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Foundations

The problem we will consider in this section is that of using the values of
one variable to explain or predict values of another. We shall refer to an
explanatory (covariate) and a dependent (outcome, response) variable.

A common question is: how does one quantity, y , vary as a function of
another quantity (or vector of quantities), x?

In general, we are interested in the conditional distribution of y , given x ,
parametrized as p(y |θ, x), where n observations (xi , yi ) are available.

The term regression dates back to Francis Galton, namely regression
toward the mean.
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Foundations

The distribution of y given x is typically studied in the context of a set of
units or experimental subjects. Regression models the statistical
relationship between the variates and the covariates. There are two slightly
different situations:

in the first one the experimenters are free to set the values of xi : in
such a case, x is deterministic. We will typically assume that the
covariates are independent of the model parameters: p(x |θ) = p(x).
in the second one both values are random, although one is thought of
as having a causal or explanatory relationship with the other.

The analysis, however, turns out to be the same in both cases.
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Foundations

The two approaches differ in the evaluation of the joint distribution of y
and x :

in the first approach the joint distribution of x and y is proportional to
the conditional distribution of y given x :

p(y , x |θ) = p(y |x , θ)p(x)

p(y , x |θ) ∝ p(y |x , θ)

Ex: studying the height(y) vs the weight (x) of n individuals
in the second approach there is a model for the x as well:

p(y , x |θ) = p(y |x , θ)p(x |θ)

Ex: studying the effect of a noisy protein measurements x on some
outcome response.
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Foundations

Galton developed the following model: pel-
lets fall through a quincunx to form a normal
distribution centered directly under their en-
trance point. These pellets might then be re-
leased down into a second gallery correspond-
ing to a second measurement. Galton then
asked the reverse question: "From where did
these pellets come?"

The answer was not ’on average directly above’. Rather it was ’on average,
more towards the middle’, for the simple reason that there were more
pellets above it towards the middle that could wander left than there were
in the left extreme that could wander to the right, inwards.
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Foundations

Goals of a regression analysis
1 understanding the behavior of y , given x

2 predicting y , given x , for future observations
3 causal inference, or predicting how y would change if x were changed

in a specified way.
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Normal linear model

Describing the pellets fall provoked one of the most powerful scientific
revolution, in statistical terms: the normal linear model, in which the
distribution of each response measurement yi , i = 1, . . . , n given the n × p
matrix of predictors X is normal with a mean that is a linear function of X :

E (yi |β,X ) = β1xi1 + β2xi2 + . . .+ βpxip, (1)

and the variance for each yi is σ2. The parameter vector is then
θ = (β1, . . . , βp, σ).

The conditional mean above may be expressed in matrix terms as Xβ,
where β = (β1, . . . , βp)T is a p-dimensional vector. Then, the likelihood of
the model is:

p(y |X , θ) = N (Xβ, σ2)
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Normal linear model

Compared to classical inference, Bayesian inference poses a new copernican
challenge: the vector parameter θ is not a fixed quantity to be estimated
from the data, but is assigned a prior distribution reflecting the
experimenter’s uncertainty and/or his/her substantial knowledge.

Key statistical modelling issue:

defining y and X in such a way the conditional expectation (1) of y is
reasonably linear (the same as in classical inference)
setting up a prior distribution of the model parameters that accurately
reflects substantial knowledge.

Unless otherwise stated, in what follows we assume that X is a n × p
matrix, with the first column of 1’s, and β = (β1, . . . , βp)T , a
p-dimensional vector, where β1 is the intercept.
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Normal linear model

Statistical inference
Estimate the parameter θ in terms of a posterior distribution, conditional
on the response y and the covariates matrix X .

Under the assumptions that the design matrix X is completely known, the
posterior distribution for θ is:

π(θ|X , y) ∝ p(y |θ,X )π(θ), (2)

where p(y |θ,X ) is the likelihood model function and π(θ) the prior
distribution for the parameter vector θ.

A Bayesian model is constituted by the pair prior-likelihood.
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Normal linear model: priors

Classical linear regression may be thought of as bayesian posterior inference
based on a noninformative prior distribution for the parameters of the
normal linear model. Given yi ∼ N (

∑p
j=1 xijβj , σ

2), each βj may be
thought of as drawn from a Uniform prior distribution Unif(−∞,+∞).

We need a prior distribution that is sufficiently strong for the model
parameters to be accurately estimated from the data at hand, yet not so
strong as to dominate the data inappropriately. The prior may then act as
a regularization device.

