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Motivations

The purpose of generalized linear models is to extend the idea of linear
modelling to cases for which the linear relationship between X and E(y |X )
or the normal distribution for each y is not appropriate, even after any
transformation of the data.

Example: when y is discrete, for instance the number of phone calls
received by a person in one hour. The mean of y may be linearly related to
X , but the variation term cannot be described by the normal distribution.

We review generalized linear models from a Bayesian perspective, although
this class of models may be usefully applied from a classical perspective too.
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Motivations

Given a n × p predictor matrix X and a parameters vector
β = (β1, . . . , βp)T , a generalized linear model is specified in three stages:

1 The linear predictor, η = Xβ.
2 The link function g(·), twice differentiable, that relates the linear

predictor to the mean of the outcome variable, µ:

g(µ) = η → g−1(η) = µ.

3 The random component specifying the distribution of the outcome
variable y with mean E(y |X ) = µ = g−1(Xβ). The distribution can
also depend on a dispersion parameter φ.
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Dispersion exponential family of distributions

The third stage is the most important in terms of statistical interpretation.
In the linear regression we assume that yi ∼ N (µ, σ2), where µ = η = Xβ.
We say that yi belongs to the dispersion exponential family of probability
distributions:

yi ∼ EF(b(θ), φ/ω) (1)

if the single yi has probability density function (pdf):

p(y |θ, ω) = exp

(
ω

φ
(yθ − b(θ)) + c(y , φ)

)
, (2)

where θ and φ are unknown parameters, ω is a known scalar, and b(·), c(·)
are known functions that characterize the particular distribution within the
class.
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Dispersion exponential family of distributions

The distributions that belong to the EF family of distributions satisfy the
following relations:

E(y) = b′(θ)

Var(y) = φb′′(θ)/ω,
(3)

where V (µ) ≡ b′′(θ) is known as variance function. We may rewrite the
first equation as:

E(y) ≡ µ ≡ g−1(Xβ) = b′(θ) (4)

It is easy to prove that the normal, the Poisson and the binomial
distribution belong to the EF family.
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Dispersion exponential family of distributions: Poisson

If yi ∼ Pois(λi ), i = 1, . . . , n, then:

p(yi |λi ) = e−λi
λyii
yi !

= exp (yi log λi − λi − log(yi !)) ,

where θi = log(λi ), b(θi ) = λi = eθi , c(yi , φ) = log(yi !), φ = ω = 1.
Thus:

E(yi ) =b′(θi ) =
deθi

dθi
= eθi = λi

Var(yi ) =φb′′(θi )/ω =
d2eθi

d(θi )2 = eθi = λi
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Dispersion exponential family of distributions: Normal

If yi ∼ N (µi , σ
2), i = 1, . . . , n, then:

p(yi |µi , σ2) = (2πσ)−1/2e−
1

2σ2 (yi−µi )2

= (2πσ)−1/2 exp

(
− 1
2σ2 (y2

i − 2yiµi + µ2
i )

)
= exp

(
1

2σ2 (2yiµi − µ2
i )− 1

2
log(2πσ)− 1

2σ2 y
2
i

)
where θi = µi , b(θi ) = µ2

i /2 = θ2
i , c(yi , φ) = 1

2 log(2πσ)− 1
2σ2 y

2
i , φ = σ2,

ω = 1. Thus:

E(yi ) =b′(θi ) =
dθ2

i /2
dθi

= 2θi/2 = µi

Var(yi ) =σ2b′′(θi )/ω =
d2θi

2/2
d(θi )2 = σ2
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Canonical link function

The link function g(·) has not particular restrictions, usually
g : (a, b)→ (−∞,+∞), with a and b the lower and the upper bound of
the support of µi , respectively. However, there is an easy choice for g ,
called canonical link function, such that

g(µi ) ≡ ηi = θi . (5)

In the Poisson case:

g(µi ) = θi ⇔ g(b′(θi )) = θi ⇔ g(eθi ) = θi ⇔ g(·) = log(·),

the link function is the logarithm. In the normal case is the identity
function, in the binomial is the logit function. (See next table for a
summary of three distributions belonging to the EF family. Careful! The
list is not exaustive...)
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Canonical link function

