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Motivations

A common problem in applied statistics is modelling individuals/objects of
a population.

Within this population, there may be some subpopulations sharing some
common features. Thus, we should statistically acknowledge for this
distinct groups' membership.

Multilevel/hierarchical models are extensions of regression models in which
data are structured in groups and coe�cients can vary by group. We start
with simple grouped structures�such as people within cities, students
within schools, etc�where some information is available on individuals and
some information is at the group level.
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Motivations

If we assume that every individual is equivalent then we can pool the data,
but only at the expense of bias ⇔ Complete pooling.

yi ∼ N (α + βxi , σ
2)
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Motivations

Conversely, modelling every individual separately avoids any bias, but then
the data becomes very sparse and inferences weak ⇔ No pooling.

yi ∼ N (αi + βxi , σ
2)
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Motivations

A compromise between complete pooling and no pooling that could balance
bias and variance would be ideal. Thus, hierarchical models allow for this:

yij ∼ N (αj(i) + βxi , σ
2)
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Motivations

The common feature of such models is that the observed units yij are
indexed by the statistical unit i in group j (examples: students within
schools, players within teams). In general, these observable outcomes are
modelled conditionally on certain not observable parameters θj , viewed as
drawn from a population distribution, which themselves are given a
probabilistic (prior) distribution in terms of further parameters, known as
hyperparameters.

Simple nonhierarchical models are usually inappropriate for hierarchical
data: with few parameters, they generally cannot �t large datasets
accurately.

Conversely, hierarchical models can have enough parameters to �t the data
well, while using a population distribution.
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The fundamental concept of exchangeability - 1

In order to formalize this approach we need to consider exchangeability.

Consider a set of experiments j = 1, . . . , J, in which experiment j has data
(vector) yj and parameter vector θj , with likelihood p(yj |θj). In the linear
model, we have θ = (α, β, σ2)

If no information-other than the data y -is available to distinguish any of
the θj 's from any of the others, and no ordering or grouping of the
parameters can be made, one must assume symmetry among the
parameters in their prior distribution.
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The fundamental concept of exchangeability - 2

This symmetry is represented probabilistically by exchangeability: the
parameters (θ1, . . . , θJ) are exchangeable in their joint prior
distribution if π(θ1, . . . , θJ) is invariant to permutations of the indexes
(1, . . . , J).

In practice, ignorance implies exchangeabilitiy. Consider the analogy to
a roll of a dice: we should initially assign equal probabilities to all six
outcomes, but if we study the measurements of the dice and weigh the
dice carefully, we might eventually notice imperfections, which might
make us favour one outcome over the others and thus eliminate the
symmetry among the six outcomes.
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The fundamental concept of exchangeability - 3

The simplest form of an exchangeable distribution has each of the
parameters θj as an independent sample from a prior (or population)
distribution governed by some unknown parameter vector φ; thus,

π(θ|φ) =
J∏

j=1

π(θj |φ). (1)

In general, φ is unknown, so our distribution for θ must average over our
uncertainty in φ:

π(θ) =

∫  J∏
j=1

π(θj |φ)

π(φ)dφ. (2)
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The fundamental concept of exchangeability - 4

In such a way, the joint distribution for y and θ becomes:

p(θ, y) =
n∏

i=1

p(yij |θj(i))π(θj(i)|φ)π(φ), (3)

with the nested index j(i) denoting the group membership of the i-th unit,
whereas the joint posterior distribution for θ, φ is:

π(θ, φ|y) ∝ π(φ, θ)p(y |θ). (4)

Careful! φ is usually not known. Thus, the joint prior distribution π(φ, θ)
may be factorized as

π(φ, θ) = π(φ)π(θ|φ),

where π(φ) is the hyperprior distribution.
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Example: Lega voters. Role of exchangeability in inference.

Lega voters

Suppose you are an asian guy and let θ1, . . . , θ5 are the proportions of
voters for Lega in �ve Italian regions from the last polls for the next
European Elections. The regions, here in a random order, are: Piemonte,
Liguria, Umbria, Puglia, Lombardia. What can you say about the Lega vote
proportion θ5, in the �fth region?

Since you have no information to distinguish any of the �ve regions from
the others, you must model them exchangeably. You might use a Beta
distribution for the �ve θj 's, or some other distributions restricted in [0, 1].