We will briefly outline, from a Bayesian perspective, the choices involved in
setting up a regression model, starting from noninformative priors and then
moving to more informative priors.

Leonardo Egidi Introduction 12 / 51



• regression • Noninformative priors • Noninformative prior analysis • Prediction • Model checking • Informative prior analysis • Limits and extensions •

Normal linear model: noninformative prior distribution

A convenient noninformative prior distribution is uniform on (β, log σ) or,
equivalently,

π(β, σ2|X ) ∝ σ−2. (3)

Proof

p(β, log σ) = 1(−∞,+∞). If σ2 = U and log
√
U = W , then

∣∣∣ dwdu ∣∣∣ = 1√
u

1
2
√

u
= 1

2u = 1
2σ2 . Thus,

p(β, σ2) =
∣∣∣ d log σ

dσ2

∣∣∣ 1(−∞,+∞) = 1
2σ2 ∝ σ

−2.�

When there are many data points and only a few parameters, this prior is
useful and takes less effort than specifying prior knowledge in probabilistic
form.

However, for a small sample size or a large number of parameter, the
likelihood is less sharply peaked, and (more informative) prior distributions
become more important.
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Normal linear model: noninformative analysis

As with the normal distribution with unknown mean and variance, we
define the joint posterior distribution for σ2 and β via the Bayes Theorem.
For simplicity, we suppress the dependence on X here:

π(β, σ2|y) ∝ p(y |β, σ2)π(β, σ2) ∝ N (Xβ, σ2)σ−2

∝ σ−n−2 exp

− 1
2σ2

 n∑
i=1

yi −
p∑

j=1

xijβj

2

 (4)

Then, we factor the joint posterior π(β, σ2|y) as:

π(β, σ2|y) = π(β|σ2, y)π(σ2|y), (5)

where π(β|σ2, y) is the conditional posterior of β on σ2, and π(σ2|y) is
the marginal posterior of σ2.
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Normal linear model: noninformative prior

We rewrite the joint posterior (4) as:

π(β, σ2|y) ∝ p(y |β, σ2)π(β, σ2)

∝ σ−n−2 exp

{
− 1
2σ2

[
(y − Xβ)T (y − Xβ)

]}
∝ σ−n−2 exp

{
− 1
2σ2

[
SSE + (β − β̂)TXTX (β − β̂)

]}
∝ σ−n−2 exp

{
− 1
2σ2 SSE

}
exp

{
− 1
2σ2

[
(β − β̂)TXTX (β − β̂)

]}
,

∝ σ−
p
2 exp

{
− 1
2σ2

[
(β − β̂)TXTX (β − β̂)

]}
︸ ︷︷ ︸

β|σ2,y∼N (β̂,Vβσ2)

σ−
(n+p)

2 exp

{
− 1
2σ2 SSE

}
︸ ︷︷ ︸

σ2|y∼inv-χ2(n−p,s2)

,

where SSE = (y − X β̂)T (y − X β̂) and β̂ = (XTX )−1XT y .
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Normal linear model: noninformative prior

To derive the conditional posterior for β, we must extract from the
joint posterior only the pieces related to β:

π(β|σ2, y) ∝ σ−p/2 exp

{
− 1
2σ2

[
(β − β̂)TXTX (β − β̂)

]}
,

thus we may conclude that

β|σ2, y ∼ N (β̂,Vβσ
2), (6)

with Vβ = (XTX )−1.

Denoting with s2 = 1
n−p (y − X β̂)T (y − X β̂), after some algebra one

may conclude that:

σ2|y ∼ inv-χ2(n − p, s2). (7)
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Normal linear model: noninformative prior

Noninformative posterior

We may factor the joint posterior π(β, σ2|y) as the product of p(β|σ2, y)
and p(σ2|y). The joint posterior follows a Normal-Inverse Gamma a

distribution, N IG(µ, λ, a, b), where

µ = β̂, λ = (XTX )−1, a = (n − p)/2, b = (n − p)s2/2

.
aWe use the fact that an invGamma(n/2, 1/2) is an inv − χ2(n, 1)

Comparison to classical inference: the classical estimates for β and σ
are β̂ and s.
Simulation: the factorization (5) is useful in terms of simulation from
the model. One can simulate σ2 from (7) and then β from (6).
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Normal linear model: is the posterior distribution proper?

