = 3 with
exposure x = 2 leads to the posterior

θ|y ∼ Gamma(3 + 3, 5 + 2)

whose mean is 0.86.
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Poisson example: additional observations

Suppose now that the rate 1.5 per 100 000 is observed for 10 years (same
city), so y = 30 and x = 20 and the posterior is

θ|y ∼ Gamma(33, 25)

whose mean is 1.32.
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Prior distribution

The prior distribution is a novelty in Bayesian statistics with respect to
classical statistics.
It is

an opportunity, since we can formally include information other than
observations in inference

a problem, since we must include in inference informations which do
not come from the experiment (observations).

From what we already discussed we know that

Attitude toward subjective priors are the most various, from essential
to unacceptable.

(Reasonably speci�ed) prior information vanishes as the sample size
tends to in�nity. This helps but is not a panacea, we have �nite
samples, so in practice our inference will be a�ected by the prior.
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Sensitivity of results to prior's choice

The following example, due to Berger, shows that the same experimental
result may lead to di�erent conclusions depending on the prior distribution.

Y1, . . . ,Yn IID(N (θ, 1)) hence L(θ) ∝ exp
{
−1

2
(ȳ − θ)2

}
Let us �x the quartiles of the prior distribution:

IQ = −1 ; Me = 0 ; IIIQ = 1

There are in�nite probability distribution coherent with the above values,
let us consider

Gaussian: θ ∼ N (0, 2.19)

Laplace: θ ∼ La(1.384)

Cauchy: θ ∼ Ca(0, 1)
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Sensitivity of results to prior's choice (cont.)

−6 −4 −2 0 2 4 6
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π(θ) = 1√

2πτ
exp

{
− 1

2τ2
θ2
}

Laplace

π(θ) = λ
2

exp {−λ|θ|}

Cauchy
π(θ) = 1

π(1+θ2)
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Sensitivity of results to prior's choice (cont.)

Assume n = 1, consider three di�erent samples

y = 0 y = 2 y = 5
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Caution: relatively similar prior could lead to di�erent posterior.
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How do we choose a prior?

Any probability distribution (and not only) can be a prior for θ ∈ Θ.

A reasonable requirement is that supp(π(θ)) = Θ (note that the support of
the posterior distribution is, whatever the likelihood, a subset of the
support of the prior distribution).

Typical choices are

conjugate distributions;

non informative (reference) priors

uniform prior
Je�reys prior
improper prior

weakly informative distributions
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Conjugate priors: pros and cons

A family of distributions f (θ; ν) is a natural conjugate for the likelihood
L(θ) if, assuming π(θ) = f (θ; ν) the posterior distribution is in the same
family, that is π(θ|y) = f (θ; ν1) for some ν1.

+ the main advantage is that solutions are available in closed
form and are easily obtained;

- restricting the choice to the conjugate family may be too
restrictive;

• conjugate families are less relevant today due to the use of
MCMC and similar method to explore posterior distribution
(closed forms are not needed anymore).

Conjugate priors examples

Beta + Binomial;

Gaussian + Gaussian (for the mean, variance known);

Gamma + Poisson.
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Non informative (reference) priors

Abandon the idea that the prior distribution is meant to re�ect the opinion
of the researcher prior to observing any data.

Rather, we want to model the absence of any opinion (whether this is
realistic is disputable).

This is a relevant issue also as a possible answer to the objection which are
put forward by those who do not like the results of inference to depend on
subjective opinions: the rationale is to let the data speak for themselves.

These kind of priors have been called non informative or reference priors are
sometimes associated to adjectives such as vague, �at or noninformative.

Problem is, it is not so obvious what �non informative� means.
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Non informative priors: uniform

An intuitive solution is to assume

π(θ) ∝ k

so that no values of θ are privileged (principle of insu�cient reason).

There are two di�culties

What if the parameter space is not limited?

If the parameter space is not limited a constant has an in�nite integral
and so is not a probability distribution.