I now randomly sample four regions from these �ve and tell you the polls'
proportions: 13.2, 14.3, 18.4, 21.5. Remember, you are asian, you do not
know anything about Lega...what can you say about θ5?
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Example: Lega voters. Role of exchangeability in inference.

Changing the indexing does not change the joint prior distribution. θj are
exchangeable, but they are not independent as we assume that the voters'
proportion θ5 is probably similar to the observed rates.

Today you come in Italy for a two-weeks holiday and you start reading Il
Fatto Quotidiano, La Repubblica, Il Giornale. Mmh...what a weird nation is
Italy! You are getting information.

You reconsider the four voters' proportions. You know that Matteo Salvini,
the Lega leader, is born in Milano, Lombardia, a region headed by Attilio
Fontana, who belongs to Lega party as well. For sure Salvini is loved by his
fellows, at least 30% of them will support him! Maybe the missing
proportion θ5 is Lombardia...You end up with a not exchangeable prior
distribution.
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Hierarchical models: formalization

Often observations (and/or parameters) are not fully exchangeable, but are
partially or conditionally exchangeable.

If observations can be grouped, we may make hierarchical modelling,
where each group has its own subgroup, but the group properties are
unknown.

If yi has additional information xi so that yi are not exchangeable but
(yi , xi ) still are exchangeable, then we can make a joint model for
(yi , xi ) or a conditional model for yi |xi .

In general, the usual way to model exchangeability with covariates is
through conditional independence:

π(θ1, . . . , θJ |x1, . . . , xJ) =

∫  J∏
j=1

π(θj |φ, xj)

π(φ|x)dφ
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Hierarchical models: objections to exchangeability

In virtually any statistical application, it is natural to object to
exchangeability on the grounds that the units actually di�er.

That the units di�er, implies that the θj 's di�er, but it might be
perfectly acceptable to consider them as if drawn from a common
distribution.

As usual in regression, the valid concern is not about exchangeability,
but about encoding relevant knowledge as explanatory variables where
possible.
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Hierarchical models: formalization

We may try to formalize a hierarchical model by acknowledging at least two
levels:

individual level: observed yij , i = 1, . . . , n, j = 1, . . . J;

yij ∼ p(y |θj) likelihood

group level: unobserved θj , j = 1, . . . , J, depending on an
hyperparameter φ.

θj ∼ π(θ|φ) prior

heterogeneity level: unobserved φ

φ ∼ π(φ) hyperprior
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Extending linear models

Hierarchical regression models are useful as soon as there are predictors at
di�erent levels of variation. Some examples may be:

In studying scholastic achievement, we may have students within
schools, with predictors both at the individual and at the group level.

Data obtained by strati�ed or cluster sampling

We can think of a generalization of linear regression, where intercepts, and
possibly slopes, are allowed to vary by group.

A batch of J coe�cients is assigned a model, and this group-level model is
estimated simultaneously with the data-level regression of y .
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Extending linear models: radon data

Radon data

Suppose to measure radon emissions in more than 80000 houses
throughout US. Our goal in analyzing these data is to estimate the
distribution of radon levels in each of the approximately 3000 counties, so
that homeowners could make decisions about measuring or remediating the
radon in their houses.

The data are structured hierarchically: houses within counties. As a
predictor, we have the �oor on which th measurement is taken, either
basement or �rst �oor; radon comes from underground and can enter more
easily when a house is built into the ground. We �t a model where yi is the
logarithm of the radon measurement in house i , and x is the �oor variable
(0 if basement, 1 if �rst �oor).
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Partial pooling with no predictors

Hierarchical (or multilevel) modelling is a compromise between two
extremes: complete pooling, in which the group indicators are not included
in the model, and no pooling, in which separate models are �t within each
group. For such a reason, we may refer to hierarchical modellling as partial
pooling.

We start our journey into hierarchical models with the simplest model ever
for the radon data, a hierarchical linear model with no predictors:

yij ∼N (αj(i), σ
2), i = 1, . . . , n, Individual level

αj ∼ N (µα, τ
2), j = 1, . . . , J, Group level

(5)

where αj(i) = 1, . . . , J is the intercept for the i-th unit, belonging to the
j-th group.
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Partial pooling with no predictors

Consider the goal of estimating the distribution of radon levels of the
houses within each of 85 counties in Minnesota. One estimate would be
the average that completely pools data across all counties. This ignores
variation among counties, however, so perhaps a better option would be
simply to use the average log radon level in each county. Estimates ±
standard errors are plotted against the number of observations in each
county in the next plot, left panel.