As for any analysis based on an improper prior distribution, we need to
check if the posterior distribution is proper. Given a generic parameter
vector θ, a prior distribution is said to be proper if:∫

Θ
π(θ)dθ < +∞

In our case, it is immediate to check that π(β, σ2) is not proper:∫
Θ
π(β, σ2)dθ =

∫
Θ
σ−2dθ = +∞

However, proper posteriors may come from improper priors. In this case:∫
Θ π(β, σ2|y)dθ <∞ iff:

n > p: there are at least as many data point as parameters;
rank(X ) = p: no collinearity in X .
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CARS dataset

We use now the cars dataset, consisting of the speed of cars (mph) and
the distances taken to stop (ft). We build up a linear model for the
distance (Y ) explained by the speed (x), with noninformative priors for
θ = (α, γ, log σ).
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yi ∼ N (α + γx , σ2)

π(α, γ, log σ) = Unif(−∞,+∞)

Given β = (α, γ), and X a
n×2 design matrix (where the
first column is a n × 1 vector
of 1’s), from classical inference
we have:

β̂ = (XTX )−1XT y

σ̂2 = s2 =
1

n − p
(y−X β̂)T (y−X β̂)
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Normal linear model: posterior simulation

We simulate σ2 from π(σ2|y) = invGamma((n − 1)/2, (n − 1)s2/2):

Marginal posterior for σ2
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Normal linear model: posterior simulation

We simulate α and γ from N (β̂, (XTX )−1σ2):

Conditional posterior for α
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Normal linear model: comparison

Clearly, the estimates under the two approaches are quite similar:

Par. MLE Posterior mean 95 % Conf. Int. 95 % Credible Int.
σ2 236.4 246.7 – (165.13, 364.5)
α -17.6 -17.4 (-31.2, -4) (-31.12, -3.33)
γ 3.9 3.92 (3, 4.77) (3.06, 4.77)
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Normal linear model: predictions

Suppose now that we have observed new data, a new matrix X̃ of
explanatory variables, and we wish to predict the outcomes ỹ . Our current
knowledge of β and σ is summarized by our posterior distribution.

We need the posterior predictive distribution of future data ỹ , given the
current data y , p(ỹ |y).

This distribution has two components of uncertainty:
1 the fundamental variability of the model, represented by the variance
σ2 in y

2 the posterior uncertainty in β, σ
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Normal linear model: predictions

We retrieve the formulation of the posterior predictive distribution in the
normal linear model (here, we still suppress the dependence on X and X̃ )

p(ỹ |y) =

∫
p(ỹ , β, σ2|y)dβdσ2

=

∫
p(ỹ |β, σ2)π(β, σ2|y)dβdσ2

=

∫
p(ỹ |θ)π(θ|y)dθ,

(8)

where θ = (β, σ2), and the conditional independence between future
observations ỹ and current observations y given θ is assumed, meaning
that p(ỹ |θ, y) = p(ỹ |θ).
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Normal linear model: predictions

For the majority of the models, the posterior predictive distribution is
usually not available in analytical form. For such a reason, we may obtain it
through a two-steps simulation:

generate β, σ2 from the posterior π(β, σ2|y);
generate ỹ from the likelihood for future values p(ỹ |β, σ2).

However, in the normal linear model there is an analytical form of the
posterior predictive distribution.
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Normal linear model: predictions

We start by definition of the posterior predictive distribution, using the
factorization (5):

p(ỹ |y) =

∫
p(ỹ |β, σ2)π(β|σ2, y)π(σ2|y)dβdσ2

=

∫
N (X̃β, σ2)N (β̂, (XTX )−1σ2)π(σ2|y)dβdσ2.

The product N (X̃β, σ2)N (β̂, (XTX )−1σ2) is a quadratic form in (ỹ , β),
thus is a Normal distribution.

At the end, the posterior predictive distribution is a multivariate student-t:

ỹ |y ∼ tn−p(X̃ β̂, s2(I + X̃ (XTX )−1X̃T )),

where I is the identity matrix.
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Normal linear model: predictions

The analytical form of p(ỹ |y) is usually unfeasible for simulation purposes.
Thus, we need the two-step simulation involving the posterior π(β|σ2, y)
and the likelihood for future responses p(ỹ |β, σ2).