Is it really non informative?
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A uniform �distribution� for the mean

Consider the inference for the mean in a Gaussian sample starting from a
prior θ ∼ N

(
µ0, σ

2

0

)
the posterior is

N
(
µ0σ

2 + ȳnσ2
0

σ2 + nσ2
0

,
σ2σ2

0

σ2 + nσ2
0

)
if σ2

0
is big relative to σ2/n this is approximately

N
(
ȳ ,
σ2

n

)
which is the same as we would obtain by assuming

π(θ) ∝ k
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Improper prior

If we apply (the algebra of) Bayes theorem

π(θ|y) ∝ p(y |θ)π(θ)

with a function π(θ) which is not a valid probability distribution, then

π(θ|y) is not necessarily a valid distribution (and if it is not then it is
not useful)

if π(θ|y) is a valid distribution then it is reasonable to interpret it as a
posterior distribution

In practice: the uniform prior may work even if the parameter space is
limited (on a case by case basis).
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�Informativeness' of the uniform distribution

The non informative nature of the uniform distribution in general is
disputable.

Let

π(θ) ∝ k

consider the reparametrization ψ = ψ(θ), then

π(ψ) = π(θ−1(ψ))

∣∣∣∣ dθdψ
∣∣∣∣

which is not uniform in general.

That is, assuming that uniform means non informative, by specifying a
uniform distribution for the parameter θ, we are specifying an informative
prior on its transform ψ = ψ(θ).
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Je�reys' prior

The above issue may be overcome by posing

π(θ) =
√
I(θ)

where H is Fisher information, that is

[I(θ)] = −E
(
∂2 log p(y |θ)

∂θ2

)
with this, for any parametrization ψ = ψ(θ)

π(ψ) =
√
I(ψ) =

√
I(θ)

∣∣∣∣ dθdψ
∣∣∣∣
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Je�reys' prior: example

Consider a Binomial experiment, so the log-likelihood is

log p(y |θ) = y log θ + (n − y) log(1− θ)

then

[I(θ)] = −E
(

d2

dθ2
log p(y |θ)

)
=

n

θ(1− θ)

the prior is then a Beta(1/2, 1/2)

π(θ) ∝ θ−1/2(1− θ)−1/2
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Binomial, reparametrization

Consider the reparametrization

ψ = log

(
θ

1− θ

)
∈ R

If we assumed a uniform prior on θ then

π(ψ) = π(θ−1(ψ))

∣∣∣∣ dθdψ
∣∣∣∣ =

eψ

(1 + eψ)2

If the jJe�rey's prior is chosen then it implies

π(ψ) =
eψ/2

1 + eψ

which is also equal to √
I(ψ)
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Binomial, reparametrization (cont.)

In fact

√
I(ψ) =

√
−E

(
d2 log p(y |ψ)

dψ2

)

=

√
−E

(
d2

dψ2
(yψ − log(1 + eψ))

)

=

√
E

(
eψ

(1 + eψ)2

)

=

√
eψ

(1 + eψ)2

=
eψ/2

1 + eψ
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Sensitivity to the prior choice: Je�rey's v. uniform

Samples imply θ̂ = 0.75, n = 4, 8, 12, 16.
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Sensitivity to the prior choice

Consider a Beta-Binomial model where 4 successes are observed on n = 10
trials, so that the ML estimate is 0.4, consider as a prior a Beta(α, β) with
α = β (so E (θ) = 0.5), compare below the e�ect of di�erent choices on
the posterior means and variances

α + β V (θ) E (θ|y) V (θ|y)

Je�rey 1 0.1250 0.409 0.0201
Uniform 2 0.0833 0.417 0.0187

5 0.0417 0.433 0.0153
10 0.0227 0.450 0.0118
20 0.0119 0.467 0.0080
50 0.0049 0.483 0.0041
100 0.0025 0.491 0.0023
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Weakly informative prior

The rationale is that we usually do not really need to start from complete
ignorance (which is what reference priors try to describe).

