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Motivations

The entire goal of Bayesian analysis is to compute and extract summaries
from the posterior distribution for the parameter θ:

π(θ|y) = π(θ)p(y |θ)∫
Θ π(θ)p(y |θ)

. (1)

This is easy for conjugate models: normal likelihood + normal prior,
beta+binomial, Poisson+gamma, multinomial+Dirichlet

However, in real applications and complex models there is not usually a
closed and analytical form for the posterior. The problem is represented by
the denominator of (1).
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Motivations

Suppose we want to draw from our posterior distribution π(θ|y), but we
cannot sample independent draws from it. For example, we often do not
know the normalizing constant.

However, we may be able to sample draws from π(θ|y) that are slightly
dependent. If we can sample slightly dependent draws using a Markov
chain, then we can still �nd quantities of interests from those draws.

This process is called Monte Carlo Integration. Basically a fancy way of
saying we can take quantities of interest of a distribution from simulated
draws from the distribution.
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Motivations

The Bayesian idea is to use simulation to generate values from the
posterior distribution:

directly when the posterior is
entirely/partially known

via some suitable
instrumental distributions
when the posterior is
unknown/not analytically
available.
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Motivations

In what follows, we will refer to the evaluation of the general integral:

Ef [h(X )] =

∫
X
h(x)f (x)dx , (2)

where f (·) is referred as the target distribution, generally
untractable/partially tractable. Possible solutions:

Numerical integrations

Asymptotic approximations

Accept-reject methods

Monte Carlo methods: i.i.d. draws from the posterior (or similar)
distributions

Markov Chain Monte Carlo (MCMC) methods: dependent draws from
a Markov chain whose limiting distribution is the posterior distribution
(Metropolis-Hastings, Gibbs sampling, Hamiltonian Monte Carlo).

Leonardo Egidi Introduction 6 / 53



• Motivations • When MCMC fails? • The momentum distribution • The three steps of an HMC iteration • HMC and Stan •

Indice

1 Motivations

2 When MCMC fails?

3 The momentum distribution

4 The three steps of an HMC iteration

5 HMC and Stan

Leonardo Egidi Introduction 7 / 53



• Motivations • When MCMC fails? • The momentum distribution • The three steps of an HMC iteration • HMC and Stan •

MCMC ine�ciency

The Metropolis-Hastings algorithm and the Gibbs sampling generate
correlated variables from a stochastic process called Markov chain. Markov
chains carry di�erent convergence properties that can be exploited to
provide easier proposals in cases where generic importance sampling does
not readily apply.

An inherent ine�ciency in the Gibbs sampler and Metropolis algorithm is
their random walk behavior: the simulations can take a long time zigging
and zagging while moving through the target distribution.
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MCMC ine�ciency (cont.)

Reparameterization and e�cient jumping rules can improve the situation,
but for complicated models this local random walk behavior remains,
especially for high-dimensional target distributions.

Hamiltonian Monte Carlo (HMC) borrows an idea from physics to suppress
the local random walk behavior in the Metropolis algorithm, thus allowing
it to move much more rapidly through the target distribution.
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Moving to Hamiltonian Monte Carlo

Once we have built a model, Bayesian computation reduces to evaluating
expectations, or integrals.

Eπ(θ|y) =
∫

θπ(θ|y)dθ (3)

How do we compute posterior expectations in practice?

Construct a Markov chain that explores the parameter space.
Anything you would want to do if you could write it analytically, you
can do to any accuracy with the draws (history) of the chain

lim
S→∞

1

S

S∑
s=1

θ(s) → Eπ(θ|y)
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Moving to Hamiltonian Monte Carlo

To be e�cient we need to focus computation on the relevant
neighborhoods of parameter space. Relevant neighborhoods, however, are
de�ned not by probability density but rather by probability mass.

But exactly which neighborhoods end up contributing most to arbitrary
expectations?

The neighborhoods around the maxima of probability distributions feature
a lot of probability density, but, especially in a large number of dimensions,
or in long tailed distributions, they do not feature much volume. In other
words, the sliver size dθ tends to be small there.
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The Geometry of High-Dimensional Spaces

Expectation values are given by accumulating the integrand over a volume

of parameter space and, while the density is largest around the mode, there
is not much volume there.

To identify the regions of parameter space that dominate expectations we
need to consider the behavior of both the density and the volume. In
high-dimensional spaces the volume behaves very di�erently from the
density, resulting in a tension that concentrates the signi�cant regions of
parameter space away from either extreme.
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The Geometry of High-Dimensional Spaces

Consider a rectangular partitioning centered around a distinguished point,
such as the mode (example from Betancourt, 2017):

One of the characteristic properties of high-dimensional spaces is that there
is much more volume outside any given neighborhood than inside of it!
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The Geometry of High-Dimensional Spaces

Generically, then, volume is largest out in the tails of the target distribution
away from the mode, and this disparity grows exponentially with the
dimension of parameter space.

