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Motivations

The entire goal of Bayesian analysis is to compute and extract summaries
from the posterior distribution for the parameter θ:

π(θ|y) = π(θ)p(y |θ)∫
Θ π(θ)p(y |θ)

. (1)

This is easy for conjugate models: normal likelihood + normal prior,
beta+binomial, Poisson+gamma, multinomial+Dirichlet

However, in real applications and complex models there is not usually a
closed and analytical form for the posterior. The problem is represented by
the denominator of (1).
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Motivations

The Bayesian idea is to use simulation to generate values from the
posterior distribution:

directly when the posterior is
entirely/partially known

via some suitable
instrumental distributions
when the posterior is
unknown/not analytically
available.
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Motivations

In what follows, we will refer to the evaluation of the general integral:

Ef [h(X )] =

∫
X
h(x)f (x)dx , (2)

where f (·) is referred as the target distribution, generally
untractable/partially tractable. Possible solutions:

Numerical integrations
Asymptotic approximations
Accept-reject methods
Monte Carlo methods: i.i.d. draws from the posterior (or similar)
distributions
Markov Chain Monte Carlo (MCMC) methods: dependent draws from
a Markov chain whose limiting distribution is the posterior distribution
(Metropolis-Hastings, Gibbs sampling, Hamiltonian Monte Carlo).
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Numerical integration

Numerical integration methods often fails to spot the region of importance
for the function to be integrated.

For example, consider a sample of ten Cauchy rv’s yi (1 ≤ yi ≤ 10) with
location parameter θ = 350. The marginal distribution of the sample under
a flat prior is:

m(y) =

∫ +∞

−∞

10∏
i=1

1
π

1
1+ (yi − θ)2

dθ

The R function integrate does not work well! In fact, it returns a wrong
numerical output (see next slide) and fails to signal the difficulty since the
error evaluation is absurdly small. Function area may work better.
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Numerical integration: Cauchy example

set.seed(12345)
rc = rcauchy(10) + 350
lik = function(the) {
u = dcauchy(rc[1] - the)
for (i in 2:10) u = u * dcauchy(rc[i] - the)
return(u)}
integrate(lik, -Inf, Inf)

[1] 3.728903e-44 with absolute error < 7.4e-44
integrate(lik, 200, 400)

[1] 1.79671e-11 with absolute error < 3.3e-11

We need to know the range where the likelihood is not negligible.
Moreover, numerical integration cannot easily face multidimensional
integrals.
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Accept-reject method

Suppose we need to evaluate the following integral, but we cannot directly
sample from the target density:

Ef [h(θ)] =

∫
Θ
h(θ)f (θ)dθ, (3)

where h(·) is a parameter function and f (·) is the target distribution (in
Bayesian inference, this is usually the posterior).

Assume that

1 f (θ) is continuous and such that f (θ) = d(θ)/K , and we know how to
evaluate d(θ)⇒ we know the functional form of f up to a
multiplicative constant.

2 There exists another density g(θ), an instrumental density, such that,
for some big c , d(θ) ≤ c × g(θ),∀θ.
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Accept-reject method

It is possible to show that the following algorithm will generate values from
the target density f (θ):

A-R algorithm
1 draw a candidate W = w ∼ g(w) and a value Y = y ∼ Unif(0, 1).
2 if

y ≤ d(w)

c × g(w)
,

set θ = w , otherwise reject the candidate w and go back to step 1.
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Accept-reject method

Theorem
(a) The distribution of the accepted values is exactly the target

density f (θ).
(b) The marginal probability that a single candidate is accepted

is K/c .
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Accept-reject method

Proof.
(a) The cdf of W |[Y ≤ d(w)

c×g(w)
] can be written as:

FW (θ) =
Pr(W ≤ θ, Y ≤ d(w)

c×g(w)
)

Pr(Y ≤ d(w)
c×g(w)

)
=

∫
W Pr(W ≤ θ, Y ≤ d(w)

c×g(w)
|w)g(w)dw∫

W Pr(Y ≤ d(w)
c×g(w)

|w)g(w)dw
=

=

∫ θ
−∞ Pr(Y ≤ d(w)

c×g(w)
|w)g(w)dw∫ +∞

−∞ Pr(Y ≤ d(w)
c×g(w)

|w)g(w)dw
=

∫ θ
−∞

d(w)
c

dw∫ +∞
−∞

d(w)
c

dw
=

=

∫ θ
−∞

Kf (w)
c

dw∫ +∞
−∞

Kf (w)
c

dw
=

∫ θ

−∞
f (w)dw.