A third option is hierarchical modelling: estimates ± standard errors are
plotted against the number of observations for each county.
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Partial pooling with no predictors
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Figure: Estimates ± standard errors for the average log radon levels in Minnesota
counties plotted versus the number of observations in the county.
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Partial pooling with no predictors

Whereas complete pooling ignores variation between counties, the
no-pooling analysis over�ts the data within each county.

In no-pooling analysis, the counties with fewer measurements have
more variable estimates and larger higher standard errors. It
systematically causes us to think that certain counties are more
extreme, just because they have smaller sample sizes!

The hierarchical estimate for a given county j can be approximated as
a weighted average:

α̂j =

nj
σ2
ȳj + 1

τ2
ȳall

nj
σ2

+ 1

τ2

(6)

where nj is the number of observations in the j-th county, ȳj is the
mean of the observations in the county (unpooled estimate), and ȳall
is the mean over all counties (completely pooled estimate).
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Partial pooling with no predictors

The weighted average (6) re�ects the relative amount of information
available about the individual county, on one hand, and the average of all
counties, on the other:

Averages from counties with smaller sample sizes carry less information
(nj small), and the weighting pulls the multilevel estimates closer to
the overall state average. If nj = 0, α̂j = ȳall, the overall average.

Averages from counties with larger sample sizes carry more
information. As nj →∞, α̂j = ȳj , the county average.

When variation across counties is very small, the weighting pulls the
multilevel estimates to the overall mean: as τ2 → 0, α̂j = ȳall.

When variation across the counties is large, the weighting pulls the
multilevel estimates to the county average: as τ2 →∞, α̂j = ȳj .
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Partial pooling with predictors

The same principle of �nding a compromise between these two extremes
applies for more general models. We consider now the individual-level
predictor x , where xi = 1 for the �rst �oor and xi = 0 for the basement.

Thus, the second model we consider is a varying-intercept model:

yij ∼N (αj(i) + βxi , σ
2), i = 1, . . . , n, Individual level

αj ∼ N (µα, τ
2), j = 1, . . . , J, Group level

(7)

To appreciate hierarchical modelling, we start plotting some estimates
according to complete and no pooling.
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Partial pooling with predictors
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Figure: Complete pooling (dashed lines) and no pooling (solid lines) for 8 counties
in Minnesota.
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Partial pooling with predictors

Both these analysis have problems.

The complete pooling analysis ignores any variation in average radon
levels between counties.

The no-pooling analysis has problems too, however, which we can see
in Lac Qui Parle County, since the estimate is based on only two
observations.

Let's �t now model (7) via the function stan_lmer of the rstanarm R
package, and plot again the estimates.
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Partial pooling with predictors

mlm.radon.pred <- stan_lmer(y ~ x+ (1|county))

print(mlm.radon.pred)

stan_lmer

family: gaussian [identity]

formula: y ~ x + (1 | county)

observations: 919

------

Median MAD_SD

(Intercept) 1.5 0.1

x -0.7 0.1
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Partial pooling with predictors

Error terms:

Groups Name Std.Dev.

county (Intercept) 0.33

Residual 0.76

Num. levels: county 85

We obtain the following posterior estimates for the two sources of
variation: τ̂ = 0.33, σ̂ = 0.76.
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Partial pooling with predictors
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Figure: Complete pooling (dashed lines), no pooling (solid lines) and partial
pooling (solid red lines).
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Partial pooling with predictors

The estimated line from the hierarchical model (7) in each county lies
between the complete-pooling and no-pooling regression lines. There
is strong pooling (solid red line closer to complete-pooling line) in
counties with small sample sizes, and only weak pooling (solid red line
close to no-pooling line) in counties containing many measurements.

Classical regression models can be viewed as special cases of multilevel
models. The limits τ → 0 (complete pooling) and τ →∞ (no
pooling) seem to be restrictive: given multilevel data, we can estimate
τ , which acts as hyperparameter of a prior distribution on α.