Suppose we have 10 new speed’s measurements in the previous example,
say x̃ = (13, 24, 19, 11, 8, 14, 10, 12, 7) and we wish to make some
predictions ỹ for these new explanatory variables.
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Normal linear model: predictions

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

5 10 15 20 25

0
50

10
0

cars data

Speed

D
is

ta
nc

e

●

●

●

●

●

●

●

●

●

Credible 95% intervals

Leonardo Egidi Introduction 30 / 51



• regression • Noninformative priors • Noninformative prior analysis • Prediction • Model checking • Informative prior analysis • Limits and extensions •

Normal linear model: predictions
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Normal linear model: model checking and residuals

To check the fit of a linear model we may use the standardized residuals:

(yi − Xi β̂)/s, (9)

where s is the estimated standard deviation.

If the normal linear model is correct, the standardized residuals should be
approximately distributed as a standard normal distribution.
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Normal linear model: model checking and residuals

An advantage of the Bayesian approach is that we can compute, using
simulation, the posterior predictive distribution for any data summary, so
we do not need to put a lot of effort into estimating the sampling
distribution of a test statistic.

For example, to assess the statistical and practical significance of patterns
in a residual plot, we can obtain the ppd of an appropriate test statistic.
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Normal linear model: model checking and residuals

Draw β, σ2 from the joint posterior distribution.
Draw some hypothetical replications, y rep, from the predictive
distribution, y rep ∼ N (Xβ, σ2I ).
Run a regression of y rep on X and save the residuals.

We can then construct the posterior predictive distribution for the
proportion of outliers in Bayesian linear regression:

2.5% Median 97.5%

0 0.002 0.006
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Normal linear model: informative prior

Bayesian analysis is designed to incorporate prior information into
statistical inference. Then, we move from formula (3) to:

π(β, σ2) =π(β|σ2)π(σ2)

= N (µβ, σ
2Wβ)invGamma(a, b) = N IG(µβ,Wβ, a, b),

(10)

where N IG denotes an inverse gamma distribution, a, b > 0. The
Normal-Inverse Gamma is the conjugate prior for the linear model. The
posterior is:

π(β, σ2|y) ∝ p(y |β, σ2)π(β, σ2) (11)
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Normal linear model: informative prior

One may prove that the joint posterior is still a N IG(µ∗,W ∗, a∗, b∗),
where:

µ∗ =(W−1
β + XTX )−1(W−1

β µβ + XT y)

W ∗ =(W−1
β + XTX )−1

a∗ =a + n/2

b∗ =b +
1
2

[µTβW
−1
β µβ + yT y − µ∗TW ∗−1µ∗].

The conditional posterior β|σ2, y ∼ N (µ∗,W ∗σ2), whereas
σ2|y ∼ invGamma(a∗, b∗).
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Normal linear model: informative prior

Marginal posterior for σ2
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Figure: a = b = 1
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Normal linear model: informative prior

Conditional posterior for α
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Figure: Wβ = diag(2), a = b = 1
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Normal linear model: informative prior

The informative prior is likely to produce less heavy-tailed posterior
distribution (see the support in the plot for the intercept α).

However, it is not easy to incorporate substantial prior information in a
regression model. For such a reason, the noninformative prior may be seen
as the standard choice.

Many scholars (Gelman, e.g.) suggest to use weakly informative priors.

Every analysis should be checked: is my model robust to the prior choice?
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Limits and extension of the normal linear model

Linearity and normality are rude approximations of the real world. The
analyst should always take care about the appropriate of the linear model.
Precisely, normal linear models may fail for many reasons:

non-normality
Departures from normality assumptions may be revelaed by a QQ plot
between theoretical and sample quantiles
non-linearity
It often makes sense to transform y and x so that their relation is
approximately linear (the logarithm, for instance)
the range of the response is not (−∞,+∞)
If the response y is discrete, it makes sense to use generalized linear
models
heteroschedasticity
Assuming the same variance for each subject may be restrictive in
many cases
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Limits and extension of the normal linear model

Bayesian linear models may be extended in many directions:

Correlation between units.
Considering n independent units may be difficult in many cases. Thus,
we could model correlated errors y −Xβ by allowing a data covariance
matrix Σy , that is not necessarily proportional to the identity matrix:

y ∼ N (Xβ,Σy ) (12)

The covariance matrix may be known, partially known, or unknown.
Variable selection
Ideally, we should include all relevant information in a statistical
model, i.e. including all those explanatory variables x that might
possibly help predict y . When using noninformative priors, the
restriction is that n > p: but reasonable prior distribution may help to
handle a large number of predictors.
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Modelling unequal variances and correlation

Assuming the same variability for all the n independent statistical units is
often too restrictive: thus, we need to incorporate correlation and
heteroschedasticity.