(b) The probability that a single candidate W = w will be accepted is

Pr(W accepted) = Pr(Y ≤
d(W )

c × g(W )
) =

=

∫
W

Pr(Y ≤
d(W )

c × g(W )
|W = w)g(w)dw =

=

∫
W

d(w)

c
dw =

∫
W

K

c
f (w)dw =

K

c
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A-R algorithm: simulation from a Beta distribution

Suppose we need to draw values from a Beta(a, b), our f , but we only have
a random number generator for the interval (0,1), a Unif(0, 1), our
instrumental distribution g . Both the distributions have support (0,1), then
we have:

f (θ) =
d(θ)

K
=
θa−1(1− θ)b−1

B(a,b)
,

where B(a,b) is the Beta function with arguments a and b and K = 1.

The AR steps are:

draw θ∗ ∼ g = Unif(0, 1), U ∼ Unif(0, 1).

we accept θ = θ∗ iff U ≤ d(θ∗)
c×g(θ∗) .

otherwise, go back to step 1
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A-R algorithm: simulation from a Beta distribution

Nsims=2500
#parameters
a=2.7; b=6.3
#find optimal c
c=optimise(f=function(x) {dbeta(x,a,b)},

interval=c(0,1), maximum=TRUE)$objective
u=runif(Nsims, max=c)
theta_star=runif(Nsims)
theta=theta_star[u<dbeta(theta_star,a,b)]
# accept prob
1/c

[1] 0.3745677
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A-R algorithm: simulation from a Beta distribution

Simulation from Beta(2.7,6.3)
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Figure: On the left plot, the true Beta(2.7, 6.3), and the histogram of the
simulated distribution. On the right plot, the pairs (θ∗,U): the accepted (green)
and the discarded (red). K = 1.
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• Motivations • Numerical integration • Accept-reject method • Monte-Carlo integration •

A-R algorithm: simulation from a Beta distribution

Nsims=2500
#beta parameters
a=2; b=3
#find optimal c
c=optimise(f=function(x) {dbeta(x,a,b)},

interval=c(0,1), maximum=TRUE)$objective
u=runif(Nsims, max=c)
theta_star=runif(Nsims)
theta=theta_star[u<dbeta(theta_star,a,b)]
#accept prob
1/c
[1] 0.5625
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• Motivations • Numerical integration • Accept-reject method • Monte-Carlo integration •

A-R algorithm: simulation from a Beta distribution
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Figure: On the left plot, the true Beta(2, 3), and the histogram of the simulated
distribution. On the right plot, the pairs (θ∗,U): the accepted (green) and the
discarded (red). K = 1.

Leonardo Egidi Introduction 18 / 39



• Motivations • Numerical integration • Accept-reject method • Monte-Carlo integration •

A-R algorithm: simulation from a Beta distribution

Comments:

The probability of accepting the candidate θ∗ is higher in the second
case, since a Beta(2, 3) is more similar to a Unif(0, 1) than a
Beta(2.7, 6.3).
c must be chosen in such a way that the condition d(θ) ≤ c × g(θ) is
verified for all θ.
K has been fixed to 1, since all the distribution π to be sampled from
is completely known.
In general, g needs to have thicker tail than d for d/g to remain
bounded for all θ. For instance, normal g cannot be used to sample
from a Cauchy d . You can do the opposite of course.
One criticism of the A-R method is that it generates useless
simulations from the proposal g when rejecting, even those necessary
to validate the output as being generated from the target f .
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Classical Monte Carlo integration

Two major classes of numerical problems that arise in statistical inference
are optimization problems and integration problems.

Suppose we need to calculate:

Ef [h(X )] =

∫
X
h(x)f (x)dx , (4)

where f (·) is a probability density and h(·) is a function of x . When an
analytical solution is not possible, how do we approximate this integral?