Note that the function stan_lmer works in the same way as the
function lmer for classical inference. However, when the number of
groups is small, it can be useful to switch to Bayesian inference, to
better account for uncertainty in model �tting.
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Partial pooling with predictors

We can generalize equation (6) as follows:

α̂j ≈
nj
σ2

nj
σ2

+ 1

τ2α

(ȳj − βx̄j) +

1

τ2α
nj
σ2

+ 1

τ2α

µα, (8)

a weighted average of the no-pooling estimate for its group (ȳj − βx̄j) and
the prior mean µα.

Multilevel modeling partially pools the group-level parameters αj

toward their mean level, µα.

There is more pooling when the group-level standard deviation τ is
small.

There is more smoothing for groups with fewer observations.
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Partial pooling with predictors

We may disaggregate the information averaging over the counties, the �xed
e�ects, and the county-level errors, the random e�ects, using the functions
fixef() and ranef() of the rstanarm package:

fixef(mlm.radon.pred)

(Intercept) x

1.4623684 -0.6919822

ranef(mlm.radon.pred)

$county

(Intercept)

1 -0.264735142

2 -0.534511687

. . .

85 -0.073852110

The est. line for the �rst county is: (1.46− 0.26)− 0.69x = 1.20− 0.69x .
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Eight schools example

We illustrate a normal model with a problem in which the hierarchical
Bayesian analysis gives conclusions that di�er in important respects from
other methods.

Eight schools example (BDA, 5.5)

A study waw performed for the Educational Testing Service to analyze the
e�ects of special coaching programs on test scores in each of eight
high-schools.

The outcome variable in each study was a score, varying between 200 and
800, with mean about 500 and standard deviation about 100. There is no
prior reason to believe that any of the eight programs is more e�ective than
any other.

As we'll see, the choice of the prior is of substantial importance here.
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Eight schools

We denote with yij the result of the i-th test in the j-th school. We assume
the following model:

yij ∼ N (θj , σ
2
y )

θj ∼ N (µ, τ2)
(9)

Do some schools perform better/worse according to these coaching e�ects?
We will make three distinct analysis: separate analysis, pooled analysis and
hierarchical modelling.

Actually, for each school we have the estimated coaching e�ects yj ,
y = (28, 8,−3, 7,−1, 1, 18, 12), and a measure of standard deviation for
them, s = (15, 10, 16, 11, 9, 11, 10, 18).
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Eight schools: separate analysis

−40 −20 0 20 40 60
Treatment effect

Other Schools

School A

Separate model
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Eight schools: pooled analysis

−40 −20 0 20 40 60
Treatment effect

All schools

Pooled model
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Eight schools: hierarchical model
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Eight schools: three models
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Eight schools: three models

Comments:

Separate analysis: the standard errors of these estimated e�ects make
very di�cult to distinguish between any of the experiments...treating
each experiment separately and applying the simple normal analysis in
each yields 95% posterior intervals that all overlap substantially.

Pooled-analysis: under the hypothesis that all experiments have the
same e�ect and produce independent estimates of this common e�ect,
we could treat y as eight normally distributed observations with known
variances. The pooled estimate is 7.7, and the posterior variance is
16.6.

However, both the extreme analysis have di�culties.
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Eight schools: three models

Other comments:

Consider school A. The e�ect in school A is estimated as 28.4 with a
standard error of 14.9 under the separate analysis, versus a pooled
estimate of 7.7 with a standard error of 4.1. Mmh...should I �ip a
coin?

We would like a compromise that combines information from all the
eight experiments without assuming all the θj to be equal. The
Bayesian analysis under the hierarchical model provides exactly that.

As we may see from the third plot, the posterior distribution of
θ1, . . . , θ8 results to be closer to the complete analysis. Let's see now
some other posterior analysis.
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Eight schools: posterior summaries for hierarchical model

0 10 20 30 40
τ

p(
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Marginal posterior density p(tau|y)
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Eight schools: posterior summaries for hierarchical model
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Eight schools: posterior summaries for hierarchical model
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Eight schools: posterior summaries for hierarchical model

In the plot for the marginal posterior π(τ |y), τ = 0 is the most likely
value (no variation in θ, complete pooling).

Conditional posterior means E(θj |τ, y) are displayed as functions of τ :
for most of the likely values of τ , the estimated e�ects are relatively
close together: as τ becomes larger (more variability among schools),
the estimates approach the separate analysis results.

