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Motivations

Once we have accomplished the first two steps of a Bayesian
analysis—constructing a probability model and computing the
posterior distribution of all estimands—we should not ignore the
relatively easy step to assessing the fit of the model to the data and to our
substantive knowledge.

It is worth to remind that we use the term model to encompass the
sampling distribution, the prior distribution, any hierarchical structure, and
issues such as which explanatory variables have been included in a
regression.
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Motivations

It is not correct to ask ‘Is our model true or false?’, since probability
models in most data analysis will not be perfectly true.

The more relevant question is ‘Do the model’s deficiencies have a
noticeable effect on the substantive inferences?’. Remember the George
E.P. Box quote:

All models are wrong, but some are useful.

How to judge when assumptions of convenience can be made safely is a
central task of Bayesian sensitivity analysis. Failures in the model lead to
practical problems by creating false inferences about estimands of interest.
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The external validation paradigm

We can check a model by external validation using the model to make
predictions about future/hypothetical data, and then collecting those data
and comparing to their predictions.

Bayesian analysis uses posterior predictive checking to check the joint
posterior predictive distribution of future data given the data at hand,
p(ỹ |y).

The idea is the following: if the model fits, then replicated data under the
model should look similar to observed data. To put in another way, the
observed data should look plausible under the posterior predictive
distribution.
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Posterior predictive checking

The basic technique for checking the fit of a model is to draw simulated
values from the joint posterior predictive distribution of replicated data and
compare these samples to the observed data. Any systematic differences
between the simulation and the data indicate potential failings of the
model.

We define y rep as the replicated data that could have been observed. We
distinguish between y rep and ỹ :

ỹ is any future observable value or vector of observable quantities
(out-of-sample replication)
y rep is specifically a replication just like y (in-sample replication)
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Posterior predictive checking

The posterior predictive distribution of y rep given the current state of
knowledge is:

p(y rep|y) =
∫

p(y rep|θ)︸ ︷︷ ︸
Likelihood hyp.

π(θ|y)︸ ︷︷ ︸
Posterior

dθ. (1)

We measure the discrepancy between model and data by defining some test
quantities T (y , θ), T (y rep, θ), the aspects of the data we wish to check. T
is a scalar summary of parameters and data that is used to compare data
to predictive simulations.

Test (or discrepancy) quantities play the role in Bayesian model checking
that test statistics play in classical testing.
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Classical p-value vs Bayesian p-value

Lack of fit of the data with respect to the ppd can be measured by the
tail-area probability, or p-value, of the test quantity, and computed using
posterior simulations of (θ, y rep). We define the p-value mathematically,
first for classical inference.

Given the unknown model parameter θ, and a test statistic T (y), the
classical p-value for T (y) is

pC (y , θ) = Pr(T (y rep) ≥ T (y)|θ), (2)

where the probability is taken over the distribution of y rep with y , θ fixed.
pC ≈ 0 indicates that the lack of fit in the test statistic, T (y), is unlikely
to have occurred under the model.
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Classical p-value vs Bayesian p-value

The Bayesian p-value is the probability that the replicated data could be
more extreme than the observed data, as measured by the test quantity:

pB(y) = Pr(T (y rep, θ) ≥ T (y , θ)|y), (3)

where the probability is taken over the posterior distribution of θ and the
ppd of y rep, that is the joint distribution p(θ, y rep|y):

pB(y) =

∫ ∫
|T (y rep, θ) ≥ T (y , θ)| p(y rep|θ)π(θ|y)dy repdθ

=

∫
pC (y , θ)π(θ|y)dθ,

where | · | denotes the indicator function. Thus the Bayesian p-value is an
average of the classical p-value over θ.
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Bayesian p-values in practice

In practice, we usually compute the ppd (1) using simulation. Specifically,
this happens with a two-steps procedure:

Suppose to have S simulations θ(s), s = 1, . . . ,S from the posterior
distribution.
We generate S draws y rep(s) from p(y rep|θ(s)).
We compute now T (y rep, θ): the estimated Bayesian p-value for (3) is
the proportion of these S simulations for which the test quantity
equals or exceeds its realized values; that is, for which
T (y rep(s), θ) ≥ T (y , θ).
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Bayesian p-values in practice

Thus, we almost never have a closed form for (1). What we do, is
performing something similar to Monte Carlo simulation, and
approximating the integral in (1) by the sum over the S draws:

S∑
s=1

p(y rep(s)|θ(s))π(θ(s)|y). (4)

The resulting estimation of (3) is then equal to:

1
S

S∑
s=1

|T (y rep(s), θ(s)) ≥ T (y , θ(s))|. (5)
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Eight schools: model checking

Consider again the eight schools example about the effects of special
coaching programs on test scores in each of eight high-schools:

yij ∼ N (θj , σ
2
y )

θj ∼ N (µ, τ2)

The example is based on many assumptions:
1 normality of the estimates yj given θj and σj , where the σj are

assumed known;
2 exchangeability of the prior distribution of the θj ’s;
3 normality of the prior distribution of each θj given µ and τ .