If |I | <∞ and X1,X2, . . . ,XS are i.i.d ∼ f , then the Strong Law of Large
Numbers implies that the empirical mean is consistent for Ef [h(X )]

̂Ef [h(X )] =
1
S

S∑
s=1

h(Xs)→ Ef [h(X )] in probability, as S →∞ (5)
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Classical Monte Carlo integration

The variance of ̂Ef [h(X )] is

Var( ̂Ef [h(X )]) =
1
S

∫
X
[h(x)− Ef [h(x)]]

2f (x)dx

and it can be approximated by

V̂ =
1
S

S∑
s=1

[h(xs)− ̂Ef [h(X )]]2.

When S is large (approximately) for the Central Limit Theorem we have
that:

̂Ef [h(X )]− Ef [h(X )]√
V̂

∼ N (0, 1).
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Example: Normal mean with Cauchy prior

Consider:

y |θ ∼ N (θ, 1), θ ∼ Cauchy(0, 1).

The posterior mean for a single observation y is:

E (θ|y) =
∫ +∞
−∞

θ
1+θ2

e−(y−θ)2/2dθ∫ +∞
−∞

1
1+θ2

e−(y−θ)2/2dθ
.

We could draw θ1, . . . , θS from N (y , 1) and compute:

Ê (θ|y) =
∑S

s=1
θs

1+θ2s∑S
s=1

1
1+θ2s

The effect of the prior is to pull a little bit the estimate of θ toward 0.
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Example: Normal mean with Cauchy prior

set.seed(12345)
theta = rnorm(5000, 10, 1)
I = sum(theta/(1 + theta^2))/sum(1/(1 + theta^2))
I
[1] 9.793254

0 1000 2000 3000 4000 5000

9.
8

10
.0

10
.2

10
.4

10
.6

iterations

P
os

te
rio

r 
m

ea
n

Leonardo Egidi Introduction 25 / 39



• Motivations • Numerical integration • Accept-reject method • Monte-Carlo integration •

Indice

1 Motivations

2 Numerical integration

3 Accept-reject method

4 Monte-Carlo integration
Classical MC
Importance sampling

Leonardo Egidi Introduction 26 / 39



• Motivations • Numerical integration • Accept-reject method • Monte-Carlo integration •

Importance sampling

Importance sampling is based on the following representation:

Ef [h(X )] =

∫
X
h(x)f (x)dx =

=

∫
X
h(x)

f (x)

g(x)
g(x)dx = Eg

[
h(X )

f (X )

g(X )
,

] (6)

where g is an arbitrary density function, called instrumental distribution,
whose support is greater than X .

Given a sequence X1, . . . ,XS i.i.d. from g we can estimate the integral
above by

E is
f [h(X )] =

1
S

S∑
s=1

h(xs)
f (xs)

g(xs)
=

1
S

S∑
s=1

h(xs)w(xs), (7)

where w(x) = f (x)/g(x) is called importance function.
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Importance sampling

Note that classical Monte Carlo and importance sampling both produce
unbiased estimator for the integral (4), but:

Var( ̂Ef [h(X )]) =
1
S

∫
X
[h(x)− Ef [h(x)]]

2f (x)dx

Var(E is
f [h(X )]) =

1
S

∫
X
[h(x)

f (x)

g(x)
− Ef [h(x)]]

2g(x)dx

We can work on g in order to minimize the variance of (7). The constraint
that supp(h × f ) ⊂ supp(g) is absolute in that using a smaller support
truncates the integral (4) and thus produces a biased result.

It puts very little restriction on the choice of the instrumental distribution
g , which can be chosen from distributions that are either easy to simulate
or efficient in the approximation of the integral.
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Importance sampling

IS variance is finite only when

E

[
h(X )2

f (X )2

g(X )2

]
=

∫
X
h(x)2

f (x)2

g(x)2
dx <∞

Densities g with lighter tails than f , (supf /g =∞) are not good
proposals because they can lead to infinite variance.
When supf /g =∞ the weights f (xi )/g(xi ) may take very high values
and few values xi influence the estimate of (4).
Note also that

Eg

[
h(X )2

f (X )2

g(X )2

]
=

∫
X
h(x)2

f (x)2

g(x)2
dx

the ratio f (x)/g(x) should be bounded when f (x) is not
negligible...hence the modes of f (x) and g(x) should be close each
other.
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Importance sampling for Bayesian inference

In Bayesian inference we need to compute quantities coming from the
posterior distribution, such as::

Eπ(θ|y)[h(θ)] =

∫
Θ h(θ)p(y |θ)π(θ)dθ∫

Θ p(y |θ)π(θ)
dθ =

∫
Θ
h(θ)

p(y |θ)π(θ)
p(y)

dθ, (8)

where π(θ) is the prior, p(y |θ) is the likelihood function and
p(y) =

∫
Θ p(y |θ)π(θ)dθ, the marginal likelihood, is often unknown.

