
Bayesian Statistics: Laboratory 2

Vincenzo Gioia

DEAMS

University of Trieste

vincenzo.gioia@units.it

Building D, room 2.13

Office hour: Friday, 15 - 17

18/04/2024

1/57

mailto:vincenzo.gioia@units.it

Outline

1 Accept-Reject algorithm

2 Markov chain

3 Metropolis-Hastings

2/57

Section 1

Accept-Reject algorithm

3/57

Accept-Reject algorithm

Accept-Reject (A-R) algorithm:

Moving beyond the direct method (inverse transform method, see
e.g. Section 2.1.2 in Robert and Casella, 2010) for generating values
from a distribution f
Helpful for Monte-Carlo integration

Ef [h(θ)] =
∫

Θ
h(θ)f (θ)dθ

where h(·) is a parameter function (in Bayesian inference f (θ)
translates into the posterior distribution π(θ|y))

4/57

Accept-Reject algorithm

A-R algorithm:

target distribution f (θ)

candidate/instrumental density g(θ):

f (θ) and g(θ) have compatible supports

There exists a constant c: f (θ)/g(θ) ≤ c, ∀θ

A-R algorithm
1 Generate θ∗ ∼ g and, independently, U ∼ U[0,1];
2 Accept θ = θ∗ if U ≤ f (θ∗)

cg(θ∗) , otherwise reject θ∗ (and U) and go back
to step 1

5/57

A-R algorithm

The probability of acceptance (efficiency of the algorithm) is equal to
1/c (higher this probability, the fewer wasted simulations from g)

Generating from U ∼ U[0,1] and multiplying for c is equivalent to
generate from U ∼ U[0,c]

The A-R method is not an MCMC method (simulation of
independent draws)

For implementation purposes: Fix the number of attempts (we
consider such a strategy) or the number of accepted values

6/57

A-R algorithm

The algorithm works also if you know f (θ) and g(θ) up to
multiplicative constants, that is consider f (θ) = Kf f̃ (θ) and
g(θ) = Kg g̃(θ) and you know only f̃ (θ) and g̃(θ). In such a case the
requirement is f̃ (θ)/g̃(θ) ≤ c̃ = cKg/Kf

However, 1/c̃ is not a probability of acceptance because missing
constants are absorbed into c̃

A-R algorithm
1 Generate θ∗ ∼ g and, independently, U ∼ U[0,1];
2 Accept θ = θ∗ if U ≤ f̃ (θ∗)

c̃ g̃(θ∗) , otherwise reject θ∗ (and U) and go back
to step 1

7/57

A-R algorithm in practice
Write down Accept–Reject algorithm, consisting in

Generate a sample from the target f using g as candidate

Draw the density function on top of the histogram

Compute the acceptance probability

by considering

Target: (standard) Gaussian

f (θ) = exp(−θ2/2)/
√

2π θ ∈ R

Candidate: (standard) Cauchy

g(θ) = [π(1 + θ2)]−1 θ ∈ R

8/57

A-R: Gaussian - Cauchy

Find the optimal c, that is supθ f (θ)/g(θ) = c

c <- optimize(f = function(x){
dnorm(x) /dcauchy(x)},

maximum = T, interval = c(-6, 6))$objective
c

[1] 1.520347

Plot f (θ) and cg(θ)

plot(NULL, NULL, xlim = c(-4, 4), ylim = c(0, 0.5),
xlab = expression(theta), ylab = "")

curve(dnorm(x), col = "forestgreen", add = TRUE)
curve(c * dcauchy(x), col = "red4", add = TRUE)

9/57

A-R: Gaussian - Cauchy

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

θ
10/57

A-R: Gaussian - Cauchy

Simulating draws from the target distribution via A-R algorithms.