On the contrary there usually is some information

for the probability of a female birth we are pretty sure it is not 0.1 or
0.9,

The idea is than to use a prior conveying less information than what we
actually have

for the probability of a female birth we may use π(θ) ∼ N
(
0.5, 0.12

)
,

or π(θ) ∼ Beta(20, 20)

for the inference on the mean π(θ) ∼ N
(
0,A2

)
with A large (where

what large means depends on the problem)

Francesco Pauli Single param models 103 / 123



• 1st example • Binomial • con-exp • Mean • Poisson • Prior • Uniform • App •

Prior distribution, in brief

There are some situations in which it is sensible to put relevant information
into the prior distribution (especially with few data).

In general, even if we had information, it may be deemed inconvenient to
include it in the model (prior), possible reasons include

di�culties to elicit the prior
mathematical simplicity

In this case we have a number of options

uniform / improper priors
non informative priors (Je�rey's priors)
weakly informative priors (possibly conjugate)

These are all valid options none of which is clearly superior, in fact, if we
have enough data to rely exclusively on them, then the choice among
relatively �at priors should not matter.
On the contrary it is advisable to avoid automatic use of a particular
speci�cation and do some sensitivity analysis.
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Relation between prior and posterior

Note that E (θ) = E (E (θ|y)), and

V (θ) = E (V (θ|y)) + V (E (θ|y))

that is, the posterior variance is, on average, smaller than the prior variance
(V (θ) > E (V (θ|y)).
In particular it is smaller the greater is the variation of E (θ|y) across y .
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Model for uniform data: example

Let
y1, . . . , yn|θ ∼ IID(Unif(θ)), θ ∈ Θ = R+

The likelihood is (M = y(n) in the plot)

p(y |θ) = pθ(y) =
n∏

j=1

1

θ
I (yj ≤ θ) =

1

θn
I
(
y(n) ≤ θ

)

θ

0 M θ

0

1 θn

1 Mn
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Model for uniform data: a priori, a posteriori

We consider the improper prior distribution

π(θ) ∝ θ−α, α > 0

The posterior is then

π(θ|y) = kp(y |θ)π(θ) = kθ−nI
(
y(n) ≤ θ

)
θ−α = kθ−(n+α)I

(
y(n) ≤ θ

)
where

1

k
=

∫
θ−(n+α)I

(
y(n) ≤ θ

)
dθ =

∫ +∞

y(n)

θ−(n+α)dθ =
1

yα+n−1
(n)

(α+ n − 1)

hence

π(θ|y) = yα+n−1
(n) (α + n − 1)θ−(n+α)I

(
y(n) ≤ θ

)
= y−1(n) (α + n − 1)

(
θ

y(n)

)−(n+α)

I
(
y(n) ≤ θ

)
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Model for uniform data: Bayesian and classical estimates

In studying Bayesian statistics it is interesting to compare the Bayesian and
classical estimates.

We compare in what follows the posterior expectation (a standard Bayesian
estimator) with three natural estimators derived from the classic paradigm:

MLE: θ̂ML

unbiased estimator derived from MLE: θ̂ND

e�cient estimator: θ̂EFF best among linear functions of MLE
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Model for uniform data: MLE

The likelihood is maximized when θ̂n = y(n), whose distribution, fory > 0, is

P(θ̂n ≤ y) = P(y(n) ≤ y) =
⋂
i

P(yi ≤ y) =
∏
i

min
(yi
θ
, 1
)

= min
((y

θ

)n
, 1
)

with density

fθ̂n(y) =
nyn−1

θn
I (y < θ)

and so E (θ̂|θ) = nθ
n+1
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Model for uniform data: alternative estimators