The exchangeability assumption means that we will let the data tell us
about the relative ordering and similarity of effects in the eight schools.
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Eight schools: Stan model

data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates

}
parameters {

real mu;
real<lower=0> tau;
real eta[J];

}
transformed parameters {

real theta[J];
for (j in 1:J)

theta[j] = mu + tau * eta[j];
}
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Eight schools: Stan model (cont.)

model {
target += normal_lpdf(eta | 0, 1);
target += normal_lpdf(y | theta, sigma);

}
generated quantities {

real y_rep[J];
for (j in 1:J)

y_rep[j] = normal_rng(theta[j], sigma[j]);
}
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Eight schools: estimation
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Replications

We simulate the ppd of a hypothetical replication of the experiment. In
Stan, we do this by coding the cycled instruction:

y_rep[j] = normal_rng(theta[j], sigma[j]);

We have now S draws for the replicated vector y rep = (y rep
1 , . . . , y rep

8 ). We
should now visualize this distribution over the S draws and detect eventual
deficiencies of the model.

We will perform many kinds of pp checks. The main tool here is
visualization. All the plots are obtained with the bayesplot package.
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Graphical posterior predictive checks

The basic idea of graphical model checking is to display the data alongside
simulated data from the fitted model, and to look for systematic
discrepancies between real and simulated data. Essentially, we may
recognize three kinds of graphical display:

direct display of all the data
display of data summaries or parameter inferences
graphs of residuals or other measures of discrepancy between model
and data.
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Check 1: distribution of replicated data vs real data

ppc_dens_overlay(y,y_rep)
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Check 2: empirical distribution function

ppc_ecdf_overlay(y,y_rep)
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Check 3: predictive intervals vs observed values

ppc_intervals(y,y_rep)
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Check 4: statistics

ppc_stat(y,y_rep)
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Check 4: statistics

ppc_stat(y,y_rep)
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Check 5: bivariate statistics

ppc_stat_2d(y,y_rep)
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Comments for the pp checks

The graphical summaries suggest that the model generates predicted
results similar to the observed data in the study. Observed test
statistics fall within their replicated distributions (Check 4), and the
distribution of the data is coherent with the replicated ones (Check 1
and 2).
As a further measure of discrepancy, we may compute the estimated
Bayesian p-value (3) from check 4: in each of the four considered
statistics, pB ≈ 0.5. Remember that a model is suspect if pB is close
to 0 or 1. If a p-value is close to 0 or 1, it is not so important exactly
how extreme it is!
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Pest control example

Remind the simple Poisson regression for the cockroaches:

complaintsi ∼ Poisson(λi )
λi = exp (ηi )

ηi = α+ β trapsi

We fit the model in Stan and we obtain the following posterior estimates
(R output):

mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha 2.58 0.15 2.28 2.48 2.58 2.69 2.88 979 1
beta -0.19 0.02 -0.24 -0.21 -0.19 -0.18 -0.15 997 1
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Pest control: pp check. Densities

We check the model via some simulated data:
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Pest control: pp check. Proportion of zeros
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Pest control: pp check.

Comments:

We immediately realize that replicated distributions are far from the
observed data distribution, and that the proportion of zero assumed by
the Poisson model is quite underestimated...It is clear that the model
does not capture this feature of the data well at all.
Maybe the Poisson distribution distribution is not suited in this
case...let’s still explore the standardised residuals of the observed vs
predicted number of complaints.
We can also view how the predicted number of complaints varies with
the number of traps.

Leonardo Egidi Introduction 29 / 57



• Eight schools • Pest control: cockroaches •

Pest control: pp check. Residuals
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It looks as though we have more positive residuals than negative ⇒ the
model tends to underestimate the number of complaints.
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Pest control: pp check. Predictive intervals
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We can see that the model does not seem to fully capture the data.
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Strategies when a pp check fails

What to do if a pp check fails? There is not a unique answer. However,
some tips may be the following ones:

extend the model: augment the predictors, include eventual hierarchies
change the sampling distribution
change the priors
transform your data, for instance using logarithmic scale.