Fix the number of simulations
Nsim <- 2500
Set a seed
set.seed(123)
Generate Nsim values from a U(0,c)
u <- runif(Nsim, max = c)
Generate Nsim values from a standard Cauchy
th_star <- rcauchy(Nsim)
Condition
cond <- u <= dnorm(th_star) / dcauchy(th_star)
Then accept the values satisfying the condition
th <- th_star[cond]

11/57

A-R: Gaussian - Cauchy

Histogram of θ (with overlapping density of N (0, 1)) and plot of the pairs
(θ∗, Ug(θ∗)) with accepted in green and rejected in red

hist(th, prob = TRUE, main = "", xlab = expression(theta))
curve(dnorm(x), col = "red", add = TRUE)

plot(NULL, NULL, xlim = c(-4, 4), ylim = c(0, 0.6),
xlab = expression(theta), ylab = "")

curve(dnorm(x), col = "forestgreen", add = TRUE)
curve(c * dcauchy(x), col = "red4", add = TRUE)
points(th_star, u * dcauchy(th_star),

pch = 19, cex = 0.4, col = "firebrick3")
points(th, u[cond] * dcauchy(th),

pch = 19, cex = 0.4, col = "forestgreen")

12/57

A-R: Gaussian-Cauchy

θ

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

θ

13/57

A-R: Gaussian-Cauchy

Acceptance probability and comparison with the empirical counterpart

##acceptance probability
1/c

[1] 0.6577446

proportion of accepted draws
sum(cond)/Nsim

[1] 0.6556

14/57

A-R: Gamma - Gamma

Another toy example of the A-R algorithm by considering as target
density: Gamma(α1 = 4.3, β1 = 6.2)

f (θ) = βα1
1

Γ(α1)θα1−1e−β1θ θ ∈ R+

Select an appropriate candidate density between

Gamma(α2 = 4, β2 = 7)
Gamma(α2 = 4, β2 = 6)

g(θ) = βα2
2

Γ(α2)θα2−1e−β2θ θ ∈ R+

15/57

A-R: Gamma - Gamma

A sensible choice is the candidate Gamma(α2 = 4, β2 = 6). Indeed, take a
look to the following plots: clearly there in not a value of c for bounding
the ratio f /g in Gamma(α2 = 4, β2 = 7)

x <- seq(0.01, 100, by = 0.01)
plot(x, dgamma(x, 4.3, 6.2) / dgamma(x,4,7),

ylab = "", main = "Gamma(4,7)")
plot(x, dgamma(x, 4.3, 6.2) / dgamma(x,4,6),

ylab = "", main = "Gamma(4,6)")

16/57

A-R: Gamma - Gamma

0 20 40 60 80 100

0.
0e

+
00

5.
0e

+
34

1.
0e

+
35

1.
5e

+
35

Gamma(4,7)

x

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gamma(4,6)

x

17/57

A-R: Gamma - Gamma

Parameters of the target density
a1 <- 4.3; b1 <- 6.2
Parameters of the candidate density
a2 <- 4; b2 <- 6

c <- optimize(f = function(x){
dgamma(x, a1, b1) / dgamma(x, a2, b2) },

maximum = T, interval = c(0, 10))$objective
c

[1] 1.117285

plot(NULL, NULL, xlim = c(0,3), ylim = c(0,2),
xlab = "", ylab = "")

curve(dgamma(x, a1, b1), col = "darkgreen", add = TRUE)
curve(c * dgamma(x, a2, b2), col = "red4", add = TRUE)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

18/57

A-R: Gamma - Gamma

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

19/57

A-R: Gamma - Gamma

Fix the number of simulations
Nsim <- 2500
Set a seed
set.seed(123)
Generate Nsim values from a U(0,c)
u <- runif(Nsim, max = c)
Generate Nsim values from a standard Cauchy
th_star <- rgamma(Nsim, a2 ,b2)
Condition
cond <- u <= dgamma(th_star, a1, b1) / dgamma(th_star, a2, b2)
Then accept the values satisfying the condition
th <- th_star[cond]

20/57

A-R: Gamma - Gamma

hist(th, prob=TRUE, main = "", xlab=expression(theta))
curve(dgamma(x, a1, b1), col = "forestgreen", add=TRUE)

plot(NULL, NULL,
xlim=c(0,3), ylim = c(0,2),
xlab=expression(theta), ylab="")

curve(dgamma(x, a1, b1), col = "darkgreen", add = TRUE)
curve(c * dgamma(x, a2, b2), col = "red4", add = TRUE)
points(th_star,u*dgamma(th_star,a2,b2),pch=19,cex=.4, col="firebrick3")
points(th, u[cond] * dgamma(th, a2, b2),

pch = 19, cex = 0.4, col = "forestgreen")