Notation Bin(n, p) Pois(λ) N (µ, σ2)

Range of y N N R
Dispersion parameter: φ 1 1 σ2

Cumulant function: b(θ) nlog(1 + eθ) eθ θ2

2
c(y ;φ) log

(n
y

)
−logy ! −1

2( y
2

σ2 + log 2πσ2)

µ(θ) n eθ

1+eθ
eθ θ

Variance function: V (µ) nµ(1− µ) µ 1
Canonical link function: logit logarithm identity

Table: Characteristics of some common univariate distributions in the dispersion
exponential family.
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Overdispersion, offsets

GLM represent a wide class of models allowing for modelling:

overdispersion, the possibility of variation beyond that of the assumed
sampling distribution.
Example The proportion of democrat voters in North Carolina is assumed to
be binomial with some explanatory variables (such as voters’ age, sex, and
so forth). The data might indicate more variation than expected under the
binomial model, Var(y) > np(1− p).

offsets, the possibility to include in the linear predictor η a known
coefficient, able to take care of different exposures.
Example The number of car accidents is assumed to follow a Poisson
distribution with rate λ with some explanatory variables. The rate of
occurrence is λ per units of time, so that with exposure T the expected
number of accidents is λT , where T represents the vector of exposure times
for each unit.
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Bayesian inference and GLMs

We consider GLMs with noninformative and informative prior distributions
on regression parameters β, similarly as what we have done for linear
models. A prior distribution can be placed on the dispersion parameter ψ
as well, and any prior information about β can be described conditional on
φ, that is p(β, φ) = p(β|φ)p(φ).

As in LMs, the classical analysis of GLMs is obtained if a noninformative or
flat prior distribution is assumed for β: the posterior mode corresponding
to a noninformative uniform prior density is the maximum likelihood
estimate for β.

Posterior inference in GLMs typically will require the approximation and
sampling tools like Markov Chain Monte Carlo (MCMC). We will generally
use Stan (rstan and rstanarm packages) to sample from their posterior
distributions.
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Logistic regression

Logistic regression is the standard way to model binary outcomes (that is,
data yi that take on the values 0 or 1).

We model the probability that the single yi = 1:

pi ≡ Pr(yi = 1) = logit−1(xiβ), (6)

where ηi = xiβ is the linear predictor, and the logit function is expressed as:

logit(pi ) ≡ log
pi

1− pi
= xiβ (7)

It is easy to check that logit−1(ηi ) = eηi
1+eηi .
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Logistic regression - Interpreting the coefficients

Coefficients in logistic regression can be challenging to interpret because of
the nonlinearity just noted.

To understand better, let’s fit a simple model about some political US polls
in 1992.

1992 polls
Conservative parties generally receive more support among voters with
higher incomes. We use this pattern from the National Election Study in
1992. For each respondent i in this poll, we label yi = 1 if he/she preferred
Bush (the Republican candidate), or 0 if he/she preferred Bill Clinton
(Democrate candidate). We predict preferences given the respondent’s
income level (our x), which is characterized on a five-points scale.
n = 1179 respondents.
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Logistic regression - Interpreting the coefficients

Let’s fit the model in the classical way:

glm(formula = vote ~ income,
family = binomial(link = "logit"))

coef.est coef.se
(Intercept) -1.40 0.19
income 0.33 0.06
---

n = 1179, k = 2

Thus, the fitted model is Pr(yi = 1) = logit−1(−1.40 + 0.33incomei ).
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Logistic regression - Interpreting the coefficients
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Logistic regression - Interpreting the coefficients

As with linear regression, the intercept can only be interpreted
assuming zero values for the other predictors. When zero is not
interesting or not even in the model (as in this case), we may evaluate
Pr(Bush support) at the mean of respondents’ incomes, x̄ ,
logit−1(−1.40 + 0.33x̄) = 0.4.
A difference of 1 in outcome (on this 1-5 scale) corresponds to a
positive difference of 0.33 in the logit probability of supporting Bush.

