Bayesian Statistics: Laboratory 3 - Introduction to Stan

Vincenzo Gioia

DEAMS
University of Trieste
vincenzo.gioia@units.it
Building D, room 2.13

Office hour: Friday, 15 - 17

28/04 /2024


mailto:vincenzo.gioia@units.it

Stan - ABC

@ C++ library for Bayesian modeling and inference that

o primarily uses the No-U-Turn sampler (NUTS, Hoffman and Gelman,
2012), that is a variant of Hamiltonian Monte Carlo, to obtain
posterior simulations given a user-specified model and data

e alternatively, can utilize the LBFGS optimization algorithm to
maximize an objective function, such as a log-likelihood

@ The R package rstan provides RStan. Take a look to:

https://cran.r-project.org/web/packages/rstan /vignettes/rstan.html
(see also http://mc-stan.org/rstan/)


https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html
http://mc-stan.org/rstan/

Stan - ABC

@ Info and guidelines to install rstan and set up your pc are available at
the following link: https://mc-stan.org/users/interfaces/rstan

@ Remember to verify that C++ Toolchain is properly configured:
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

@ Take a look to:

o Reference manual
https://mc-stan.org/docs/reference-manual /index.html

o Stan website: https://mc-stan.org/

e Stan user's guide
https://mc-stan.org/docs/stan-users-guide/index.html


https://mc-stan.org/users/interfaces/rstan
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://mc-stan.org/docs/reference-manual/index.html
https://mc-stan.org/
https://mc-stan.org/docs/stan-users-guide/index.html

A stan file can be created in RStudio from File -> New File -> Stan file.
It contains a simple normal model that we use to explore the syntax.

data {
int<lower=0> N;
vector[N] y;

}
parameters {
real mu;
real<lower=0> sigma;
}
model {
y ~ normal(mu, sigma);
}

Note: comments can be added using the double forward slash // or /*
something */ for multiline comments



Stan file structure

Stan programs are organized into blocks (delimited by curl brakets). See
https://mc-stan.org/docs/2_ 18 /reference-manual /blocks-chapter.html

You can define up to 7 blocks

o functions

o data

o transformed data

o parameters

o transformed parameters
e model

o generated quantities


https://mc-stan.org/docs/2_18/reference-manual/blocks-chapter.html

@ We will see the Stan file structure by means of the following
statistical model of interest

}/_,'NN(QJ',O'J'), _]:1,,8
GJNN(N’T)
m(p, ) x 1

where each o} is assumed known.

@ It corresponds to the Eight Schools example (from
https://cran.r-project.org/web/packages/rstan /vignettes/rstan.html)


https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

Stan file structure: user defined functions block

functions{

// user defined functions (language similar to c++)

¥

@ We will see an example of such block in the Cockroaches’ example



Stan file structure: data block

@ Data block creates objects that are passed in input from the stan
function through a list that must have the same objects names

@ Note: no statements are allowed here, only declarations

data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects

real<lower=0> sigmal[J]; // s.e. of effect estimates

}



Stan file structure: transformed data block

@ Here you can transform the data in input (square root and so on)

transformed data{
// transformed quantities from the data block

}



Stan file structure: parameters block

@ Here one can define parameters of the model for sampling: these are
the mean (mu) and standard deviation (tau) of the school effects,
plus the standardized school-level effects (eta)

@ As for the data block no statements are allowed, only declarations

parameters {
// population treatment effect

real mu;
real<lower=0> tau; // s.d. in treatment effects
vector[J] eta; // unsc. dev. from mu by school

}



Stan file structure: transformed parameters block

@ Here, you can transform the quantities in the parameter block

@ In this model, we let the unstandardized school-level effects (theta)
be a transformed parameter constructed by scaling the standardized
effects by 7 and shifting them by p rather than directly declaring 6 as
a parameter. This trick allows sampling more efficiently.

transformed parametersf{
vector[J] theta;
theta = mu + tau * eta;

}



Stan file structure: Model block

@ The priors and likelihood of your model can be specified in two ways:

o using the sampling notation, e.g. 'y ~ normal(mu, sigma)’

e using the target statement: target is not a variable. It evaluates the log
density of the posterior up to an additive constant. It is initialized at 0.

e You can mix the two notations, e.g. for the prior you can use
statements, and for the likelihood target

@ The difference between the sampling statement and target is that the
sampling drops all the constants, so it can be faster.

model {

// priors (flat, uniform, if omitted)

eta ~ normal(0,1); // prior

y ~ normal (theta, sigma); // likelihood
}



The model block

model {

eta ~ normal(0,1); // prior

y ~ normal(theta, sigma); //likelihood
}

can be equivalntly written as

model {

target += normal_lpdf(eta | 0, 1); //log prior

target += normal_lpdf(y | theta, sigma); //log-likelihood
}

Note: for continuous (discrete) distributions: name_Ipdf (name_Ipmf)