21/57

A-R: Gamma - Gamma

θ

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

θ

22/57

A-R: Gamma - Gamma

Acceptance probability and comparison with the empirical counterpart

##acceptance probability
1/c

[1] 0.8950264

proportion of accepted draws
sum(cond)/Nsim

[1] 0.8948

23/57

A-R: Gamma - Gamma

Exercise: What if we consider as candidate density

E(1) (Exponential with rate equal to 1)

Gamma(4, β̃) where β̃ = 4β1/4.3

Compare the results with the previous ones?

24/57

A-R algorithm

Drawback: generates “useless” simulations from the proposal g when
rejecting, even those necessary to validate the output as being
generated from the target f
The method of importance sampling can be used to bypass this
problem. Indeed the sampling importance resampling provides an
alternative way to simulate from complex distributions (see Section
3.3.2 in Robert and Casella, 2010)

25/57

Section 2

Markov chain

26/57

Markov chain

A Markov chain {X (t)} is a sequence of dependent random variables

X (0), X (1), . . . , X (t), . . .

such that the probability distribution of X (t), given the past variables,
depends only on X (t−1).

This means that the conditional probability distribution of X (t) given all
the previous values is given by

p(X (t)|X (0), X (1), . . . , X (t−1)) ≡ p(X (t)|X (t−1))

or X (t)|X (0), X (1), . . . , X (t−1) ∼ K (X (t−1), X (t))

where K (·) is the transition kernel.

27/57

Markov chain: A discrete state and time example

Consider a discrete state space with 4 possible states (cities), the
transition kernel is a 4 × 4 matrix of transition probabilities P, where in
the j-th row, j = 1, . . . , 4 we can read the probabilities to reach any
another state (k = 1, . . . , 4) starting from a state (j) in one step
(e.g. P21 = P(X (t+1) = 1|X (t) = 2)).

Imagine that the following transition probability describes the probabilities
to move between 4 cities (MI, TS, FI, BO)

P =

0 1 0 0

1/9 4/9 4/9 0
0 4/9 4/9 1/9
0 0 1 0

For instance the probability to move from Trieste to Milan is 0.11 and the
probability to move from Milan to Trieste is 1; etc.

28/57

Markov chain: A discrete state and time example

1

1/9

4/9

4/9

4/9

4/9

1/9

1

BO

FI

TS

MI

29/57

Markov chain: A discrete state and time example

Tmat <- matrix(c(0, 1, 0, 0,
1/9, 4/9, 4/9, 0,
0, 4/9, 4/9, 1/9,
0, 0, 1, 0),

nrow = 4, ncol = 4, byrow = TRUE)
colnames(Tmat) <- rownames(Tmat) <- c('MI', 'TS', 'FI', 'BO')
Tmat

MI TS FI BO
MI 0.0000000 1.0000000 0.0000000 0.0000000
TS 0.1111111 0.4444444 0.4444444 0.0000000
FI 0.0000000 0.4444444 0.4444444 0.1111111
BO 0.0000000 0.0000000 1.0000000 0.0000000

30/57

Markov chain: A discrete state and time example
Now we define an initial (row) vector of probabilities π(0). Consider
π(0) = (0, 1, 0, 0), that means to fix the initial position in Trieste
Then compute the probabilities to move to the 4 cities at time 1, that is

π(1) = π(0)P

pi0 <- c(0,1,0,0)
pi1 <- pi0 %*% Tmat; pi1

MI TS FI BO
[1,] 0.1111111 0.4444444 0.4444444 0

and at time 2:

pi2 <- pi1 %*% Tmat; pi2

MI TS FI BO
[1,] 0.04938272 0.5061728 0.3950617 0.04938272

31/57

Markov chain: A discrete state and time example

Extend the process to compute the vector of probabilities π(t).