Conditional standard deviations sd(θj |τ, y) become larger as τ
increases.
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Eight schools: discussion

Comments:

The general conclusion from these posterior summaries is that an
e�ect as large as 28.4 points (school A) in any school is unlikely. For
the likely values of τ , the estimates in all schools are substantially less
than 28 points.

To sum up, the Bayesian analysis of this example not only allows
straightforward inferences about many parameters, but provides
posterior inferences that account for the partial pooling as well as the
uncertainty in the hyperparameters.

We have still to investigate the role of the prior for the population
standard deviation τ .
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Eight schools: priors for τ 2

As we have already seen in other situations, assigning a prior may have a
substantial e�ect on the �nal posterior inferences.

In this example, τ2 governs the extent of variation between the schools:
which are some suitable priors?

We review three choices:

τ ∼ Uniform(0, 100) (10)

τ2 ∼ InvGamma(0.01, 0.01) (11)

τ ∼ HalfCauchy(0, 2.5) (12)
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Eight schools: priors for τ 2
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Figure: Marginal posterior (histograms) vs priors (solid red lines)
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Eight schools: priors for τ 2

Uniform The data show support for a range of values below τ = 20,
with a slight tail after that, re�ecting the possibility of larger values,
which are di�cult to rule out given that the number of groups J is
only 8 (that is, not much more than the J = 3 required to ensure a
proper posterior density with �nite mass in the right tail)

Inverse gamma This prior distribution is sharply peaked near zero and
further distorts posterior inferences, with the problem arising because
the marginal likelihood for τ2 remains high near zero. Moreover, the
posterior is quite sensitive to the choices of the hyperparameters (try!)

Half Cauchy less likely to dominate the inferences
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Eight schools: priors for τ 2

Comments:

The InvGamma prior is not at all noninformative for this problem since
the resulting posterior distribution remains highly sensitive to the
choice of the hyperparameters.

The Uniform prior distribution seems �ne for the 8-school analysis, but
problems arise if the number of groups J is much smaller, in which
case the data supply little information about the group-level variance,
and a noninformative prior distribution can lead to a posterior
distribution that is improper or is proper but unrealistically broad.
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Hierarchical logistic regression

1988 US polls

We choose a single outcome�the probability that a respondent prefers the
Republican candidate Bush against the democrat Dukakis for president�as
estimated by a logistic regression model from a set of seven CBS News
polls conducted during the week before the 1988 presidential election.

We introduce multilevel logistic regression including two individual 0-1
predictors�female and black�and the 51 states:

Pr(yi = 1) =logit−1(αj(i) + βfemalefemalei + βblackblacki ), i = 1, . . . , n

αj ∼N (µα, τ
2
state), j = 1, . . . , 51

(13)

where j(i) is the state index.
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1988 US polls. Varying-intercept model

stan_glmer

family: binomial [logit]

formula: y ~ black + female + (1 | state)

observations: 2015

------

Median MAD_SD

(Intercept) 0.4 0.1

black -1.7 0.2

female -0.1 0.1

Error terms:

Groups Name Std.Dev.

state (Intercept) 0.45

Num. levels: state 49

The state variation is estimated at τ̂state = 0.45.
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1988 US polls. Varying-intercept model
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1988 US polls. Varying-intercept model

Parameters' interpretation

The coe�cient βblack reports a posterior estimate of -1.7: black is a
categorical variable (coded as 1 for black people, 0 otherwise). A
di�erence of 1 unit in this predictor has a linear e�ect of -1.7 on the
logit probability of supporting Bush. In terms of odds ratios, being
black gives an odds ratio of exp(−1.7) ≈ 0.18, causing a decrease in
the odds of approximately 0.82 (82%).

The coe�cient βfemale is estimated at -0.1. female is a categorical
predictor (1 for women, 0 otherwise). Being a woman has an e�ect of
-0.1 on the logit probability of supporting Bush. OR interpretation:
exp(−0.1) ≈ 0.9, decrease in the odds of approx. 10%.

Be aware: understanding and interpreting model estimates is the �rst step!
Ask, ask, ask yourself whether your estimates make sense...
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Hierarchical logistic regression: 1988 US polls

Many issues arise when you �t a model:

Interpret your results. Do they make sense?

Produce some plots for your estimates.

Check your model. Is your model plausible, according to the data that
you have? To be continued...