We consider model extension (12), and we will consider three cases for Σy :

1 Σy known
2 Σy known up to a scalar factor
3 Σy unknown

In cases 1 and 2, a symmetric, positive-definite n × n covariance matrix Σy

must be entirely specified, and, moreover, in 2 a prior for σ2 is assigned; in
case 3, Σy is assigned a prior distribution.
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Unequal variances and correlation: (1) Σy known

Let Σ
1/2
y be a Cholesky factor (an upper triangular ‘matrix square root’) of

Σy . For simplicity, σ = 1, thus the parameter vector θ = (β1, . . . , βp).
Multiplying both sides of the canonical regression equation by Σ

−1/2
y yields:

Σ
−1/2
y y |β,X ∼ N (Σ

−1/2
y Xβ, I ) (13)

The objective is always to find and sample from the posterior π(β|y). One
can prove that the posterior for β is now:

β|y ∼ N (β̂,Vβ), (14)

where

β̂ =(XTΣ−1
y X )−1XTΣ−1

y y (15)

Vβ =(XTΣ−1
y X )−1 (16)
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Unequal variances and correlation: (1) Σy known

Suppose we wish to predict ñ new values ỹ , given a ñ × p matrix of
explanatory variables, X̃ . We must specify the joint variance matrix for the
old and new data. We use then the following notation for the joint normal
distribution of y and ỹ , given the predictors and the parameters:

y , ỹ |X , X̃ , β ∼ N
((

Xβ

X̃β

)
,

(
Σy Σy ,ỹ

Σỹ ,y Σỹ

))
, (17)

with the covariance matrix for (y , ỹ) symmetric and positive semidefinite.
The mean and the variance are then:

E(ỹ |y , β,Σy ) =X̃β + Σỹ ,yΣ−1
y (y − Xβ)

Var(ỹ |y , β,Σy ) =Σỹ − Σỹ ,yΣ−1
y Σy ,ỹ
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Unequal variances and correlation: (2) Σy partially known

Suppose that the covariance matrix is known up to a constant, we can then
write Σy as:

Σy = Qyσ
2, (18)

where the matrix Qy is known but the scale σ is unknown. Then:

Q
−1/2
y y |X , β, σ2 ∼ N (Q

−1/2
y Xβ, σ2I )

Assuming as before π(β, σ2) ∝ σ−2, we may obtain the conditional
posterior for β and the marginal posterior for σ2, respectively as:

β|y , σ2 ∼N (β̂,Vβ)

σ2|y ∼invGamma((n − p)/2, (y − X β̂)TQ−1
y (y − X β̂))

(19)

where
β̂ = (XTQ−1

y X )−1XTQ−1
y y , Vβ = (XTQ−1

y X )−1
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Unequal variances and correlation: (3) Σy unknown

As already seen for multivariate Normal models, if the covariance matrix
Σy is unknown, we need to specify a prior on Σy , which is not an easy task
unless Σy has a fixed structure. In general, let π(Σy ) be such prior and
assume π(β|Σy ) ∝ 1, then the conditional posterior for β is obtained as:

π(β|y ,Σy ) = N (β̂,Vβ),

with β̂ and Vβ defined by (16). The marginal posterior for Σy is given by:

p(Σy |y) =
π(β,Σy |y)

π(β|y ,Σy )

=π(Σy )
p(y |β,Σy )

π(β|y ,Σy )

∝π(Σy )|Σy |−1/2|Vβ |1/2 exp

{
−1
2

(y − X β̂)TΣ−1
y (y − X β̂)

} (20)
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Unequal variances and correlation: (3) Σy unknown

In (20), for convenience and computational stability we set β = β̂. The
density (20) is easy to compute, but hard to draw samples from in general,
because of the dependence of β̂ and |Vβ|1/2 on Σy . Setting a prior
distribution on Σy is, in general, a difficult task!

A typical choice for the prior distribution of Σy is the Inverse Wishart
distribution, Σy ∼ invWishart(Λ0, ν0), where the latter means that

π(Σy ) ∝ |Σy |−(ν0+p+1)/2 exp

{
−1
2
tr(Λ0Σ−1

y )

}
,
with ν0 > p − 1 degrees of freedom and Λ0 a p × p positive definite scale
matrix.
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Further reading

Further reading for the normal linear model:

Chapter 14 from Bayesian Data Analysis, Gelman et al.
Chapter 6.3 and 6.4 from Bayesian Statistics: an introduction, Lee.
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