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SUMMARY

A multi-level modelling approach is used to examine the variance in mortality rates from malignant
melanoma at different geographical scales within nine European nations with reference to exposure to
ultraviolet light (UVB). For males and females, the greatest variations in the relationship between UVB
exposure and mortality are seen between nations, rather than regions and sub-regions within nations. This
suggests that factors and characteristics acting at a national scale, such as genetic and behavioural
differences, are of importance. Multi-level modelling is used to show how a previous suggestion of
a quadratic association between UVB exposure and malignant melanoma across Europe is unlikely to be
true. The general usefulness of multi-level modelling in the analysis of disease data which is structured in
a hierarchy is discussed, with particular reference to geographical analyses of small area data. ( 1998 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Multi-level modelling has been developed as a technique for analysing data arranged in a variety
of hierarchies.1 For example, individuals may live in electoral wards which are nested within
larger administrative boundaries such as counties or regions. Each individual may have several
response variables which add an additional level to the hierarchy, such as multiple indicators of
health status.2 Hence, the emphasis in multi-level modelling is on the individual, but data on
individual cases may be expensive and time consuming to collect, or difficult to obtain due to
issues of confidentiality. This paper shows how analysis of publically available and easily
obtained aggregate data may be analysed using multi-level modelling to provide a greater insight



than is possible from a conventional ‘single-level’ approach. Inevitably, such an analysis may be
subject to the ‘ecological fallacy’, which in geographical terms means that results based on mean
responses for areas may not reflect the behaviour of a disease or other indicator of health in
individuals.3 Whilst it is individuals we are really interested in, the ready availability of area-
based data means that this can be used to provide an insight for development of more detailed
studies of individuals.

One of the important issues in geographical analysis is the scale at which the analysis is
performed, as different processes may operate at different levels of geographical aggregation.4—6

Waller and Turnbull7 discuss this issue with reference to cases of childhood leukaemia occurring
in upstate New York. However, in the data set analysed in this paper, we have the lowest level of
areal aggregation obtainable as the smallest unit of analysis rather than the individual case. Even
so, the example used in this paper will demonstrate that including higher levels of geographical
aggregation simultaneously in a model of smaller units is essential to draw useful conclusions
from the data analysed. A useful discussion of the general issues involved in modelling area-based
data is given in Bailey and Gatrell.4

There is strong evidence that exposure to ultraviolet radiation from sunlight is an important
factor in the aetiology of malignant melanoma.8 Incidence is highest in countries at low latitudes
such as Australia and South Africa which have received fair-skinned migrants from northern
Europe.9 A striking latitudinal gradient in malignant melanoma mortality has been observed in
North America10 and geographical variation in incidence within the U.S.A. have been shown to
be related to local levels of UVB radiation.11 However, the geographical pattern of the disease
within Europe shows some marked discrepancies from a simple latitudinal trend. Armstrong9
notes that melanoma incidence is lower in Mediterranean countries than in Scandinavia. This
contributes to an apparent quadratic relationship between melanoma and latitude with a min-
imum in incidence at about 52 degrees north, and increasing rates at higher latitudes. Such
evidence has led some commentators to doubt the role of sunlight exposure in the aetiology of
melanoma.12 A potential problem with Armstrong’s analysis of the geographical pattern of
melanoma within Europe is that it involves the collation of information on melanoma incidence
from cancer registries within several different countries. It is therefore possible that the apparently
discrepant association between melanoma and latitude could be affected by differences between
countries in the completeness of cancer registration, genetically determined differences in suscep-
tibility to the effects of sunlight exposure and national differences in patterns of behaviour
affecting exposure to sunlight. Analysis of melanoma in relatively small areas may be hampered
by lack of variability in UVB doses reaching the surface of the earth, but a multi-level modelling
approach may be used to simultaneously model the relationship between UVB dose and
melanoma both within and between countries. The variance in melanoma rates between areas can
then be modelled as functions of explanatory variables, including UVB dose, at different levels of
a geographical hierarchy. This paper focuses on mortality data from the EC-9 nations to study
the differential relationships between epidemiologically important doses of UV arriving at the
surface and malignant melanoma in different countries. The following section discusses the
structure of the data and the use of a multi-level model to account for regional variation in
mortality within countries. Results are then presented for male and female mortality rates, and
discussion focuses on both the methodological and substantive issues raised by the analysis. The
methodology used can be potentially applied to a wide range of epidemiological and public
health problems. An Appendix is therefore provided at the end of the paper giving more details on
estimation of multi-level non-linear models and extraction of residuals.
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2. DATA AND METHODS