The neighborhood immediately around the mode features large densities,
but in more than a few dimensions the small volume of that neighborhood
prevents it from having much contribution to any expectation. On the
other hand, the complimentary neighborhood far away from the mode
features a much larger volume, but the vanishing densities lead to similarly
negligible contributions expectations

The only signi�cant contributions come from the neighborhood between
these two extremes known as the typical set.
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Typical set

Thus, relevant neighborhoods are de�ned not by probability density but
rather by probability mass.
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Typical set

Probability mass concentrates on a hypersurface called the typical set that
surrounds the mode.
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Moving to Hamiltonian Monte Carlo

We can accurately estimate expectations by averaging over the typical set
instead of the entirety of parameter space. We need a method able to do it!

MCMC uses a Markov chain to stochastically explore the typical set.
However, some ine�ciencies arise:

random walk behaviour (Gibbs sampling and random walk MH): the
simulations can take a long time zigging and zagging while moving
through the target distribution;

�nite time exploration is not guaranteed...

stuck in high curvature regions, which are are hardly explored by
Markov Chains.
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Moving to Hamiltonian Monte Carlo (cont.)

HMC borrows strengths from physics to suppress the random walk
behaviour in the Metropolis algorithm, thus allowing it to move much more
rapidly through the target distribution.

Ideal behaviour of the chains is then achieved by the so-called geometric

ergodicity.

To inquiry the di�erential structure of the target distribution, HMC uses
the gradient of the log-posterior distribution, d log(π(θ|y))

dθ : this will imply an
adjustment of the algorithm towards the typical set area.

Hamiltonian Monte Carlo is the unique procedure for automatically
generating this coherent exploration for su�ciently well-behaved target
distributions.
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When something goes wrong

Under ideal conditions, MCMC estimators converge to the true
expectations in a very practical progression.
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When something goes wrong

There are many pathological posterior geometries, however, that spoil these
ideal conditions.
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Hamiltonian Monte Carlo

Hamiltonian Monte Carlo yields fast, and robust, exploration of the
distributions common in practice, by exploring the geometry of the
typical set through the gradient of the target distribution.
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Hamiltonian Monte Carlo: bivariate Gaussian
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Add the phase space

For each component θj in the target space, Hamiltonian Monte Carlo adds
a momentum variable ρj . Both θ and ρ are then updated together in a
new Metropolis algorithm, in which the jumping distribution for θ is
determined largely by ρ.
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Add the phase space

Each iteration of HMC proceeds via several steps, during which the
position and momentum evolve based on rules imitating the behavior of
position the steps can move rapidly where possible through the space of θ
and even can turn corners in parameter space to preserve the total energy
of the trajectory.

Hamiltonian Monte Carlo is also called hybrid Monte Carlo because it
combines MCMC and deterministic simulation methods.

In HMC, the posterior density π(θ|y) (which, as usual, needs only be
computed up to a multiplicative constant) is augmented by an independent
distribution π(ρ) on the momenta, thus de�ning a joint distribution,

π(θ, ρ|y) = π(ρ)π(θ|y) (4)

.
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Add the phase space

We simulate from the joint distribution but we are only interested in the
simulations of θ; the vector ρ is thus an auxiliary variable, introduced only
to enable the algorithm to move faster through the parameter space.

HMC also requires the gradient of the log-posterior density. In practice the
gradient must be computed analytically. If θ has d dimensions, this
gradient is:

d log π(θ|y)
dθ

=

(
d log π(θ|y)

dθ1
, . . . ,

d log π(θ|y)
dθd

)
.

For most of the models we consider in this course, this vector is easy to
determine analytically and then program.
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The momentum distribution

It is usual to give ρ a multivariate normal distribution (recall that ρ has the
same dimension as θ) with mean 0 and covariance set to a prespeci�ed
mass matrix M (so called by analogy to the physical model of Hamiltonian
dynamics).

To keep it simple, we commonly use a diagonal mass matrix, M. If so, the
components of ρ are independent, with

ρj ∼ N (0,Mjj), j = 1, . . . , d .

It can be useful for M to roughly scale with the inverse covariance matrix
of the posterior distribution, but the algorithm works in any case; better
scaling of M will merely make HMC more e�cient.
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The three steps of an HMC iteration

HMC proceeds by a series of iterations (as in any Metropolis algorithm),
with each iteration having three parts (a-b-c below):

1 Update ρ with a random draw from its posterior distribution�which,
as speci�ed, is the same as its prior distribution, ρ ∼ N (0,M).