Stan file structure: generated quantities block

generated quantities{

// quantities to make inference, e.g. posterior predictive,
// or to simulate pseudo-random

// generated quantities related to the posterior

}

@ We will see an example of such block in the Cockroaches’ example



Everything you use in the model need to be declared:

@ Data
@ Parameters

@ Other related quantities
Advantage:

@ programs are easier to comprehend and debug

@ you can't assign the same variable to objects of different types
Note:

@ indexing starts from 1

@ each line must end with a semicolon ;



https://mc-stan.org/docs/reference-manual /data-types.html

Primitive types: continuous (real) and integer (int) values

real x; // real[for continuous values]
int x; // int[for integer values]

Vector and matrix types: column vector (vector), row vector
(row_vector), matrix (matrix)

vector[10] x; // x is a column vector of reals of size 10
row_vector[10] x; //x is a row vector of reals of size 10
matrix[2,3] X; // X is a matrix with 2 rows,

//3 columns

Note: Vectors and matrices cannot be typed to return integer values


https://mc-stan.org/docs/reference-manual/data-types.html

Array types

// 1-dim array of size 5 with integer values

array[5] int a;

// 2-dim array of real values with 3 rows and 4 columns
array[3, 4] real a;

/* 3-dim array of real values with 5 rows,

4 columns and 2 shelves */

array[5, 4, 2] real a;

//array of size 3 containing vectors with 7 elements (real)
array[3] vector[7] a;

//15 by 12 array of 7x2 matrices

array[15, 12] matrix[7, 2] a;



@ The constraints are very important and useful for debugging and to
make the code more readable.

@ If you know that some objects can't assume certain values you should
define constraints on them.

@ Some common examples are: counts (the size of a sample can't be
negative so define a lower bound at 1 or 0), standard deviation or
variance is always non negative.

int<lower=0> N;

real<upper=1> x;
vector<lower=0, upper=1>[3] a;



There are some pre-specified data types for vectors and matrices:

// For vectors

simplex[10] x; //unit simplex (elements sum up to 1)
unit_vector[5] y; //vector with norm equal to 1
positive_ordered[8] z;

// For matrices

//symmetric, positive definite and unit diagonal
corr matrix[2,2];

// symmetric, positive definite

cov_matrix[3,3];



Exercise

o Write a binary variable z that can be O or 1

@ Write an object to store the correlation coefficient rho;



Other variables can be used to define constraints or object dimensions, but
they need to be declared before their use:

int<lower=1> i = 5;
int<lower=1> j = 10;
matrix[i,j] x;

real y[10];

int<lower=1> N;
vector<lower=min(y)>[N] x;



Elements selection

@ Try to comment the following line of code (see
https://mc-stan.org/docs/2_25/reference-manual/language- multi-
indexing-section.html)

vector[10] x;
x[2:]1;
x[2:5];

matrix[10,10] X;

X[2:,];
X[,4:10];


https://mc-stan.org/docs/2_25/reference-manual/language-multi-indexing-section.html
https://mc-stan.org/docs/2_25/reference-manual/language-multi-indexing-section.html

Arithmetic operations

Arithmetic operations (like matrix multiplication) or linear algebra
functions (eigenvalues) are allowed only among vectors or matrices (not
arrays).

matrix[2,2] M;

M’; // transpose M matrix

* // Multiplication

.* // Elementwise multiplication
/ // Division

./ // Elementwise division

Take a look to: https://mc-stan.org/docs/functions-reference/index.html


https://mc-stan.org/docs/functions-reference/index.html

Consider the Eight Schools example (from

https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html) and
check that everything works smoothly

Workflow:

@ Write your model in a .stan file and check it through the dedicated
button

@ Define the list of data
@ Run your model using the function stan in R

Default numbers of simulations and chains are 2000 and 4, respectively

The algorithm has two phases: warm-up and sampling


https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

o After setting up the correct working directory, run the following lines
of code

library("rstan")
schools_dat <- list(J = 8,

vy = c(28, 8, -3, 7, -1, 1, 18, 12),
sigma = c(15, 10, 16, 11, 9, 11, 10, 18).

fit <- stan(file = 'schools.stan', data = schools_dat)



data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects

real<lower=0> sigmal[J]; // s.e. of effect estimates

}

parameters {

real mu; // population treatment effect
real<lower=0> tau; // s.d. in treatment effects
vector[J] eta; // unsc. dev. from mu by school

}
transformed parameters {
vector[J] theta = mu + tau * eta; // school treat. eff.
}
model {
eta ~ normal(0,1); // prior
y ~ normal(theta, sigma); //likelihood

S