Data on malignant melanoma mortality for all ages for males and females was taken from the
Atlas of Cancer Mortality in the European Economic Community.13 Malignant melanoma mortali-
ties were defined as being deaths recorded and certified by a medical practitioner and coded as
ICD-8 172. These data were collected between 1971 and 1980, although for the United Kingdom,
Ireland, Germany, Italy and The Netherlands, data were only available from 1975—1976 onwards,
and are aggregated over the period of data collection. As incidence was generally rising during
this period, it is important to include nation as a variable (or level) in the analysis to account for
this potential source of variation in mortality rates. The geographical resolution of the data was
determined by the smallest units for which usable population data was obtainable, this being at
levels II or III as identified by EEC statistical services. For example, these units relate to counties
in England and Wales, départements in France and Regierungsbezirk in (West) Germany. This
means that the data fall naturally into a geographical hierarchy defined by political boundaries,
with EEC II or III level areas nested within level I regions, which are in turn nested within
countries. The numbers of areas included within the geographical hierarchy for each country are
shown in Table I. For convenience, the geographical hierarchy will be referred to as counties
within regions within nations. This data structure implies that a multi-level analysis may be
appropriate,14 and counties, regions and nations will be taken to represent levels 1, 2 and 3 of
a multi-level model hierarchy, respectively. These three geographical scales are those for which
data were available, although other aggregations of the data above the lowest level are possible. It
is important to include all three levels in the model as there be important associations between
melanoma and ultraviolet light which operate at a regional scale, and/or at a national scale, and
omitting one or more of the available levels could lead to biased result at other levels.

Table II lists the response and explanatory variables used in the study. The main explanatory
variable of interest is biologically effective UVB dose reaching the surface of the earth, and hence
potentially determining UVB dose experienced by the population resident in each county. Direct
measurements of UV at the earth’s surface are too sparse to provide reliable estimates at this
geographical scale, and so an index previously employed in epidemiological studies has been
calculated for each county10,15 so that:

UVBI"100[1!! exp(h)C][1#exp((¸!¸
0
)/¸

&
)]~1

where ! is a constant estimated from previous data, taken as 0·056, and exp(h) relates to cloud
thickness, taken as being unity as no information is available on this measure for the data
considered here.15 C is mean annual cloud cover (measured by convention in tenths), and is
calculated from the inverse of percentage hours of bright sunshine at the meteorological station
geographically closest to each county, accounting for factors such as coastal, inland or mountain
location. ¸ is the latitude, in degrees, of the geocentroid of each county, and ¸

0
and ¸

&
are taken

as being 30° and 15°, respectively, from best fit values calculated by Mo and Green.15 A summary
of the calculated epidemiological index for each nation is shown in Table III.

Further explanatory variables are shown in Table II, with RGDP representing income in terms
of gross domestic product per capita, and RDENS the mean population density as a crude
indicator of the degree of urbanization. These represent socio-economic indicators which have
previously been shown to have a relationship with risk of malignant melanoma.16 Intermittent
and acute exposure to UVB, often during outdoor recreation, has been shown to be associated
with malignant melanoma17—19 and behaviour leading to this type of exposure may be positively
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Table I. The geographical hierarchy of the IARC mortality data

