
Bayesian Statistics: Laboratory 3 - Introduction to Stan

Vincenzo Gioia

DEAMS

University of Trieste

vincenzo.gioia@units.it

Building D, room 2.13

Office hour: Friday, 15 - 17

28/04/2024

1/26

mailto:vincenzo.gioia@units.it


Stan - ABC

C++ library for Bayesian modeling and inference that

primarily uses the No-U-Turn sampler (NUTS, Hoffman and Gelman,
2012), that is a variant of Hamiltonian Monte Carlo, to obtain
posterior simulations given a user-specified model and data

alternatively, can utilize the LBFGS optimization algorithm to
maximize an objective function, such as a log-likelihood

The R package rstan provides RStan. Take a look to:
https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html
(see also http://mc-stan.org/rstan/)

2/26

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html
http://mc-stan.org/rstan/


Stan - ABC

Info and guidelines to install rstan and set up your pc are available at
the following link: https://mc-stan.org/users/interfaces/rstan

Remember to verify that C++ Toolchain is properly configured:
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

Take a look to:

Reference manual
https://mc-stan.org/docs/reference-manual/index.html

Stan website: https://mc-stan.org/

Stan user’s guide
https://mc-stan.org/docs/stan-users-guide/index.html

3/26

https://mc-stan.org/users/interfaces/rstan
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://mc-stan.org/docs/reference-manual/index.html
https://mc-stan.org/
https://mc-stan.org/docs/stan-users-guide/index.html


Stan
A stan file can be created in RStudio from File -> New File -> Stan file.
It contains a simple normal model that we use to explore the syntax.

data {
int<lower=0> N;
vector[N] y;

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

y ~ normal(mu, sigma);
}

Note: comments can be added using the double forward slash // or /*
something */ for multiline comments

4/26



Stan file structure
Stan programs are organized into blocks (delimited by curl brakets). See
https://mc-stan.org/docs/2_18/reference-manual/blocks-chapter.html
You can define up to 7 blocks

functions

data

transformed data

parameters

transformed parameters

model

generated quantities
5/26

https://mc-stan.org/docs/2_18/reference-manual/blocks-chapter.html


Example:

We will see the Stan file structure by means of the following
statistical model of interest

yj ∼ N (θj , σj), j = 1, . . . , 8

θj ∼ N (µ, τ)

π(µ, τ) ∝ 1

where each σj is assumed known.
It corresponds to the Eight Schools example (from
https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html)

6/26

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html


Stan file structure: user defined functions block

functions{
// user defined functions (language similar to c++)
}

We will see an example of such block in the Cockroaches’ example

7/26



Stan file structure: data block

Data block creates objects that are passed in input from the stan
function through a list that must have the same objects names
Note: no statements are allowed here, only declarations

data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates

}

8/26



Stan file structure: transformed data block

Here you can transform the data in input (square root and so on)

transformed data{
// transformed quantities from the data block
}

9/26



Stan file structure: parameters block

Here one can define parameters of the model for sampling: these are
the mean (mu) and standard deviation (tau) of the school effects,
plus the standardized school-level effects (eta)
As for the data block no statements are allowed, only declarations

parameters {
real mu; // population treatment effect
real<lower=0> tau; // s.d. in treatment effects
vector[J] eta; // unsc. dev. from mu by school

}

10/26



Stan file structure: transformed parameters block

Here, you can transform the quantities in the parameter block
In this model, we let the unstandardized school-level effects (theta)
be a transformed parameter constructed by scaling the standardized
effects by τ and shifting them by µ rather than directly declaring θ as
a parameter. This trick allows sampling more efficiently.

transformed parameters{
vector[J] theta;
theta = mu + tau * eta;

}

11/26



Stan file structure: Model block

The priors and likelihood of your model can be specified in two ways:
using the sampling notation, e.g. ‘y ~ normal(mu, sigma)’
using the target statement: target is not a variable. It evaluates the log
density of the posterior up to an additive constant. It is initialized at 0.
You can mix the two notations, e.g. for the prior you can use
statements, and for the likelihood target

The difference between the sampling statement and target is that the
sampling drops all the constants, so it can be faster.

model {
// priors (flat, uniform, if omitted)
eta ~ normal(0,1); // prior
y ~ normal(theta, sigma); // likelihood

}

12/26



Example

The model block

model {
eta ~ normal(0,1); // prior
y ~ normal(theta, sigma); //likelihood

}

can be equivalntly written as

model {
target += normal_lpdf(eta | 0, 1); //log prior
target += normal_lpdf(y | theta, sigma); //log-likelihood

}

Note: for continuous (discrete) distributions: name_lpdf (name_lpmf)

