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Motivations

The entire goal of Bayesian analysis is to compute and extract summaries
from the posterior distribution for the parameter 6:

0) = ey (1)

This is easy for conjugate models normaI I|keI|hood + normal prior,
beta+binomial, Poisson+gamma, multinomial+Dirichlet

However, in real applications and complex models there is not usually a
closed and analytical form for the posterior. The problem is represented by
the denominator of (1).
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Motivations

The Bayesian idea is to use simulation to generate values from the
posterior distribution:
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Motivations

In what follows, we will refer to the evaluation of the general integral:
EWHOO) = [ Hfde, (@)
X

where f(-) is referred as the target distribution, generally
untractable/partially tractable. Possible solutions:
@ Numerical integrations
@ Asymptotic approximations
@ Accept-reject methods
e Monte Carlo methods: i.i.d. draws from the posterior (or similar)
distributions
e Markov Chain Monte Carlo (MCMC) methods: dependent draws from
a Markov chain whose limiting distribution is the posterior distribution
(Metropolis-Hastings, Gibbs sampling, Hamiltonian Monte Carlo).
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Numerical integration

Numerical integration methods often fails to spot the region of importance
for the function to be integrated.

For example, consider a sample of ten Cauchy rv's y; (1 < y; < 10) with
location parameter # = 350. The marginal distribution of the sample under
a flat prior is:

+o00 10 1 1
m(y) :/_oo ,1:[1771+(Yi—9)2d0

The R function integrate does not work well! In fact, it returns a wrong
numerical output (see next slide) and fails to signal the difficulty since the
error evaluation is absurdly small. Function area may work better.
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Numerical integration: Cauchy example

set.seed(12345)

rc = rcauchy(10) + 350
lik = function(the) {

u = dcauchy(rc[1] - the)
for (i in 2:10) u =
return(u) }
integrate(lik, -Inf, Inf)

u * dcauchy(rc[i] - the)

[1] 3.728903e-44 with absolute error < 7.4e-44
integrate(lik, 200, 400)

[1] 1.79671e-11 with absolute error < 3.3e-11

We need to know the range where the likelihood is not negligible.
Moreover, numerical integration cannot easily face multidimensional
integrals.
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Accept-reject method

Suppose we need to evaluate the following integral, but we cannot directly
sample from the target density:

Er[h(0)] = /e h(6)F(6)do, 3)

where h(-) is a parameter function and f(-) is the target distribution (in
Bayesian inference, this is usually the posterior).

o —CT————e

Assume that

@ () is continuous and such that 7(0) = d(0)/K, and we know how to
evaluate d(6) = we know the functional form of f up to a
multiplicative constant.

@ There exists another density g(6), an instrumental density, such that,
for some big ¢, d(6) < ¢ x g(0), V6.
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Accept-reject method

It is possible to show that the following algorithm will generate values from
the target density f(0):
A-R algorithm
© draw a candidate W = w ~ g(w) and a value Y =y ~ Unif(0, 1).
Qif
d(w)
c x g(w)’
set # = w, otherwise reject the candidate w and go back to step 1.

y =

v
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Accept-reject method

Theorem
(a) The distribution of the accepted values is exactly the target
density f(0).
(b) The marginal probability that a single candidate is accepted
is K/c.
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Accept-reject method

Proof.

(a) The cdf of W|[Y <

d(w) ; .
ng(w)] can be written as:

Pr(w <o,y < 2y o Prw <o,y < - dw) [w)g(w)dw

Fu(0) = cxg(w) cxg(w) _
Pr(Y < c;";&)) S Pr(Y < C‘X’gzw [w)g(w)dw
0Py < # wig(wydw [0 4 gy,

ey < 2 jwg(wydw [ Waw

2 f(w) d
_ M _ /9 F(w)dw.