Nation Regions Counties

1. Belgium 3 11
2. West Germany 11 30
3. Denmark 3 14
4. France 21 94
5. United Kingdom 11 70
6. Italy 20 95
7. Ireland 4 26
8. Luxembourg 1 3
9. Netherlands 4 11

Table II. Variables used in the analysis

Variable Description

O Observed numbers of melanoma deaths for all ages
E Expected values of melanoma deaths for all ages, calculated from the crude rates, that is,

the total number of cases divided by the person-years at risk
UVBI Epidemiological index of UVB dose at earth’s surface (see text)
RDENS Density of inhabitants per km2 by region
RGDP GDP per inhabitant by region

Table III. UVB index: descriptive statistics for each nation

Nation N Mean Standard Min Max
deviation

Belgium 11 12·70 0·29 12·17 13·10
West Germany 30 12·79 1·35 10·45 15·15
Denmark 14 9·96 0·38 9·47 10·49
France 94 17·18 2·59 12·92 23·24
United Kingdom 70 10·91 1·50 6·69 13·46
Italy 95 21·45 3·51 16·83 28·95
Ireland 26 10·54 0·60 9·64 11·70
Luxembourg 3 13·26 0·05 13·22 13·31
Netherlands 11 11·40 0·47 10·62 11·94

associated with high incomes and degree of urbanization. The two variables are measured at the
regional scale, as it was not possible, in the majority of cases, to obtain county level data for
Eurostat indicators.20 Hence, this is another reason for modelling the available data within
a geographical hierarchy.

The multi-level model fitted to the data was based on generalized least squares estimation,1
where we can write a model containing fixed and random parameters as follows:21

½"Xb#Zh (1)
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where X is a design matrix associated with a vector of fixed parameters b, and Z is a design matrix
(not necessarily the same as X) associated with a vector of random parameters h, with a vector of
responses ½. The components of Z may represent variables random at any level in the model, in
this case Z(1) for level 1 counties, Z(2) for level 2 regions and Z(3) for level 3 nations. A description
of how indicator variables can be used to define a variance components model by partitioning
variance between levels is given in Goldstein.1 Estimation of parameters is made by iteratively
fitting regression models for the fixed and random parts, so that, for the fixed part:

bª"(XT»~1X )~1XT»~1½ . (2)

Having estimated the fixed parameters, bª , we can extract a vector of raw residuals ½ @"½!Xbª ,
which can be used to estimate the random parameters in the model. We calculate the cross-
product matrix of raw residuals, E(½* )"½@½@T"» and then stack this as a vector,
½**"vec(½* ) to be used as the response variable in a regression equation to estimate the
random parameters, so:

hª"(ZT»*~1Z)~1ZT»*~1½** (3)

where »* is the Kronecker product of », namely »*"»?». Assuming multivariate normality,
we alternate between estimation of fixed and random parameter vectors until convergence is
reached. However, in this instance we have a Poisson distributed response vector of observed
cases, and hence we need to include an offset of expected numbers of cases in the model22 so that:

O&Poisson(k )

ln(k)"ln(E)#Xb#Zh (4)

where E represents the expected numbers of cases for each level 1 unit. We use the Poisson
distribution to model the level 1 variance, with a logarithmic link function, and assume random
parameters at higher levels (in this case region and nation) as being multivariate normal. An
efficient estimation procedure for this non-linear model is penalized, or predictive quasi-
likelihood,21,23 where estimation of random parameters, and associated residuals, is made using
a Taylor series expansion around the current values of the fixed and random parts of the model.
Details of this procedure, using an updating function which incorporates the current estimated
residuals, are given in the Appendix, as well as being discussed in Goldstein,1 Goldstein and
Rasbash24 and an epidemiological example given in Langford.25 The models were fitted using the
MLn software developed by the Multilevel Models Project, Institute of Education, London, and
details of how to fit multi-level log-linear models within this software are given in Rasbash and
Woodhouse.26

A further point concerns the assumption of Poisson variation of the cases of malignant
melanoma. We can estimate a dispersion parameter at level 1, so that

var(O)"p2
1
k . (5)