logit−1(−1.40 + 0.33× 3)− logit−1(−1.40 + 0.33× 2) = 0.08. A
difference of 1 in income category corresponds to a positive difference
of 8% in the probability of supporting Bush.
consider the derivative of the logistic curve at x̄ = 3.1, this is:
βe η̄/(1 + e η̄)2. Thus, the change in Pr(yi = 1) per small unit of
change in x at the mean value is 0.33e−0.39/(1 + e−0.39)2 = 0.13.
divide by 4 rule: β/4 = βe0/(1 + e0)2 = 0.08. As a rule of
convenience, we can divide corefficients by 4 to get an upper bound of
the predictive difference corrpesponding to a change of 1 in x .
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Logistic regression - Interpreting the coefficients

There is another popular way to interpret the logistic regression
coefficients, in terms of odds ratios.
If two outcomes have the probabilities (p, 1− p), p/(1− p) is called
the odds. An odds of 1 is equivalent to a probability of 0.5, that is,
equally likely outcomes.
Taking the logarithm of the odds ratio yields the log odds ratios, in
our previous example with one predictor:

log
pi

1− pi
= α + βincomei (8)

Adding 1 to x in the equation above has the effect of adding β to
both sides of the equation. A units difference in x corresponds to a
multiplicative change of e0.33 = 1.39 in the odds.
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Logistic regression: Stan model (1992polls.stan)

data{
int N; // number of voters
int vote[N]; // vote: 0 (Clinton), 1 (Bush)
int income[N]; // 1-5 income scale

}
parameters{

real alpha; // intercept
real beta; // income coefficient

}
model{

for (n in 1:N){
vote[n] ~ bernoulli_logit(alpha+income[n]*beta);

// likelihood
}
alpha ~ normal(0, 10); // intercept weakly-inf prior
beta ~ normal(0, 2.5); // income weakly-inf prior

}
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Logistic regression: Bayesian estimation

Let’s fit now the same model under the Bayesian approach, first of all with
noninformative priors, using the stan_glm function in the rstanarm
package, α ∼ N (0, 1002), β ∼ N (0, 1002):

fit.2 <- stan_glm (vote ~ income,
family=binomial(link="logit"),
prior=normal(0, 100),
prior_intercept=normal(0,100))

print(fit.2)
Median MAD_SD

(Intercept) -1.4 0.2
income 0.3 0.1

The estimates are the same as those obtained from the glm function.
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Logistic regression: Bayesian estimation

We use now some weakly informative priors, α ∼ N (0, 102),
β ∼ N (0, 2.52):

fit.3 <- stan_glm (vote ~ income,
family=binomial(link="logit"),
prior=normal(0, 2.5),
prior_intercept=normal(0,10))

print(fit.3)
Median MAD_SD

(Intercept) -1.4 0.2
income 0.3 0.1

The estimates are the same as those obtained from previous analysis. This
means that we have enough observations to weaken the role of the prior
distribution.

Leonardo Egidi Introduction 22 / 60



• Motivations and theory • Logistic regression • Probit regression • Discrete data regression •

Logistic regression - Role of the prior

Thus, one may ask him(her)self: what is the advantage to use the Bayesian
approach in place of the classical approach, given that the final results
coincide?

The Bayesian juggler (analyst) may enjoy more! The prior is part of the
model and its role may be very useful (to be continued).

(a) Classical juggler (b) Bayesian juggler
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Logistic regression - Separation

Nonidentifiability is a common problem in logistic regression. In addition to
the problem of collinearity, familiar from linear regression, discrete-data
regression can also become unstable from complete separation, which arises
when a linear combination of the predictors is perfectly predictive of the
outcome.

A common solution to separation is to remove predictors until the resulting
model is identifiable, which typically results in removing the strongest
predictors from the model.

An alternative approach to obtain stable logistic regression coefficients is to
use Bayesian inference: precisely, suitable prior distributions on β.
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Logistic regression

Consider to simulate n = 100 data yi ∼ Bernoulli(pi ), where
logit(pi ) = β0 + β1xi1 + β2xi2, β0 = 1, β1 = 1.5, β2 = 2, and we draw
x1 ∼ N (0, 1), x2 ∼ Bin(n, 0.5).