pt <- function(t, pi0, Tmat) {
pit <- pi0
for (i in 1 : t){

pit <- pit %*% Tmat
}

return(pit)
}

32/57

Markov chain: A discrete state and time example
Then, we can see the vector probabilities until time 10 (in a matrix form)

pi.1_10 <-sapply(1 : 10, function(.x) pt(.x, pi0, Tmat))
t(pi.1_10)

[,1] [,2] [,3] [,4]
[1,] 0.11111111 0.4444444 0.4444444 0.00000000
[2,] 0.04938272 0.5061728 0.3950617 0.04938272
[3,] 0.05624143 0.4499314 0.4499314 0.04389575
[4,] 0.04999238 0.4561805 0.4438348 0.04999238
[5,] 0.05068672 0.4499992 0.4499992 0.04931498
[6,] 0.04999991 0.4506860 0.4493142 0.04999991
[7,] 0.05007622 0.4500000 0.4500000 0.04992380
[8,] 0.05000000 0.4500762 0.4499238 0.05000000
[9,] 0.05000847 0.4500000 0.4500000 0.04999153
[10,] 0.05000000 0.4500085 0.4499915 0.05000000

33/57

Markov chain: A discrete state and time example

Then, we can visualise the evolution in time of the vector of probabilities

rownames(pi.1_10) <- c('MI', 'TS', 'FI', 'B0')
barplot(t(pi.1_10), beside = T, ylab = "Probability")

34/57

Markov chain: A discrete state and time example

MI TS FI B0

P
ro

ba
bi

lit
y

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

35/57

Markov chain: A discrete state and time example

By analysing the vector of probabilities at 50 and 100 steps, it emerges
clearly that we reached a stationary point

pi50 <- pt(50, pi0, Tmat)
pi50

MI TS FI BO
[1,] 0.05 0.45 0.45 0.05

pi100 <- pt(100, pi0, Tmat)
pi100

MI TS FI BO
[1,] 0.05 0.45 0.45 0.05

36/57

Markov chain: A discrete state and time example

The stationary distribution to which our Markov Chain converges can be
also obtained by leveraging on the eigendecomposition. Indeed the
stationary distribution is

πP = π

By eigendecomposing P and taking the left eigenvectors, let’s say v ,
corresponding to the eigenvalue λ = 1, suitably normalized, we obtain the
stationary distribution

π = v∑4
i=1 vi

Left eigenvector of A: v s.t. vA = λv
Note: The left eigenvectors can be obtained as the transposes of the
right eigenvectors (as below)

37/57

Markov chain: A discrete state and time example

eigendec <- eigen(t(Tmat))
eigendec$vectors

[,1] [,2] [,3] [,4]
[1,] -0.07808688 -0.2236068 0.2236068 0.5
[2,] -0.70278193 0.6708204 0.6708204 -0.5
[3,] -0.70278193 -0.6708204 -0.6708204 -0.5
[4,] -0.07808688 0.2236068 -0.2236068 0.5

eigendec$value

[1] 1.0000000 -0.3333333 0.3333333 -0.1111111

p.distr <- eigendec$vectors[, 1] / sum(eigendec$vectors[, 1])
p.distr

[1] 0.05 0.45 0.45 0.05
38/57

Markov chain

Underlying idea: We aim to simulate from a stationary distribution
and using a proper kernel (the transition matrix in the example) we
obtain simulations from the stationary distribution

The MCMC methods consider dependent draws from a Markov chain
whose limiting distribution is the target distribution, that is the
posterior distribution

Note that simulations will not be independent!

39/57

Section 3

Metropolis-Hastings

40/57

Metropolis-Hastings

Underlying idea: Given a target density f (θ), we build a transition
kernel K with stationary distribution f and then generate a Markov
chain using this kernel so that the limiting distribution is f

Given the target density f we need to choose an
instrumental/proposal distribution g easy to simulate from, whose
support contains the support of f

The basic MH algorithm consider generating θ∗ from a conditional
proposal distribution g(θ∗|θ(s−1))

Instead, the independent MH algorithm g(θ∗|θ(s−1)) = g(θ∗)

g can be almost arbitrary in that the only theoretical requirements are
that the ratio f (θ∗)/g(θ∗|θ(s−1)) is known up to a constant
independent of θ(s−1)