If p2
1
"1, then variation is assumed to be Poisson, if p2

1
'1 then there is extra-Poisson variation

present, and if p2
1
(1 the model is underdispersed as can happen when many of the counts are

zero.25,27 However, there are theoretical reasons to assume that extra-Poisson variation may be
present. The counties included in the study have very heterogeneous populations, and hence
the expected values for counties may be very different from each other. This situation may be
described by stating that the counts of melanoma mortality in each county are being modelled as
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Poisson conditional on the distribution of rates between counties. These rates may be assumed to
follow a gamma distribution, and hence the mixture of these two distributions can be expressed
as a negative binomial distribution of counts. Full details, discussion and examples of this method
of modelling mortality rates in discrete areas of heterogeneous population size may be found in
Langford,25,28,29 Tsutakawa,30 Clayton and Kaldor31 and Manton et al.32 Hence, it is theoret-
ically more appropriate to consider the level 1 random effects as following a negative binomial
distribution, so that the variance of O is a quadratic function of k:

var(O)"p2
1
k#p2

2
k2 (6)

where p2
1
and p2

2
can be estimated from the data. In practice, this simply requires the estimation of

these two parameters at level 1 of the model, whereas only one would be required for the Poisson
distribution. Additionally, the level 1 variation may be dependent on covariates included in the model.

The model presented has several important properties. First, it allows for variance to be
estimated simultaneously as different levels of a hierarchy, so that the proportions of variance
occurring at different levels may be directly compared, for example, between regions and nations.
Secondly, variance at all levels may be a function of covariates included in the model, allowing for
a complex analysis of variance. Thirdly, as all the data is being used to support the parameter
estimates, the residuals at higher levels are empirical Bayes estimates, that is, they are shrunken
towards the overall mean. The desirability of this effect in any particular model is a matter of
debate,33 but a general rule is the categorical variables included in the model as a level will
produce shrunken, or conditional estimates of contrasts whilst including a categorical variable as
a variable, for example, as a set of dummy vectors, will produce unconditional estimates. An
example of this is provided in the results.

3. RESULTS

Table IV presents the results for three separate analyses of malignant melanoma mortality for
males. Model A is a variance components model with UVBI included in the fixed part of the
model, so that, for the ith county in the jth region in the kth nation:

ln(O
ijk

)"ln(E
ijk

)#b
0
#b

1
UVBI

ijk
#s

k
#u

jk
#e

ijk

s
k
&N(0, p2

s
) , u

jk
&N(0, p2

u
) .

Hence b
0
is the intercept term, b

1
is the mean (fixed) effect of UVBI, and s

k
, u

jk
and e

ijk
are random

terms associated with the intercept at levels 3, 2 and 1, respectively. p2
e1

in Table IV is the
dispersion parameter associated with the Poisson variance term (labelled as p2

1
in equation (5)

above). In model A, estimating approximate 95 per cent confidence intervals by twice the
standard error (that is, 0·0937) of p2

e1
shows that the value 1 (representing Poisson variation) is

included well within the lower bound. No improvement of fit was found in this case by fitting
a negative binomial model. The estimates of variance at levels 2 and 3 are of interest, showing that
76·7 per cent of the variance of malignant mortality rates not explained by Poisson variation at
county level is between nations, that is, there is roughly three times as much variation between
nations as between regions within nations. The last line in Table IV shows minus twice the
log-likelihood ratio, or residual deviance for model A. As the asymptotic expectation of the
residual deviance is approximately the degrees of freedom present in the model,19,20 there is
a large amount of unexplained variance still present in the model. The parameter estimate for the
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Table IV. Variance components model for males with UVBI included in the fixed part of the model

Model A Model B Model C
Estimate (SE) Estimate (SE) Estimate (SE)