f+<x> ngw) dw

(b) The probability that a single candidate W = w will be accepted is

Pr(W ted) = P Y<7d(w) =

r(W accepted) = Pr(Y < xg(W))_
—/ Pr(Y < d(W) M = wyg(w)dw =

(W)

w K
:/ 7dW:/ —f(w)dw = —
w < w ¢ c
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A-R algorithm: simulation from a Beta distribution

Suppose we need to draw values from a Beta(a, b), our f, but we only have
a random number generator for the interval (0,1), a Unif(0, 1), our
instrumental distribution g. Both the distributions have support (0,1), then
we have:

d@) 611 -6)>1
K B(a,b) ’
where B(a,b) is the Beta function with arguments a and b and K = 1.

f(0) =

The AR steps are:

e draw 6* ~ g = Unif(0, 1), U ~ Unif(0, 1).
d(6)

cxg(6*)"

@ otherwise, go back to step 1

@ we accept 6 = 0* iff U <

Leonardo Egidi WES
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A-R algorithm: simulation from a Beta distribution

Nsims=2500

#parameters

a=2.7; b=6.3

#find optimal c

c=optimise(f=function(x) {dbeta(x,a,b)},
interval=c(0,1), maximum=TRUE)$objective

u=runif (Nsims, max=c)

theta_star=runif (Nsims)

theta=theta_star[u<dbeta(theta_star,a,b)]

# accept prob

1/c

[1] 0.3745677

s e T . 15 | 3o
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o Numerical integration

Motivations

A-R algorithm: simulation from a Beta distribution

Simulation from Beta(2.7,6.3)

Simulation from Beta(2.7,6.3)
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Figure: On the left plot, the true Beta(2.7,6.3), and the histogram of the
simulated distribution. On the right plot, the pairs (8*, U): the accepted (green)

and the discarded (red). K = 1.
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A-R algorithm: simulation from a Beta distribution

Nsims=2500

#beta parameters

a=2; b=3

#find optimal c

c=optimise(f=function(x) {dbeta(x,a,b)},
interval=c(0,1), maximum=TRUE)$objective

u=runif (Nsims, max=c)

theta_star=runif (Nsims)

theta=theta_star[u<dbeta(theta_star,a,b)]

#accept prob

1/c

[1] 0.5625
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A-R algorithm: simulation from a Beta distribution

Simulation from Beta(2,3) Simulation from Beta(2,3)
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Figure: On the left plot, the true Beta(2,3), and the histogram of the simulated
distribution. On the right plot, the pairs (6*, U): the accepted (green) and the
discarded (red). K = 1.

18 / 39



Motivations e Numerical integration e Accept-reject method e Monte-Carlo integration e

A-R algorithm: simulation from a Beta distribution

Comments:

The probability of accepting the candidate 6* is higher in the second
case, since a Beta(2,3) is more similar to a Unif(0, 1) than a
Beta(2.7,6.3).

¢ must be chosen in such a way that the condition d(0) < ¢ x g(0) is
verified for all 6.

K has been fixed to 1, since all the distribution 7 to be sampled from
is completely known.

In general, g needs to have thicker tail than d for d/g to remain
bounded for all 8. For instance, normal g cannot be used to sample
from a Cauchy d. You can do the opposite of course.

One criticism of the A-R method is that it generates useless
simulations from the proposal g when rejecting, even those necessary
to validate the output as being generated from the target f.

Leonardo Egidi WS



~® Motivations e Numerical integration e Accept-reject method e Monte-Carlo integration o
Indice

@ Monte-Carlo integration

NP  Introduction  [EEPLWAL



~® Motivations e Numerical integration e Accept-reject method e Monte-Carlo integration o
Indice

@ Monte-Carlo integration
@ Classical MC

s e T . 21 | 3



e Motivations e Numerical integration e Accept-reject method e Monte-Carlo integration e

Classical Monte Carlo integration

Two major classes of numerical problems that arise in statistical inference
are optimization problems and integration problems.

o ————e

Suppose we need to calculate:

Er[h(X)] = /X h(x)F(x)dx. (4)

where f(+) is a probability density and h(-) is a function of x. When an
analytical solution is not possible, how do we approximate this integral?
If |/] < oo and X1, Xz,...,Xs are i.i.d ~ f, then the Strong Law of Large
Numbers implies that the empirical mean is consistent for Ef[h(X)]

S

ETh(X)] = éz h(X.) — Ef[h(X)] in probability, as S — oo (5)

s=1

Leonardo Egidi VD
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Classical Monte Carlo integration

The variance of EW)] is

Var(ER(X)]) = ¢ /X [(x) — E[AGOIRF () di

and it can be approximated by

S
0= 3 3 lhs) — BTN

When S is large (approximately) for the Central Limit Theorem we have
that:

—

Er[h(X)] — E¢[h(X)]

Vv

s e T . 2: | 3
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Example: Normal mean with Cauchy prior

Consider:

y|@ ~ N(0,1), 6 ~ Cauchy(0,1).

The posterior mean for a single observation y is:

5 e
SIS e 0-022d0
We could draw 61, ...,60s from AV(y,1) and compute:

E(0ly) =

ZS 0s
s=1 1462

Eoly) =
Soimim

The effect of the prior is to pull a little bit the estimate of # toward 0.

NPT N  Introduction  [EEPYWAL]



Example: Normal mean with Cauchy prior

set.seed(12345)
theta = rnorm(5000, 10, 1)

I = sum(theta/(1 + theta~2))/sum(1/(1 + theta~2))
I

[1] 9.793254

106
I

10.4
I

Posterior mean
102
I

9.8 100
I

T T
0 1000 2000 3000 4000 5000

iterations
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Importance sampling

Importance sampling is based on the following representation:

EHOO] = | hGF(x)x =
" (6)
NI f(X)
_/Xh(x)g(x)g(x)dx _E, [h(X)g(X),]

where g is an arbitrary density function, called instrumental distribution,
whose support is greater than X.

Given a sequence X1,...,Xs i.i.d. from g we can estimate the integral
above by

S S
EIDO] = § Do) 1) = 5 - heswlx) ()
s=1 s s=1

where w(x) = f(x)/g(x) is called importance function.
Leonardo Egidi 27 / 39
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Importance sampling

Note that classical Monte Carlo and importance sampling both produce
unbiased estimator for the integral (4), but:

Var(Ef[h(X / [h(x) — Ef[h(x)]]?F(x)dx
Var(E7 5/[ 0109 = Exlh)]Pa(x)dx

e .
We can work on g in order to minimize the variance of (7). The constraint
that supp(h x f) C supp(g) is absolute in that using a smaller support
truncates the integral (4) and thus produces a biased result.

It puts very little restriction on the choice of the instrumental distribution
g, which can be chosen from distributions that are either easy to simulate
or efficient in the approximation of the integral.

Leonardo Egidi VD
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Importance sampling

@ IS variance is finite only when

2f(X)2 . X2f(x)2 X < 00
£ [h(x’ g(X)J = [ ) g0~

e Densities g with lighter tails than f, (supf/g = c0) are not good
proposals because they can lead to infinite variance.

@ When supf/g = oo the weights f(x;)/g(x;) may take very high values
and few values x; influence the estimate of (4).

@ Note also that

2f(X)2 o Xzf(X)2 »
s [”(X) g(X)J = [ e

the ratio f(x)/g(x) should be bounded when f(x) is not
negligible...hence the modes of f(x) and g(x) should be close each
other.
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Importance sampling for Bayesian inference

In Bayesian inference we need to compute quantities coming from the
posterior distribution, such as::

£ i) = 10D s — [ o L an, o

where () is the prior, p(y|0) is the likelihood function and
= Jo P(y|0)7(0)db, the marginal likelihood, is often unknown.