We fit now a simple logistic regression for y using the glm function and the
stan_glm contained in the R package rstanarm.

The idea is to compare the estimates of a bunch of simulated datasets
under the classical and the Bayesian approach.

Dataset 1: no separation.
Dataset 2: separation (y = 1⇔ x2 = 1).
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Logistic regression: dataset 1. Classical vs noninformative

# classical
glm(formula = y ~ x1 + x2, family = binomial(link = "logit"))

coef.est coef.se
(Intercept) 1.08 0.37
x1 1.45 0.36
x2 1.88 0.65
---

n = 100, k = 3

# noninformative prior
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=normal(0,100),
prior_intercept = normal(0,100))

Median MAD_SD
(Intercept) 0.9 0.3
x1 1.1 0.3
x2 2.1 0.6
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Logistic regression: dataset 1. Noninf. vs weakly-inf.

# noninformative prior
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=normal(0,100),
prior_intercept = normal(0,100))

Median MAD_SD
(Intercept) 0.9 0.3
x1 1.1 0.3
x2 2.1 0.6

# weakly-informative priors (normal(0,10^2) and normal(0,2.5^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"))
Median MAD_SD

(Intercept) 0.9 0.3
x1 1.1 0.3
x2 1.9 0.6
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Logistic regression: dataset 2. Classical vs noninformative

# classical
glm(formula = y ~ x1 + x2, family = binomial(link = "logit"))

coef.est coef.se
(Intercept) 0.91 0.36
x1 1.26 0.43
x2 20.15 2370.96
---

n = 100, k = 3

# noninformative priors (normal(0,100^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=normal(0,100),
prior_intercept=normal(0,100))

Median MAD_SD
(Intercept) 1.0 0.4
x1 1.3 0.5
x2 62.2 51.6
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Logistic regression: dataset 2. Noninf. vs weakly-inf.

# noninformative priors (normal(0,100^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=normal(0,100),
prior_intercept=normal(0,100))

Median MAD_SD
(Intercept) 1.0 0.4
x1 1.3 0.5
x2 62.2 51.6

# weakly-informative priors (normal(0,10^2) and normal(0,2.5^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"))
Median MAD_SD

(Intercept) 1.0 0.4
x1 1.2 0.4
x2 4.3 1.2

Leonardo Egidi Introduction 29 / 60



• Motivations and theory • Logistic regression • Probit regression • Discrete data regression •

Logistic regression: dataset 2. weakly-inf. vs weakly-inf.

# weakly-informative priors (normal(0,10^2) and normal(0,2.5^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"))
Median MAD_SD

(Intercept) 1.0 0.4
x1 1.2 0.4
x2 4.3 1.2

# weakly-informative priors (cauchy(0,10^2) and cauchy(0,2.5^2))
stan_glm (y ~ x1 + x2,

family=binomial(link="logit"),
prior=cauchy(0,2.5),
prior_intercept = cauchy(0,10))

Median MAD_SD
(Intercept) 0.9 0.4
x1 1.2 0.4
x2 6.4 3.2
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Logistic regression: dataset 1

Dataset 1

x1

lo
gi

t

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

classical
Normal(0,100^2)
Normal(0,2.5^2)

x2=1

x2=0

Leonardo Egidi Introduction 31 / 60



• Motivations and theory • Logistic regression • Probit regression • Discrete data regression •

Logistic regression: dataset 2

Dataset 2
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Logistic regression: stable estimates

Comments:

Weakly informative priors allow to obtain stable logistic regression
coefficients.
Noninformative priors do not solve separation.
Prior choice is a fundamental part of our models, especially as the
complexity grows.
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Probit regression

The probit model is the same as the logit, except it replaces the logistic by
the normal distribution. We can write the model directly as

Pr(yi = 1) = Φ(xiβ), (9)

where Φ is the standard normal cumulative distribution.