Fixed part
b
0

0·0103 (0·134) 0·189 (0·143) 0·135 (0·137)
b
1

(UVBI) !0·0360 (0·0107) 0·00435 (0·0329) 0·010 (0·0274)
b
2

(RDENS) 0·0000730 (0·0000325)
b
3

(RGDP) 0·00385 (0·000114)

Random part
Level 3: nations
p2
s

0·140 (0·0733) 0·105 (0·0746) 0·106 (0·0712)
p
st

0·00540 (0·00123) 0·00247 (0·00957)
p2
t

0·00486 (0·00368) 0·00312 (0·00246)

Level 2: regions
p2
u

0·0424 (0·00956) 0·0147 (0·00498) 0·0114 (0·00444)
p
uv

!0·00336 (0·000938) !0·00140 (0·000628)
p2
v

0·000745 (0·000252) 0·000235 (0·000180)

Level 1: counties
p2
e1

1.11 (0·0937) 0·907 (0·0769) 0·896 (0·0932)
p2
f

0·0000810 (0·000110)

Residual
deviance" 2214·23, d.f."349 2205·59, d.f."345 2174·53 d.f."343

UVB index in the fixed part of model A is initially surprising, with a significantly negative
association (p(0·01) between malignant melanoma mortality and UVBI. However, this is only
a fixed part estimate, and does not account for differences in the relationships between mortality
and UVBI between regions and nations.

Model B in Table IV shows the effects of allowing this relationship to vary randomly between
regions and nations, so that

ln(O
ijk

)"ln (E
ijk

)#b
0
#b

1
UVBI

ijk

#s
k
#t

k
UVBI

ijk
#u

jk
#v

jk
UVBI

ijjk
#e

ijk

s
k
&N(0, p2

s
) , t

k
&N(0, p2

t
) , u

jk
&N(0, p2

u
) , v

jk
&N (0, p2

v
) .

Interestingly, the overall fit of the model does not improve significantly by including the extra
parameters in the random part of the model (p'0·05), as the fixed parameter for UVBI has
decreased to almost zero. The parameters p2

t
and p2

v
represent the variance of the relationships

between mortality and UVBI at national and regional levels respectively, that is, the variance of
the slopes in the two parameter fixed regression model. Similarly, the parameters p

st
and

p
uv

represent the covariances between the intercepts and the slopes.
Focusing on nations at level 3, the majority of the variance between nations is due to

differences in the intercepts, p2
s

at the point at which the intercepts are evaluated. In the analysis,
each explanatory variable, in this case UVBI, is centred around its mean. This is because
estimating the variance of the intercepts at UVBI"0 is a useless measurement as no county
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Figure 1. Random intercepts and slopes for UVBI by nation for males

experiences a zero UV dose. Hence, the variance of the intercepts is measured at the mean of
UVBI, a value of 15·6. Since some nations do not have counties with this value of UVBI, it is still
somewhat artificial, but useful. The standard error around the estimate of p2

s
is large, but we have

only nine nations to estimate the parameter at level 3. The positive value of p
st

demonstrates
a positive correlation (R"0·239) between the intercepts and the slopes, suggesting that nations
with higher rates of malignant melanoma have a stronger positive association with UVBI. No
variance in UVBI at level 1 between counties was estimated.

Model C in Table IV includes other explanatory variables in the fixed part of the model.
Including various combinations of these variables in the random part of the model produced zero
estimates of variance, and hence no improvement in fit. The model presented is therefore:

ln(O
ijk

)"ln(E
ijk

)#b
0
#b

1
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2
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3
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#t

k
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s
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k
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t
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&N(0, p2

u
) , v

jk
&N(0, p2

v
) , f

ijk
&N(0, p2

f
) .