MLE is biased, E (θ̂|θ) = nθ
n+1

, an unbiased estimator is obtained as

θ̂ND =
n + 1

n
θ̂ML =

n + 1

n
y(n)

furthermore, the best estimator (in terms of MSE) among those which
can be written in the form c θ̂ML is

c∗ =
n + 2

n + 1
= argminE (c θ̂ML − θ)2

and so θ̂EFF = n+2

n+1
y(n)
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Model for uniform data: Bayesian and classical estimates

Posterior expectation

E (θ|y) =

∫ +∞

y(n)

yα+n−1
(n) (α + n − 1)θ−(n+α)I

(
y(n) ≤ θ

)
dθ

=
α + n − 1

α + n − 2
y(n)

This is

MLE if α→∞
unbiased estimator if α = 2

e�cient estimator if α = 3
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Laplace example: a priori e�ect
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Laplace example: a priori e�ect
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The Beta distribution

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

where 0 < θ < 1 e α, β > 0,

E (θ) =
α

α + β
V (θ) =

αβ

(α + β)2(α + β + 1)
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Theorem: mixture of normals

Theorem

If Y |θ ∼ N
(
θ, σ2

)
and θ ∼ N

(
µ, τ2

)
then

Y ∼ N
(
µ, σ2 + τ2

)
.

This is easily seen, let

Z = Y − θ|θ; then Z ∼ N
(
0, σ2

)
∀θ

consider X = Z + θ

X is a sum of normal r.v. so it is normal,

E (X ) = E (Z ) + E (θ) = 0 + µ = µ

V (X ) = V (Z ) +V (θ) +2Cov(Z , θ) = σ2 + τ2 +2Cov(Z , θ) = σ2 + τ2

since Cov(Z , θ) = E (Zθ) = E (E (Zθ|θ)) = E (E ((X − θ)θ|θ)) = 0

back
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Gamma

π(θ) =
βα

Γ(α)
θα−1e−βθ

where θ > 0, α, β > 0,

E (θ) =
α

β
V (θ) =

α

β2
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inverse Gamma

π(θ) =
βα

Γ(α)
θ−(α+1)e−β/θ

where θ > 0, α, β > 0,

E (θ) =
β

α− 1
V (θ) =

β2

(α− 1)2(α− 2)
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De�nition of statistic

De�nition: statistic

A statistic is a function of the data (not depending on the parameter)

T : Y → T ⊂ Rk

A statistic T is characterized by a partition of the sample space with
elements

Yt = {y ∈ Y|T (y) = t}, t ∈ T

a bijective transformation of T has the
same partition.

a non bijective transformation of T is
associated to a coarser partition.
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Su�cient statistic

Generally speaking a statistic summarizes the sample, it is su�cient for a
parameter θ if it does not summarize too much, i.e. once the statistic is
known, knowing more of the sample would not add any information about θ

De�nition: su�cient statistic

Within the model (Y, pθ,Θ) a statistic T (·) : Y → Rk is su�cient
for θ if and only if

p(y |T = t) does not depend on θ
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Characterizations of su�ciency

Theorem

Given a statistical model (Y, pθ,Θ) and T : Y → Rk a statistic.
The folowing statements are equivalent:

(i) T (y) = T (z)⇒ L(θ, y) ∝ L(θ, z);

(ii) (Neyman factorization theorem)
there exist two function h e g such that
pθ(y) = h(y)g(T (y), θ);

(iii) T is su�cient
pθ(y |T = t) = p(y |T = t) ∀θ;
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Minimal su�ciency

De�nition: minimal su�cient statistic

For a model (Y, pθ,Θ) a statistic T (·) : Y → Rk is minimal

su�cient for θ if and only if

T (y1) = T (y2)⇔ L(θ; y1) ∝ L(θ; y2)

per ogni θ ∈ Θ.

Equivalently

Every su�cient statistic is a function of T .

Its partition is the same as the likelihood partition.
L(θ;y)
L(θ;z) = c(y , z)⇔ T (y) = T (z)

back
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