As shown in the next plot, the probit model is close to the logit model with
the residual standard deviation set to 1.6 rather than 1. As a result,
coefficients in a probit regression are typically close to logistic regression
coefficients divided by 1.6.
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Probit regression
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Probit regression: 1992 polls

We estimate the conservative support for the 1992 US elections, but this
time with probit regression:

fit.4 <- stan_glm (vote ~ income,
family=binomial(link="probit"),
prior=normal(0, 2.5),
prior_intercept=normal(0,10))

print(fit.4)
Median MAD_SD

(Intercept) -0.9 0.1
income 0.2 0.0

Rule of thumb: −0.89 ≈ −1.40/1.6, and 0.2 ≈ 0.33/1.6. (Red: logistic
coefficients)
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Discrete data regression: cockroaches data

Cockroaches data
A company that owns many residential buildings throughout New York City
tells that they are concerned about the number of cockroach complaints
that they receive from their 10 buildings. They provide you some data
collected in an entire year for each of the buildings and ask you to build a
model for predicting the number of complaints over the next months.
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Discrete data regression: cockroaches data

We have access to the following fields (pest_data.RDS):

complaints: Number of complaints per building in the current month
traps: The number of traps used per month per building
live_in_super: An indicator for whether the building has a live-in
super
age_of_building: The age of the building
total_sq_foot: The total square footage of the building
average_tenant_age: The average age of the tenants per building
monthly_average_rent: The average monthly rent per building
floors: The number of floors per building
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Discrete data regression: cockroaches data

Let’s make some plots of the raw data, such as the distribution of the
complaints:
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Poisson regression: cockroaches data

A common way of modeling this sort of skewed, single bounded count data
is as a Poisson random variable. For simplicity, we will start assuming:

ungrouped data, with no building distinction
no time-trend structures

We use the number bait stations placed in the building, denoted below as
traps, as explanatory variable. This model assumes that the mean and
variance of the outcome variable complaints (number of complaints) is
the same. For the i-th complaint, i = 1, . . . , n, we have

complaintsi ∼ Poisson(λi )

λi = exp (ηi )

ηi = α + β trapsi
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Poisson regression: cockroaches data

Let’s fit this simple model via the stan_glm function of the rstanarm
package:

y <- pest_data$complaints
x <- pest_data$traps
M_pois <- stan_glm(y~x, family=poisson(link="log"))
print(M_pois)

Median MAD_SD
(Intercept) 2.6 0.2
x -0.2 0.0
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Poisson regression: cockroaches. Posterior plots

Let’s have a glimpse of simulated posterior distributions for α and β:
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As we expected, it appears the number of bait stations set in a building is
associated with the number of complaints about cockroaches that were
made in the following month.
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Poisson regression: cockroaches. Overdispersion

Comments:

Taking the posterior means of the parameters as point estimates, a
building with x̄ = 7 traps will have a predicted average amounting at:

λ = exp(2.61− 0.2x̄) ≈ 3.35

Under this model, E(complaints) = Var(complaints) ≈ 3.35.
However, the raw mean of the data is 3.66 and its variance is
14.9...maybe the Poisson model is not well suited for this dataset?
There is much overdispersion.
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Poisson regression: cockroaches. Extending the model

Modelling the relationship between complaints and bait stations is the
simplest model. However, we can expand the model.

Currently, our model’s mean parameter is a rate of complaints per 30 days,
but we’re modelling a process that occurs over an area as well as over time.
We have the square footage of each building, so if we add that information
into the model, we can interpret our parameters as a rate of complaints per
square foot per 30 days. For the i-th complaint, we assume:

complaintsi ∼ Poisson(sq_footi λi )
λi = exp (ηi )

ηi = α + β trapsi
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Poisson regression: cockroaches. Offset term

The term sq_foot is called an exposure term. If we log the term, we can
put it in ηi :

complaintsi ∼ Poisson(λi )

λi = exp (ηi )

ηi = α + β trapsi + log_sq_footi

exposure <- log(pest_data$total_sq_foot/1e4)
M_pois_exposure <- stan_glm(y~x+offset(exposure),

family=poisson(link="log"))
print(M_pois_exposure)