A small random effect for UVBI is now estimated between counties at level 1. Note that this has
been estimated separately from the error term associated with the Poisson distribution, assuming
Normality (see Appendix). The interpretation of this parameter is rather complex, but may be
expressed as there being extra-Poisson variance in the model which is dependent on UVBI, that
is, the variance at level 1 is not strictly Poisson but increases by the quantity p2

f
(UVBI)2 for a unit

increase in the transformed dependent variable. The effect is similar to heteroscedasticity in single
level models with Normally distributed errors. A discussion of this interpretation is given in
Goldstein.1 Although the standard error around the random parameters at level 3 are relatively
large, we must remember that we are looking for structure in the model, and hence residuals were
then calculated for each nation varying randomly at level 3, for the intercepts and slopes for
UVBI (see Appendix). These residuals represent the deviation of each nation from the fixed
parameter estimates for the intercept and UVBI, and from these predicted values were calculated
and plotted in Figure 1, showing large variation between different EC nations. However, the
predicted values plotted in Figure 1 are shrunken estimates, conditional on the data hierarchy

48 I. LANGFORD, G. BENTHAM AND A. McDONALD

Statist. Med., 17, 41—57 (1998) ( 1998 John Wiley & Sons, Ltd.



Table V. Shrunken and fixed parameter estimates for UVBI by nation for males

Nation Shrunken estimate Standard error Fixed estimate Standard error

Belgium 0·0244 0·0626 0·0945 0·2637
West Germany !0·0113 0·0441 !0·0128 0·0279
Denmark !0·0706 0·0715 !0·0004 0·1517
France !0·0010 0·0394 0·0178 0·0158
United Kingdom 0·0770 0·0486 0·1230 0·0355
Italy !0·0481 0·0398 !0·0742 0·0170
Ireland 0·0243 0·0583 0·0229 0·2669
Luxembourg 0·0048 0·0618 6·3401 7·3710
Netherlands 0·0005 0·0557 0·0572 0·1943

(that is, larger nations with many regions and counties are given more weight). This may not be
a useful process here, as it assumes the slopes and intercepts are drawn from the same hyper-
population of slopes and intercepts for all nations. For comparison, as the relationship between
malignant melanoma mortality and UVBI is of primary concern here, the shrunken and fixed
estimates for slope of UVBI are given in Table V. The separate fixed estimates were generated by
fitting a separate dummy variable for the intercepts and slopes for UVBI at level 2 for each nation
rather than including nation as a level. This is in contrast to the multi-level model where a single
fixed effect is calculated for all nations, and then random departures for each nation are estimated
around this mean. The standard errors for the shrunken estimates were calculated from the
variance of the fixed part estimate added to the comparative variance of each residual. The
comparative variances were adjusted using a delta method approximation34 to account for
sampling bias due to there only being nine nations at level 3. An interesting feature of the
shrunken residuals should be noted, with respect to UVBI. For nations with larger numbers of
regions (West Germany, France, United Kingdom and Italy), the standard errors of the shrunken
parameter estimates tend to be larger than for the fixed estimates. However, for nations with
smaller numbers of regions (Belgium, Denmark, Ireland, Luxembourg and The Netherlands), the
standard errors of the estimates decrease. However, the parameter estimates are always shrunken
towards the mean, and more so for nations with smaller numbers of regions (counties). This is
important, because taking shrunken estimates increases the degree of uniformity seen in the
distribution of parameter estimates for UVBI, but the degree of uncertainty in these estimates
may be increased.

An equivalent set of models for females is shown in Table VI. In this case, a negative binomial
was found to provide the best fit to the data, and so two parameters are estimated at level 1,
namely p2

e1
and p2

e2
. In model D, the linear term p2

e1
is not significantly different from 1 (p'0·05),

whilst p2
e2

is significantly different from zero at p(0·01. Including UVBI in the fixed part again
shows a significant negative relationship with malignant melanoma mortality, which becomes
non-significant when UVBI is included in the random part of model E. Model F shows the final
model, with other explanatory variables included in the fixed part of the model, as before. In this
case, no random effects for UVBI were estimated at level 1, although the quadratic term for the
variance associated with the intercept was still significant (p(0·05). Figure 2 depicts the
predicted relationships between malignant melanoma mortality and UVBI for each nation, and
Table VII shows the shrunken parameter estimators for UVBI from model F alongside fixed
estimates from dummy variable as for males.
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Table VI. Variance components model for females with UVBI included in the fixed part of the model