Given 61, ...,0s i.i.d. from g(6) an IS estimator for (8) is given by:

—1 p(y|0s)m(6s)
Z h(@) p(y)g(fs) (9)
p(y|0s)m(6s)
5” 125 1 py)g(Gs)

Exo[h(0)] =

Leonardo Egidi YD



IS for Bayesian inference: location of a t-distribution

Let y1,....y, be an i.i.d. sample from a student-t with fixed degrees of
freedom:

y.t <- rt(n=9, df =3)

Let be 6 the location parameter (in the simulation # = 0) and take
7(0) o< 1. Then the posterior for 6 is:

m(6ly) oc [TB + (vi = 6)°172

i=1

N P  Introduction IS



IS for Bayesian inference: location of a t-distribution

Posterior for the location of student t
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IS for Bayesian inference: location of a t-distribution

Consider the posterior mean:

Jo OTT7-1[3 + (vi — 0)*]2d0
Jo T3 + (vi — 0)%]72d6

Possible strategies for computation:

E(0ly) =

@ draws from the prior are not proper (the prior is improper)
@ draws from the posterior are not possible (we are not able to do them)

@ draws from the components g(6) o p(yi|0)? maybe...

Leonardo Egidi VD



B g o e Carcyinter oo S
IS for Bayesian inference: location of a t-distribution

For example take:

g(8) o< plyilf) oc 3+ (v — 0)°] 2.

Given S draws from g(#), estimate the posterior mean by:

s TIaB+—0)22 . B
1RG0 0. T17 3 + (v — 0)] 2

7 i—0)2]-2 S n _
w5, HaBrOe P 522 TI7, 3+ (v — 6)2)2

E=(0ly) =

s e T . 3¢ | 3o



e Motivations e Numerical integration e Accept-reject method e Monte-Carlo integration

IS for Bayesian inference: location of a t-distribution

t.medpost = function(nsim, data, 1) {
sim <- data[l] + rt(nsim, 3)
n <- length(data)
s <- c(1:n)[-1]
num <- cumsum(sim * sapply(sim,
function(theta) t.lik(theta, datal[s])))
den <- cumsum(sapply(sim,
function(theta) t.lik(theta, datals])))
num/den
}
media.post <- t.medpost(nsim = 1500, data = y.t,
1 = which(y.t == median(y.t)))
media.post[1500]
[1]1-0.1440603

Leonardo Egidi
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IS for Bayesian inference: location of a t-distribution

0.5 1.0

Posterior mean
L

0 500 1000 1500

Iterations

The convergence seems to be reached even after a few observations. What
if we sample from other g's?
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IS for Bayesian inference: location of a t-distribution

81(0) x p(¥(n/2)10)

par(mfrow = c(1, 2))
plot(c(0, 0), xlim = c(0, 1000),
ylim = ¢(-0.75,0.75), type = "n", ylab = "Posterior mean",
xlab="Iterations", main =)
for (i in 1:10) {
lines(x = c(1:1000), y = t.medpost(nsim = 1000,
data = y.t, 1 = which(y.t == median(y.t))), col = 3)}

82(0) < p(y(m!0)

plot(c(0, 0), xlim = c(0, 1000), ylim = c(-0.75, 0.75),
type = "n", ylab = "Posterior mean",
xlab ="Iterations")
for (i in 1:10) {
lines(x = c(1:1000), y = t.medpost(nsim = 1000,
data = y.t, 1 = which(y.t == max(y.t))), col = 3)}

Leonardo Egidi D
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IS for Bayesian inference: location of a t-distribution

9:(6) 92(6)

Posterior mean
0.0
L
rosterior mean
0.0
L

0 200 400 600 800 1000 0 200 400 600 800 1000
Iterations Iterations

There is greater variability and slower convergence if we sample from the
distribution of the maximum.
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Further reading

Further reading:

o Chapter 5 from Bayesian computation with R, J. Albert

o Chapter 3 and 5 from Introducing Monte Carlo Methods with R, C.
Robert and G. Casella.
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