41/57

Metropolis-Hastings

Independent Metropolis-Hastings algorithm
Initialize θ(0) on a value of the support of the target distribution (f)
At s iteration (s = 1, . . . , S)

generate a candidate θ∗ from the proposal distribution g(θ∗) [Note
that in the usual MH algorithm you have g(θ∗|θ(s−1))].
Compute the acceptance probability as

ρ(θ(s−1), θ∗) = min
(

1,
f (θ∗)g(θ(s−1))
f (θ(s−1))g(θ∗)

)
Generate U ∼ U(0, 1): if U < ρ(θ(s−1), θ∗), then θ(s) = θ∗, otherwise
θ(s) = θ(s−1).

Note that the proposal distribution at time s does not depend on the value
of the chain at time s − 1 and that the ratio of proposal distributions in
the acceptance ratio does not simplify.

42/57

Independent Metropolis-Hastings algorithm

Straightforward generalization of the AR method for simulating draws
from the target density. However:

The AR sample is iid, while the MS sample is not

When you reject, the AR method discard that value, while the MH
retain the value generated at the previous step

The AR acceptance step requires the calculation of the upper bound
c, not required by the MH

43/57

Metropolis-Hastings: t-student(4) - N(0,1)
Consider to compute the mean of a Student’s t distribution with 4 degrees
of freedom (ν = 4) using a Metropolis–Hastings algorithm with candidate
density N (0, 1). Then, monitor the convergence across iterations and
compute the acceptance rate.

Recall that Student’s t density with ν degrees of freedom is given by

f (θ|ν) =
Γ

(
ν+1

2

)
Γ

(
ν
2

) 1√
νπ

(1 + θ2/ν)−(ν+1)/2

plot(NULL, NULL, xlab = expression(theta), ylab = "density",
ylim = c(0, .45), xlim = c(-5, 5))

curve(dt(x, 4), col = "gray30", add = TRUE)
curve(dnorm(x), col = "firebrick3", add = TRUE)
legend(3, .4, lty = c(1, 1), col = c("gray30", "firebrick3"),

legend = c("target", "proposal"), cex = .8)

44/57

Metropolis-Hastings: t-student(4) - N(0,1)

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

θ

de
ns

ity

target
proposal

45/57

Metropolis-Hastings: t-student(4) - N(0,1)

Nsim <- 10ˆ4
df_f <- 4
set.seed(123)
th <- rep(0, Nsim); th[1] <- rnorm(1)
acc.rate <- 0
for(s in 2 : Nsim){

th_star <- rnorm(1)
num <- dt(th_star, df_f) * dnorm(th[s - 1])
den <- dt(th[s - 1], df_f) * dnorm(th_star)
rho <- min(1, num / den)
if (runif(1) < rho) {

th[s] <- th_star
acc.rate <- acc.rate + 1

} else {
th[s] = th[s - 1]

}
}

46/57

Metropolis-Hastings: t-student(4) - N(0,1)

Then, the mean of a t-student distribution with ν = 4 by using the MH
algorithm is simply given by

mean(th)

[1] -0.03735362

and the acceptance rate is given

acc.rate/Nsim

[1] 0.9099

Below, you can see some graphical diagnostics

47/57

Metropolis-Hastings: t-student(4) - N(0,1)

##traceplot
plot(th, type = "l", ylab = "Trace", xlab = "Iteration")

##histogram
hist(th, breaks = 100, border = "gray40",freq = F, main = "")
curve(dt(x, df_f), col = "gray30", add = TRUE)
abline(v = mean(th), col = "firebrick3", lty = 2)

##cumulative mean
plot(cumsum(th)/ (1 : Nsim), type = "l",

ylab = "Cumulative mean plot", xlab = "Iteration")
abline(h = mean(th), col = "firebrick3", lty = 2)

##autocorrelation
acf(th, main = "", ylab = "Autocorrelation")

48/57

Metropolis-Hastings: t-student(4) - N(0,1)

0 2000 4000 6000 8000 10000

−
4

−
2

0
2

4

Iteration

Tr
ac

e

th

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0 2000 4000 6000 8000 10000

−
1.

0
−

0.
6

−
0.

2
0.