Augment your model, if necessary: predictors, random e�ects,etc.

Compare your model with other competing models. Is your model
better than the others? Use AIC, DICC, LOIIC...To be continued...

Use your model to make predictions.

Being a modeller represents a compromise between a mathematician and
an artist. You can tremble between these two extremes.

Leonardo Egidi Introduction 56 / 66



• Motivations • Hierarchical linear models • Hierarchical logistic regression • Hierarchical Poisson regression •

Hierarchical logistic regression: 1988 US polls

Random e�ects α for the states: post. means ± s.e.

●

● ● ● ● ●

●
●

● ●
● ● ● ● ●

● ● ●
● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ●

● ●
●

●
● ●

●
●

● ●

●

−
0.

5
0.

0
0.

5
1.

0

States

LA

ME

MA

OH

NJ

IL

HI

WA

OR

CT

NH

GA

KY

OK

MD

MS

AR

AZ

DE

MN

RI

NY

VT

CA

VA

MO

NE

NV

CO

ND

MT

DC

TX

SD

WV

IA

KS

ID

FL

AK

NC

IN

PA

NM

MI

UT

TN

AL

SC

Leonardo Egidi Introduction 57 / 66



• Motivations • Hierarchical linear models • Hierarchical logistic regression • Hierarchical Poisson regression •

1988 US polls. Varying-intercept and slope

We could ask ourself: is also the slope for the female varying in some
states? Maybe, the women Bush preference for Bush in Alabama is rather
di�erent than the same support in New Jersey...

We propose a second model, a varying-intercept and slope model:

Pr(yi = 1) =logit−1(αj(i) + βfemale
j(i) femalei + βblackblacki ), i = 1, . . . , n(

αj

βj

)
∼N

((
µα
µβ

)
,

(
τ2α ρτατβ

ρτατβ τ2β

))
, j = 1, . . . , 51,

(14)

where τ2α and τ2β are the variances for the intercepts and the slopes,
repsectively, and ρ is the correlation coe�cients between α and β.
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1988 US polls. Varying-intercept and slope

stan_glmer

family: binomial [logit]

formula: y ~ black + female + (1 + female | state)

observations: 2015

------

Median MAD_SD

(Intercept) 0.5 0.1

black -1.7 0.2

female -0.1 0.1

Error terms:

Groups Name Std.Dev. Corr

state (Intercept) 0.47

female 0.23 -0.40
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1988 US polls. Varying-intercept and slope

Parameters' interpretation:

τ̂α = 0.47, the variation between the βfemale, τ̂β , is 0.23, whereas
ρ̂ = −0.4. Thus, there is negative correlation between the states'
e�ects and the female e�ects.

Other parameters are almost unchanged with respect to the
varying-intercept model.
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1988 US polls. Varying-intercept and slope
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Model comparison

We should start assessing the goodness of �t of our models. In Bayesian
inference, the main tools to compare models are the penalized likelihood
criteria: AIC, DIC, BIC,...

We consider here also an extension of AIC based on cross validation,
LOOIC, available via the loo package.

The meaning is the same: the lower is the value of one among these
criteria, and the better is the model �t.
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Model comparison

lpd1 <- log_lik(M1.rstanarm)

loo1 <- loo(lpd1)

lpd2 <- log_lik(M2.rstanarm)

loo2 <- loo(lpd2)

c(loo1$looic, loo2$looic)

[1] 2649.373 2651.668

The varying-intercept and slope model does not improve over the �t of the
varying intercept model. The simpler the better!

We could try to extend our model and, eventually, increase the goodness of
�t (to be continued).
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Hierarchical Poisson regression

We can extend Poisson models encoding hierarchical structure. Consider
again the cockroach regression, and consider now to include as many
intercepts as buildings. Thus, for each complaint i we have:

complaintsib ∼Poisson(λib)

λib = exp (ηib)

ηib =αb(i) + β trapsi + βsuper superi + log_sq_footi

αb ∼N (µ, τ2α),

(15)

where b(i) is the nested index for the building where the i-th complaint is
registered.
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Further reading

Further reading

Chapter 15 and 16 from Bayesian Data Analysis, A.Gelman et al.

Chapter 11, 12, 13, 14, 15 from Data Analysis using Regression and
Multilevel/Hierarchical models, A. Gelman and Jennifer Hill.
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