In what follows, we do not include further predictors, but we will work on
the choice of the sampling distribution and, finally, we will consider further
hierarchies.
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Pest example. Negative binomial model

As already seen, negative binomial distribution may capture the
overdispersion in the data with the parameter φ:

complaintsi ∼ Neg-Binomial(λi , φ)
λi = exp (ηi )

ηi = α+ β trapsi

We fit also the negative-binomial model in Stan:

mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha 2.49 0.34 1.81 2.26 2.49 2.73 3.16 1177 1
beta -0.18 0.05 -0.27 -0.21 -0.18 -0.15 -0.09 1167 1
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Pest control, NB model. PP check: densities
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Pest control, NB model: pp check. Proportion of zeros
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Pest control, NB model: pp check. Residuals
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It looks as though we have more positive residuals than negative ⇒ the
model tends to underestimate the number of complaints.
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Comments for pp check, NB model

It appears that our model now captures both the number of small
counts better as well as the tails. The negative binomial model does a
better job in capturing the number of zeros.
However, we still have some very large standardized residuals. This
might be because we are currently ignoring that the data are clustered
by buildings, and that the probability of roach issue may vary
substantially across buildings.
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Pest control: Hierarchical modelling

Let’s add a hierarchical intercept parameter, αb at the building level to our
model. Thus, for the i-th complaint in the b-th building we have:

complaintsib ∼Neg-Binomial(λib, φ)
λib =exp (ηib)

ηib =αb(i) + β trapsi + βsuper superi + log_sq_footi
αb ∼N (µ, σ2

α)

One of our predictors varies only by building, so we can rewrite the above
model more efficiently like so:

ηib = αb(i) + β trapsi + log_sq_footi
αb ∼ N (µ+ βsuper super, σ2

α)
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Pest control: Hierarchical modelling

We have more information at the building level as well, like the average age
of the residents, the average age of the buildings, and the average
per-apartment monthly rent so we can add that data into a matrix called
building_data, which will have one row per building and four columns:

live_in_super: An indicator for whether the building has a live-in
super
age_of_building: The age of the building
average_tenant_age: The average age of the tenants per building
monthly_average_rent: The average monthly rent per building

We’ll write the Stan model like:

ηib = αb(i) + β trapsi + log_sq_footi
αb ∼ N (µ+ building_data ζ, σ2

α)
(6)

Leonardo Egidi Introduction 39 / 57



• Eight schools • Pest control: cockroaches •

Model fit in Stan

We fit the model in Stan, at the end we obtain these warnings:

Warning messages:
1: There were 915 divergent transitions after warmup.
Increasing adapt_delta above 0.8 may help.

What happened? We get a bunch of warnings from Stan about divergent
transitions, which is an indication that there may be regions of the
posterior that have not been explored by the Markov chains. We will return
to this issue later...

In this example we will see that we have divergent transitions because we
need to reparametrize our model - i.e., we will retain the overall structure
of the model, but transform some of the parameters so that it is easier for
Stan to sample from the parameter space.
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Model fit in Stan

mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
sigma_alpha 0.25 0.17 0.05 0.13 0.22 0.34 0.69 182 1.03
beta -0.23 0.06 -0.35 -0.27 -0.22 -0.19 -0.11 715 1.00
mu 1.25 0.42 0.43 0.98 1.22 1.53 2.12 849 1.00
phi 1.54 0.36 0.99 1.29 1.49 1.75 2.38 302 1.01
alpha[1] 1.28 0.54 0.21 0.95 1.24 1.62 2.37 1007 1.00
alpha[2] 1.23 0.52 0.21 0.91 1.20 1.56 2.31 914 1.00
alpha[3] 1.39 0.49 0.51 1.05 1.38 1.71 2.41 397 1.01
alpha[4] 1.43 0.48 0.53 1.09 1.39 1.75 2.42 561 1.00
alpha[5] 1.07 0.42 0.25 0.76 1.08 1.33 1.94 880 1.01
alpha[6] 1.16 0.48 0.22 0.86 1.16 1.45 2.16 914 1.00
alpha[7] 1.43 0.52 0.49 1.07 1.39 1.77 2.51 434 1.01
alpha[8] 1.27 0.42 0.45 1.00 1.29 1.52 2.12 1156 1.00
alpha[9] 1.40 0.55 0.29 1.05 1.41 1.74 2.51 1077 1.00
alpha[10] 0.86 0.37 0.17 0.60 0.85 1.11 1.62 644 1.01
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Model fit in Stan

Before we go through exactly how to do this reparameterization, we will
first go through what indicates that this is something that
reparameterization will resolve. We will go through:

1 Examining the fitted parameter values, including the effective sample
size

2 Traceplots and scatterplots that reveal particular patterns in locations
of the divergences.

The effective samples are quite low for many of the parameters relative to
the total number of samples. This alone isn’t indicative of the need to
reparameterize, but it indicates that we should look further at the trace
plots and pairs plots.
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Model fit in Stan

First let’s look at the traceplots to see if the divergent transitions form a
pattern.
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Model fit in Stan
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Model fit in Stan

Another way to look at the divergences is via a parallel coordinates plot:

−1

0

1

2

3

sigma_alpha alpha[1] alpha[2] alpha[3] alpha[4] alpha[5] alpha[6] alpha[7] alpha[8] alpha[9] alpha[10]
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Model fit in Stan

Comments:

Looks as if the divergent parameters, the little red bars underneath the
traceplots correspond to samples where the sampler gets stuck at one
parameter value for σα.
What we have in the scatterplot, is a cloud-like shape, with most of
the divergences clustering towards the bottom. We’ll see a bit later
that we actually want this to look more like a funnel than a cloud, but
the divergences are indicating that the sampler can’t explore the
narrowing neck of the funnel.
From the parallel plot, again, we see evidence that our problems
concentrate when σα is small.
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Model fit in Stan: non-centered parametrization

CENTERED

ηib =αb(i) + β xi

αb ∼N (µ+ ζ zb, σ
2
α)

NON-CENTERED

ηib =αb(i) + β xi

αb =µ+ ζ zb + σαα̃b

α̃b ∼N (0, 1)

We should use the non-centered parameterization for αb. We define a
vector of auxiliary variables in the parameters block, alpha_raw that is
given a N (0, 1) prior in the model block. We then make alpha a
transformed parameter. We can reparameterize the random intercept αb,
which is distributed:

αb ∼ N (µ+ building_data ζ, σ2
α)
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Model fit in Stan: non-centered parametrization

In the transformed parameters block we define now:

transformed parameters {
vector[J] alpha;
alpha = mu + building_data * zeta + sigma_alpha * alpha_raw;

}

This gives alpha a N (µ+ building_data ζ, σ2
α) distribution, but it

decouples the dependence of the density of each element of alpha from
sigma_alpha (σα).

We fit this new model version in Stan. We will examine the effective
sample size of the fitted model to see whether we’ve fixed the problem with
our reparameterization.
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Model fit in Stan: non-centered parametrization

mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
sigma_alpha 0.23 0.17 0.01 0.10 0.20 0.32 0.63 1447 1
beta -0.23 0.06 -0.35 -0.27 -0.23 -0.19 -0.11 2649 1
mu 1.25 0.44 0.40 0.95 1.24 1.54 2.12 2555 1
phi 1.58 0.34 1.03 1.34 1.54 1.77 2.35 4256 1
alpha[1] 1.27 0.56 0.15 0.90 1.27 1.64 2.37 2566 1
alpha[2] 1.21 0.53 0.19 0.86 1.21 1.56 2.28 2551 1
alpha[3] 1.38 0.49 0.42 1.05 1.38 1.71 2.38 2672 1
alpha[4] 1.42 0.49 0.46 1.08 1.42 1.74 2.39 2783 1
alpha[5] 1.08 0.42 0.26 0.81 1.07 1.34 1.92 3162 1
alpha[6] 1.17 0.49 0.22 0.85 1.17 1.49 2.12 2502 1
alpha[7] 1.45 0.52 0.42 1.10 1.44 1.79 2.49 2996 1
alpha[8] 1.23 0.43 0.40 0.94 1.23 1.52 2.10 3481 1
alpha[9] 1.41 0.58 0.25 1.03 1.42 1.80 2.51 2780 1
alpha[10] 0.86 0.37 0.17 0.61 0.85 1.11 1.60 3417 1
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Model fit in Stan: centered vs non-centered parametrization
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Model fit in Stan: centered vs non-centered parametrization
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Model fit in Stan: centered vs non-centered parametrization

Comments:

This has improved the effective sample sizes of α.
No more divergent transitions!
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Pest model, hierarchical NB ncp model. PP check: densities

0 20 40 60 80

y
yrep
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Pest model, hierarchical NB ncp model. PP check: statistics

93 98

45 47 62 70

5 13 26 37
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Pest model, hier NB ncp model. PP check: prop. of zeros
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Pest control, hier NB ncp model: pp check. Residuals

Better!
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Further readings

Further reading:

Chapter 6 from BDA, A. Gelman et al. (model checking)
Chapter 20 from the Stan Users Guide (reparametrization)
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