13/26



Stan file structure: generated quantities block

generated quantities{
// quantities to make inference, e.g. posterior predictive,
// or to simulate pseudo-random
// generated quantities related to the posterior
}

We will see an example of such block in the Cockroaches’ example

14/26



Stan
Everything you use in the model need to be declared:

Data

Parameters

Other related quantities

Advantage:

programs are easier to comprehend and debug

you can’t assign the same variable to objects of different types

Note:

indexing starts from 1

each line must end with a semicolon ;
15/26



Data types

https://mc-stan.org/docs/reference-manual/data-types.html

Primitive types: continuous (real) and integer (int) values

real x; // real[for continuous values]
int x; // int[for integer values]

Vector and matrix types: column vector (vector), row vector
(row_vector), matrix (matrix)

vector[10] x; // x is a column vector of reals of size 10
row_vector[10] x; //x is a row vector of reals of size 10
matrix[2,3] X; // X is a matrix with 2 rows,

//3 columns

Note: Vectors and matrices cannot be typed to return integer values

16/26

https://mc-stan.org/docs/reference-manual/data-types.html


Data types

Array types

// 1-dim array of size 5 with integer values
array[5] int a;
// 2-dim array of real values with 3 rows and 4 columns
array[3, 4] real a;
/* 3-dim array of real values with 5 rows,
4 columns and 2 shelves */
array[5, 4, 2] real a;
//array of size 3 containing vectors with 7 elements (real)
array[3] vector[7] a;
//15 by 12 array of 7×2 matrices
array[15, 12] matrix[7, 2] a;

17/26



Constraints

The constraints are very important and useful for debugging and to
make the code more readable.
If you know that some objects can’t assume certain values you should
define constraints on them.
Some common examples are: counts (the size of a sample can’t be
negative so define a lower bound at 1 or 0), standard deviation or
variance is always non negative.

int<lower=0> N;
real<upper=1> x;
vector<lower=0, upper=1>[3] a;

18/26



Constraints

There are some pre-specified data types for vectors and matrices:

// For vectors
simplex[10] x; //unit simplex (elements sum up to 1)
unit_vector[5] y; //vector with norm equal to 1
positive_ordered[8] z;

// For matrices
//symmetric, positive definite and unit diagonal
corr_matrix[2,2];
// symmetric, positive definite
cov_matrix[3,3];

19/26



Exercise

Write a binary variable z that can be 0 or 1

Write an object to store the correlation coefficient rho;

20/26



Constraints

Other variables can be used to define constraints or object dimensions, but
they need to be declared before their use:

int<lower=1> i = 5;
int<lower=1> j = 10;
matrix[i,j] x;

real y[10];
int<lower=1> N;
vector<lower=min(y)>[N] x;

21/26



Elements selection

Try to comment the following line of code (see
https://mc-stan.org/docs/2_25/reference-manual/language-multi-
indexing-section.html)

vector[10] x;
x[2:];
x[2:5];

matrix[10,10] X;
X[2:,];
X[,4:10];

22/26

https://mc-stan.org/docs/2_25/reference-manual/language-multi-indexing-section.html
https://mc-stan.org/docs/2_25/reference-manual/language-multi-indexing-section.html


Arithmetic operations

Arithmetic operations (like matrix multiplication) or linear algebra
functions (eigenvalues) are allowed only among vectors or matrices (not
arrays).

matrix[2,2] M;
M’; // transpose M matrix
* // Multiplication
.* // Elementwise multiplication
/ // Division
./ // Elementwise division

Take a look to: https://mc-stan.org/docs/functions-reference/index.html

23/26

https://mc-stan.org/docs/functions-reference/index.html


Example

Consider the Eight Schools example (from
https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html) and
check that everything works smoothly

Workflow:

Write your model in a .stan file and check it through the dedicated
button

Define the list of data

Run your model using the function stan in R

Default numbers of simulations and chains are 2000 and 4, respectively

The algorithm has two phases: warm-up and sampling

24/26

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html


Example

After setting up the correct working directory, run the following lines
of code

library("rstan")
schools_dat <- list(J = 8,

y = c(28, 8, -3, 7, -1, 1, 18, 12),
sigma = c(15, 10, 16, 11, 9, 11, 10, 18))

fit <- stan(file = 'schools.stan', data = schools_dat)

25/26



Example

data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates

}
parameters {

real mu; // population treatment effect
real<lower=0> tau; // s.d. in treatment effects
vector[J] eta; // unsc. dev. from mu by school

}
transformed parameters {

vector[J] theta = mu + tau * eta; // school treat. eff.
}
model {

eta ~ normal(0,1); // prior
y ~ normal(theta, sigma); //likelihood

}
26/26