2

Iteration

C
um

ul
at

iv
e

m
ea

n
pl

ot

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
or

re
la

tio
n

49/57

Metropolis-Hastings: t-student(4) - N(0,1)

Burn - in: discard an inital set of samples
Thinning: break the dependence between draws

##traceplot, histogram and autocorrelation
after burn-in and thinning
post_sample <- th[seq(100, Nsim, by = 10)]

plot(post_sample, type = "l",
ylab = "Trace", xlab = "Iteration")

hist(post_sample, breaks = 100, border = "gray40",
freq = F, main = "")

curve(dt(x, df_f), col = "gray30", add = TRUE)
abline(v = mean(post_sample), col = "firebrick3", lty = 2)
acf(post_sample, main = "", ylab = "Autocorrelation")

50/57

Metropolis-Hastings: t-student(4) - N(0,1)

0 200 400 600 800 1000

−
4

−
2

0
2

4

Iteration

Tr
ac

e

post_sample

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
or

re
la

tio
n

51/57

Metropolis-Hastings: t-student(4) - t-student(2)

Similarly, we compute the mean of a Student’s t distribution with ν = 4
using a Metropolis–Hastings algorithm with candidate density Student’s t
with ν = 2

As above, we can monitor the convergence across iterations and compute
the acceptance rate.

plot(NULL, NULL, xlab = expression(theta), ylab = "density",
ylim = c(0, .45), xlim = c(-5, 5))

curve(dt(x, 4), type = "l", col = "gray30")
curve(dt(x, 2), type = "l", col = "firebrick3")
legend(3, .4, lty = c(1, 1), col = c("gray30", "firebrick3"),

legend = c("target", "proposal"), cex = .8)

52/57

Metropolis-Hastings: t-student(4) - t-student(2)

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

θ

de
ns

ity

target
proposal

53/57

Metropolis-Hastings: t-student(4) - t-student(2)

set.seed(123)
df_g <- 2 # degrees of freedom proposal
th <- rep(0, Nsim); th[1] <- rnorm(1)
acc.rate <- 0
for(s in 2 : Nsim){

th_star <- rt(1, df_g)
num <- dt(th_star, df_f) * dt(th[s - 1], df_g)
den <- dt(th[s - 1], df_f) * dt(th_star, df_g)
rho <- min(1, num / den)
if(runif(1) < rho){

th[s] <- th_star
acc.rate <- acc.rate + 1

} else {
th[s] <- th[s - 1]

}
}

54/57

Metropolis-Hastings: t-student(4) - t-student(2)
Then, the mean of a t-student distribution with ν = 4 by using the MH
algorithm is simply given by

mean(th)

[1] -0.003172407

and the acceptance rate is given

acc.rate/Nsim

[1] 0.9161

The latter is quite similar (a bit higher) to the acceptance rate by adopting
the standard normal as candidate distribution

Below, you can see some graphical diagnostics
55/57

Metropolis-Hastings: t-student(4) - t-student(2)

##traceplot
plot(th, type = "l", ylab = "Trace", xlab = "Iteration")

##histogram
hist(th, breaks = 100, border = "gray40",freq = F, main = "")
curve(dt(x, df_f), col = "gray30", add = TRUE)
abline(v = mean(th), col = "firebrick3", lty = 2)

##cumulative mean
plot(cumsum(th)/ (1 : Nsim), type = "l",

ylab = "Cumulative mean plot", xlab = "Iteration")
abline(h = mean(th), col = "firebrick3", lty = 2)

##autocorrelation
acf(th, main = "", ylab = "Autocorrelation")

56/57

Metropolis-Hastings: t-student(4) - t-student(2)

0 2000 4000 6000 8000 10000

−
10

0
5

10
15

Iteration

Tr
ac

e

th

D
en

si
ty

−15 −10 −5 0 5 10 15

0.
0

0.
1

0.
2

0.
3

0 2000 4000 6000 8000 10000

−
0.

6
−

0.
2

0.
2

0.
4

0.
6

Iteration

C
um

ul
at

iv
e

m
ea

n
pl

ot

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
or

re
la

tio
n

57/57

	Accept-Reject algorithm
	Markov chain
	Metropolis-Hastings