Given θ1, . . . , θS i.i.d. from g(θ) an IS estimator for (8) is given by:

E is
π(θ|y)[h(θ)] =

S−1∑S
s=1 h(θs)

p(y |θs)π(θs)
p(y)g(θs)

S−1
∑S

s=1
p(y |θs)π(θs)
p(y)g(θs)

(9)
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IS for Bayesian inference: location of a t-distribution

Let y1, . . . .yn be an i.i.d. sample from a student-t with fixed degrees of
freedom:

y.t <- rt(n=9, df =3)

Let be θ the location parameter (in the simulation θ = 0) and take
π(θ) ∝ 1. Then the posterior for θ is:

π(θ|y) ∝
n∏

i=1

[3+ (yi − θ)2]−2
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IS for Bayesian inference: location of a t-distribution
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IS for Bayesian inference: location of a t-distribution

Consider the posterior mean:

E (θ|y) =
∫

Θ θ
∏n

i=1[3+ (yi − θ)2]−2dθ∫
Θ

∏n
i=1[3+ (yi − θ)2]−2dθ

Possible strategies for computation:

draws from the prior are not proper (the prior is improper)
draws from the posterior are not possible (we are not able to do them)
draws from the components g(θ) ∝ p(yi |θ)? maybe...

Leonardo Egidi Introduction 33 / 39



• Motivations • Numerical integration • Accept-reject method • Monte-Carlo integration •

IS for Bayesian inference: location of a t-distribution

For example take:

g(θ) ∝ p(yi |θ) ∝ [3+ (yi − θ)2]−2.

Given S draws from g(θ), estimate the posterior mean by:

E is(θ|y) =
∑S

s=1 θs
∏n

i=1[3+(yi−θ)2]−2

[3+(yi−θ)2]−2∑S
s=1

∏n
i=1[3+(yi−θ)2]−2

[3+(yi−θ)2]−2

=

∑S
s=1 θs

∏n
i=1[3+ (yi − θ)2]−2∑S

s=1
∏n

i=1[3+ (yi − θ)2]−2
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IS for Bayesian inference: location of a t-distribution

t.medpost = function(nsim, data, l) {
sim <- data[l] + rt(nsim, 3)
n <- length(data)
s <- c(1:n)[-l]
num <- cumsum(sim * sapply(sim,
function(theta) t.lik(theta, data[s])))

den <- cumsum(sapply(sim,
function(theta) t.lik(theta, data[s])))

num/den
}

media.post <- t.medpost(nsim = 1500, data = y.t,
l = which(y.t == median(y.t)))

media.post[1500]
[1]-0.1440603
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IS for Bayesian inference: location of a t-distribution
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The convergence seems to be reached even after a few observations. What
if we sample from other g ’s?
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IS for Bayesian inference: location of a t-distribution

g1(θ) ∝ p(y(n/2)|θ)

par(mfrow = c(1, 2))
plot(c(0, 0), xlim = c(0, 1000),

ylim = c(-0.75,0.75), type = "n", ylab = "Posterior mean",
xlab="Iterations", main =)

for (i in 1:10) {
lines(x = c(1:1000), y = t.medpost(nsim = 1000,

data = y.t, l = which(y.t == median(y.t))), col = 3)}

g2(θ) ∝ p(y(n)|θ)

plot(c(0, 0), xlim = c(0, 1000), ylim = c(-0.75, 0.75),
type = "n", ylab = "Posterior mean",
xlab ="Iterations")

for (i in 1:10) {
lines(x = c(1:1000), y = t.medpost(nsim = 1000,

data = y.t, l = which(y.t == max(y.t))), col = 3)}
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IS for Bayesian inference: location of a t-distribution
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There is greater variability and slower convergence if we sample from the
distribution of the maximum.
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Further reading

Further reading:

Chapter 5 from Bayesian computation with R, J. Albert
Chapter 3 and 5 from Introducing Monte Carlo Methods with R, C.
Robert and G. Casella.
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