2 Update simultaneously θ and ρ via a discrete mimicking of physical
Hamiltonian dynamics equations:

dθ

dt
=+

∂H

∂ρ
=
∂K

∂ρ

dρ

dt
=− ∂H

∂θ
= −∂K

∂θ
− ∂V

∂θ
,

where K (θ, ρ) is called the kinetic energy, and V (θ) is the potential

energy.
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The three steps of an HMC iteration (cont.)

To do this discretization, we can establish the following relationship
between the posterior/target distribution and the Hamiltonian
dynamics, by de�ning the Hamiltonian Function H(θ, ρ):

π(θ, ρ|y) = exp{−H(θ, ρ)}
H(θ, ρ) =− log π(θ, ρ|y)

=− log π(ρ|θ, y)− log π(θ|y)
= K (θ, ρ) + V (θ)

= kinetic+ potential

(5)

Thus, the quantity ∂V /∂θ is the gradient of the (log) target
distribution.
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The three steps of an HMC iteration (cont.)

The canonical density function π(θ, ρ|y) (4) ensures that if we
marginalize out the momentum we immediately recover our target
distribution. It does not depend on a particular choice of
parameterization, and we can write it in terms of an invariant
Hamiltonian function.

For such characteristic, it captures the invariant probabilistic structure
of the phase space distribution and, most importantly, the geometry of
its typical set.

Because the Hamiltonian captures the geometry of the typical set, we
should be able to use it to generate a vector �eld oriented with the
typical set of the canonical distribution and hence the trajectories that
we are after. Indeed, the desired vector �eld can be generated from a
given Hamiltonian with Hamilton's equations.
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The three steps of an HMC iteration (cont.)

Phase space decomposes into concentric energy level sets of the
Hamiltonian, H−1(E ). Instead of specifying a point in phase space
with its position and momentum, we can specify it with an energy, E ,
and its position on the corresponding level set, θE ∈ H−1(E ).
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The three steps of an HMC iteration (cont.)

To approximate the trajectory of the Hamiltonian dynamics and solve
the di�erential equations (5), we need some integrators. HMC can be
implemented in practice by using a leapfrog integrator assuming a
time discretization�or step size�ε.

This step involves L leapfrog steps (to be de�ned in a moment), each
scaled by ε. In a leapfrog step, both θ and ρ are changed, each in
relation to the other. The L leapfrog steps proceed as follows:
Repeat the following steps L times:

(a) Use the gradient (the vector derivative) of the
log-posterior density of θ to make a half-step of ρ:

ρ← ρ+
1

2
ε
d log π(θ|y)

dθ
.
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The three steps of an HMC iteration (cont.)

(b) Use the momentum vector ρ to update the position

vector θ:

θ ← θ + εM−1ρ.

(c) Again use the gradient of θ to half-update ρ:

ρ← ρ+
1

2
ε
d log π(θ|y)

dθ
.

Except at the �rst and last step, updates (c) and (a) above can be
performed together.
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The three steps of an HMC iteration (cont.)
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The three steps of an HMC iteration (cont.)

Some remarks sofar:

This algorithm (a)�(c) is called a 'leapfrog' because of the splitting of
the momentum updates into half steps: is a discrete approximation to
physical Hamiltonian dynamics in which both position and momentum
evolve in continuous time.

In the limit of ε near zero, the leapfrog algorithm preserves the joint
density π(θ, ρ|y).
For �nite ε, the joint density π(θ, ρ|y) does not remain entirely constant
during the leapfrog steps but it will vary only slowly if ε is small
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The three steps of an HMC iteration (cont.)

3 Accept-reject step Label θ(t−1), ρ(t−1) as the value of the parameter
and momentum vectors at the start of the leapfrog process and θ∗, ρ∗

as the value after the L steps. In the accept-reject step, we compute
the acceptance ratio:

R =
π(θ∗|y)π(ρ∗)

π(θ(t−1)|y)π(ρ(t−1))
.

4 Final assignment Set:

θt =

{
θ∗ with probability min(R, 1)

θ(t−1) otherwise.

5 Repeat these iterations until approximate convergence, as assessed by
R̂ being near 1 and the e�ective sample size being large enough for all
quantities of interest.
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The three steps of an HMC iteration (cont.)

Some remarks

After the point (4), the auxiliary momenta are discarded and we are
left with a point in the typical set of the target distribution

HMC can be tuned in three places: (i) the probability distribution for
the momentum variables ρ (which, in our implementation requires
specifying the diagonal elements of a covariance matrix, that is, a
scale parameter for each of the d dimensions of the parameter vector),
(ii) the scaling factor ε of the leapfrog steps, and (iii) the number of
leapfrog steps L per iteration.