Median MAD_SD
(Intercept) 0.8 0.2
x -0.2 0.0
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Poisson regression: cockroaches. Offset term

Comments:

Let’s compute now a naive estimates for λ using the posterior
estimates, considering a building with x̄ = 7 and exposure equal to
1.77:

λ = exp(0.8− 0.2× x̄ + log_sq_foot) ≈ 3.22

This again looks like we haven’t captured the smaller counts very well,
nor have we captured the larger counts. We need something different
to model the overdispersion.
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Poisson regression: cockroaches. Overdispersion

A possible drawback of the Poisson distribution is that the mean coincides
with the variance. It may be not well suited when data reveals much more
variation than that assumed by the Poisson distribution

Negative binomial If Y ∼ Neg-Binomial(λ, φ), where λ has the same
meaning as before and φ is the dispersion parameter, we have;

E(Y ) =λ

Var(Y ) =λ+ λ2/φ.

The variance grows as the dispersion parameter φ tends to 0. As φ→∞,
the two distributions coincide.
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Poisson vs Negative binomial: λ = 2.
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Negative binomial regression: cockroaches. Overdispersion

Thus, we assume the following model to allow for overdispersion:

complaintsi ∼ Neg-Binomial(λi , φ)

λi = exp (ηi )

ηi = α + β trapsi

M_negbin <- stan_glm(y ~ x,
family =neg_binomial_2(link="log"))

print(M_negbin)
Median MAD_SD

(Intercept) 2.7 0.4
x -0.2 0.1
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Negative binomial regression: cockroaches. Overdispersion

Comments:

Taking again the posterior means of the parameters as point
estimates, a building with x̄ = 7 traps will have a predicted average
amounting at:

λ = exp(2.60− 0.19x̄) ≈ 3.56,

and the variance may be approximately computed as:

λ+ λ2/φ = 3.56 + (3.56)2/3.3 = 7.4,

that seems a more realistic assumption.
A Poisson model doesn’t fit over-dispersed count data very well
because the same parameter λ controls both the expected counts and
the variance of these counts.
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Negative binomial regression: cockroaches. Overdisp.+offset

Let’s consider now the exposure in the negative binomial model as well:

complaintsi ∼ Neg-Binomial(λi , φ)

λi = exp (ηi )

ηi = α + β trapsi + log_sq_footi

M_negbin_exp <- stan_glm(y ~ x,
family =neg_binomial_2(link="log"),
offset=exposure)

print(M_negbin_exp)
Median MAD_SD

(Intercept) 0.9 0.4
x -0.2 0.1
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Negative binomial regression: cockroaches.

Let’s take a look at the simulated posterior distribution for α, β and 1/φ.
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Negative binomial regression: cockroaches.

Let’s take a look at the scatterplot between α and β:
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Negative binomial regression: cockroaches. Residuals

Comments:

We had a glimpse that the negative binomial model outperforms the
Poisson model when discrete data present much variation and heavy
tails.

However:

we should check the residuals , similarly as what we have done for the
linear model.
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Negative binomial regression: cockroaches. Residuals

We need simulation:

Generate nsims hypothetical samples y rep from our model.
Run nsims regression on each y rep.
Compute the standardized residuals as:

y − λ̃√
λ̃+ λ̃2/φ̃

,

where λ̃ is the mean over the y rep replications, and φ̃ is the mean of the
posterior estimates.
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Negative binomial regression: cockroaches. Residuals
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Negative binomial regression: cockroaches. Residuals

Comments:

Looks ok, but we still have some very large standardized residuals.
This might be because we are currently ignoring that the data are
clustered by buildings, and that the probability of roach issue may vary
substantially across buildings.
It looks like we would need a sort of hierarchical structure: complaints
within buildings. (to be continued...)
Maybe ungrouped structure is poor here!
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Further reading

Further reading:

Chapter 16 from Bayesian Data Analysis, A. Gelman et al.

Weakly informative priors in logistic regression:

Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y-S. (2008). A weakly
informative default prior distribution for logistic and other regression
models. Annals of Applied Statistics, 2(4), 1360–1383. Here is the

pdf .
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