Model D Model E Model F
Estimate (SE) Estimate (SE) Estimate (SE)

Fixed part
b
0

!0·0739 (0·0922) 0·110 (0·155) 0·0898 (0·147)
b
1

(UVBI) !0·0542 (0·0102) !0·0101 (0·0364) !0·00760 (0·0320)
b
2

(RDENS) 0·0000790 (0·0000343)
b
3

(RGDP) 0·00127 (0·00109)

Random part
Level 3: nations
p2
s

0·0589 (0·0335) 0·114 (0·0829) 0·109 (0·0776)
p
st

0·0170 (0·0168) 0·0127 (0·0137)
p2
t

0·00583 (0·00578) 0·00424 (0·00335)

Level 2: regions
p2
u

0·031 (0·00872) 0·00481 (0·00384) 0·00539 (0·00400)
p
uv

!0·00210 (0·000702) 0·00136 (0·000599)
p2
v

0·000538 (0·000218) 0·000289 (0·000181)

Level 1: counties
p2
e1

1·08 (0·170) 0·884 (0·147) 0·956 (0·148)
p2
e2

0·0221 (0·00746) 0·0169 (0·00564) 0·0143 (0·00541)

Residual
deviance" 2295·85, d.f."348 2291·54 d.f."344 2278·43, d.f."342

Figure 2. Random intercepts and slopes for UVBI by nation for females

4. DISCUSSION

Models A and D suggest that there is slightly more variation in malignant melanoma at regional
and national levels for males than females (a variance parameter estimate of 0·14 between nations
for males compared to 0·06 for females, although the difference is not significant at the 0·05 level),
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Table VII. Shrunken and fixed parameter estimates for UVBI by nation for females

Nation Shrunken estimate Standard error Fixed estimate Standard error

Belgium 0·0068 0·0773 !0·1113 0·2929
West Germany !0·0158 0·0509 !0·0278 0·0274
Denmark !0·0659 0·0816 !0·1000 0·1939
France !0·0046 0·0455 0·0049 0·0151
United Kingdom 0·0921 0·0553 0·1232 0·0344
Italy !0·0480 0·0460 !0·0967 0·0177
Ireland 0·0494 0·0694 0·5759 0·2504
Luxembourg !0·0034 0·0723 9·2490 8·5750
Netherlands !0·0046 0·0688 !0·0695 0·2097

apparently supporting previous results.35 However, the more complex models C and F show
a different picture, with slightly more variance being estimated for females between nations. The
negative binomial model for females may suggest that there is relatively more variation on a local
scale (at county level) for females. However, as can be seen from Figures 1 and 2, there are similar
relationships between malignant melanoma mortality and UVBI for males and females at the
national level, suggesting that there are important factors acting at this level which have a roughly
equal impact on males and females. Models A and D also demonstrate the dangers of using
aggregated data, taken from different sources, without specifying an appropriate hierarchy, as
UVBI shows a significant negative association with mortality, of roughly similar magnitude for
males and females.

4.1. The relationship between mortality and UVB exposure

Models B and E, which include UVBI in the random part of the model, show that this overall
relationship is spurious in both cases, and due to the aggregated effects of differential relation-
ships between UVBI and mortality within the hierarchy. The reason for the near zero relationship
between malignant melanoma mortality and UVBI in the fixed part of models B and E can be
seen in Figures 1 and 2, as the United Kingdom, Belgium, Ireland and The Netherlands have
a positive relationship with UVBI with relatively low values of UVBI, whereas Italy has the
highest values of UVBI but a negative relationship between mortality and UVBI. If the
hierarchical nature of the data has been unknown, or unused, and a simple single-level model of
counties fitted to the data, then a quadratic relationship between mortality and UVBI could have
been erroneously fitted to the data (and did produce a significant reduction in deviance). In this
case where data are analysed in very distinctive geopolitical units it may seem obvious to use
a hierarchical model, but this may not be the case in other situations, that is, model misspecifica-
tion may be due to an incorrect data hierarchy as well as being due to non-linearities, outliers,
overdispersion and so on at the basic level of analysis (in this case counties).