Theory suggests that HMC is optimally e�cient when its acceptance
rate is approximately 65% (see diagnostics part).
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E�cient HMC in Stan

Hamiltonian Monte Carlo takes a bit of e�ort to program and tune. In
more complicated settings, though, we have found HMC to be faster
and more reliable than basic Markov chain simulation algorithms.

To mitigate the challenges of programming and tuning, we use a
computer program, Stan (Sampling through adaptive neighborhoods)
to automatically apply HMC given a Bayesian model.

The key steps of the algorithm are: (a) data and model input, (b)
computation of the log posterior density (up to an arbitrary constant
that cannot depend on the parameters in the model) and its gradients,
(c) a warm-up phase in which the tuning parameters are set, (d) an
implementation of the no-U-turn sampler to move through the
parameter space, and (e) convergence monitoring and inferential
summaries at the end.
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Diagnostics

In an ideal world, our simulation algorithm would return iid samples from
the target (posterior) distribution.

However, MCMC/HMC simulation has two short-comings

The distribution of the samples, π̃(θ(s)) only converges to the target
distribution as s →∞.

The samples are dependent.

Now we shall consider how we deal with these issues. In typical practice,
one monitors the performance of an MCMC algorithm by:

inspecting the value of the acceptance rate (in M-H only)

constructing graphs

computing diagnostic statistics on the stream of simulated values
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Diagnostics (cont.)

In both MCMC and HMC methods, some diagnostics about the
convergence of the algorithm must be always checked. Quickly:

Running multiple chains from di�erent starting values that are
over-dispersed relative to the posterior distribution (and checking the
chains mixing).

Checking the autocorrelation in the draws: a strong correlation
between successive iterates may prevent the algorithm from exploring
the entire region of the parameters' space.

Running diagnostic tests: Gelman-Rubin statistics R̂ , Geweke
diagnostics,...
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Diagnostics (cont.)

Gelman-Rubin statistic R̂ :estimate the mixing chains and their
convergence to the stationary distribution. As a golden rule,
convergence and mixing of the chains is reached when R̂ ≤ 1.1.

E�ective sample size: ESS estimates the reduction in the true
number of samples, compared to iid samples, due to the
autocorrelation in the chain. As a rule, the higher is the ESS, and the
better is the performance.

In the next slide, parameters' traceplots: 4 chains (usual choice for Stan),
perfect mixing.
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Diagnostics (cont.)
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Divergences

In order to approximate the exact solution of the Hamiltonian dynamics we
need to choose a step size ε of the leapfrog integrator governing how far we
move each time we evolve the system forward. That is, the step size
controls the resolution of the sampler.

Unfortunately, for particularly hard problems there are features of the target
distribution that are too small for this resolution. Consequently the sampler
misses those features and returns biased estimates. Fortunately, this
mismatch of scales manifests as divergences which provide a practical
diagnostic.
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Divergences (cont.)

A divergence arises when the simulated Hamiltonian trajectory departs
from the true trajectory as measured by departure of the Hamiltonian value
from its initial value. When this divergence is too high, the simulation has
gone o� the rails and cannot be trusted.

The Stan interfaces report divergences as warnings and provide ways to
access which iterations encountered divergences

If the posterior is highly curved, very small step sizes are required for this
gradient-based simulation of the Hamiltonian to be accurate. When the
step size is too large (relative to the curvature), the simulation diverges
from the true Hamiltonian.
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Divergences (cont.)

In Stan, we can �nd some divergences:

Divergent transitions after warmup Recommendations: (1) Increase
the target acceptance rate (2) Reparameterize your model.

Maximum treedepth exceeded Warnings about hitting the maximum
treedepth are not as serious as warnings about divergent transitions.
While divergent transitions are a validity concern, hitting the
maximum treedepth is an e�ciency concern. Recommendations:
Increase the maximum allowed treedepth.

BFMI low You may see a warning that says some number of chains
had an estimated Bayesian Fraction of Missing Information (BFMI)
that was too low. This implies that the adaptation phase of the
Markov Chains did not turn out well and those chains likely did not
explore the posterior distribution e�ciently.
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Divergences (cont.)

For a complete list, check: https://mc-stan.org/misc/warnings.
html#divergent-transitions-after-warmup.

In Stan, the adapt_delta argument is the target average proposal
acceptance probability during Stan's adaptation period, and increasing it
will force Stan to take smaller steps. The downside is that sampling will
tend to be slower because a smaller step size means that more steps are
required. Since the validity of the estimates is not guaranteed if there are
post-warmup divergences, the slower sampling is a minor cost.

If the divergent transitions cannot be eliminated by increasing the
adapt_delta parameter, we have to �nd a di�erent way to write the model
that is logically equivalent but simpli�es the geometry of the posterior
distribution. This problem occurs frequently with hierarchical models
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Divergences (cont.)

Luckily, Stan allows graphical inspection for the divergences:
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