Models C and F show several interesting relationships. In the fixed parts, there are positive
associations between population density and mortality for both males and females which reach
significance at the 5 per cent level. This supports previous findings16,17 that urban populations
are at higher risk, possibly due to intermittent high exposure to UVB, whereas the more
continuous exposure of rural populations, particularly those employed in outdoor occupations,
may protect against the risk of this particular type of skin cancer. Higher GDP, as measured at
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a regional level, is also associated with an increased melanoma mortality in males, potentially due
to recreational exposure. In the case of both variables the absence of random effects, that is,
variations between nations, suggests that these factors have a similar effect across Europe, given
the variability in response to UVBI. In the random part of the models, the greatest variation is
seen between nations, suggesting that factors operating at this level provide the greatest distinc-
tion between populations. The possible causes for these are discussed below. However, the
parameter estimates for variance between nations tend to have large standard errors, as we have
only nine nations in our sample. Hence, it is unwise to judge the significance of these random
effects using a simple t-statistic (parameter estimate divided by standard error) for two reasons.
First, it may be wrong to assume that the random effects are approximately normally distributed,
and a test of significance would be better based on the change in log-likelihood ratio between
models. Secondly, it is important to judge the impact on other parameters in the model by
including the random effects, and here it is clear that differences between nations lead to
misleading parameter effects for UVBI in models A and D. At level 1, it is interesting to note that
the variation in females at level 1 is negative binomial, suggesting a greater heterogeneity in
melanoma rates at this level, perhaps due to the lower overall mortality rate, that is, there is
a greater possibility of heterogeneity in rates caused by small numbers of cases occurring in areas
of differing demoninator populations. In contrast, the level 1 variance for males is lower, but in
the final model (C) there is some variance which is associated with UVB exposure. This
demonstrates the potential for multi-level modelling in exploring complex variance relationships
with covariates at the lowest level of the model, as well as providing insight into variance
components. In fact, even with no data hierarchy present, the MLn software used for the analysis
can conveniently be used to model variance heterogeneity.

4.2. Different relationships for individual nations

The influence of particular higher level units, such as nations, on random part parameter
estimates may be best measured by changes in deviance resulting from deletion, or exclusion from
the random part of the model of particular nations.37 However, here the differences are displayed
graphically in Figures 1 and 2 for each nation. Figure 1 shows that the relationship between
UVBI and mortality is strongest, in the positive direction, in the United Kingdom, a similar result
being found for females in Figure 2. However, the shrunken and fixed estimates are somewhat
different, for example, in males (0·123 fixed, 0·077 shrunken) for the United Kingdom. In general,
the shrunken estimates are biased towards the overall mean, and the variance of these estimates
will be smaller or greater, depending largely on the number of counties within each nation. The
usefulness of shrunken estimates can be to estimate a population mean for a sample large enough
and homogeneous enough to support the assumption of similarity. However, it is of dubious
value here, as such striking differences are seen for different nations. Nevertheless, the shrunken
estimates give a conservative measure of effect conditional on the whole data set. Hence,
relationships which stand out after shrinkage are more likely to be of genuine interest. Not
surprisingly, the fixed estimate for Luxembourg is very unreliable, as there are only three counties
included in this nation, and the standard error is very large. The shrunken estimates are
potentially more realistic, being pulled into roughly equal the mean relationship, but basically
this simply states that more data is required for Luxembourg.

In general, the United Kingdom, Ireland, Belgium and The Netherlands show some positive
relationship with UVBI, effects which are broadly similar for males and females. Germany and
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Denmark both have higher rates of malignant melanoma mortality, but do not show a positive
relationship with mortality. France shows very little overall relationship, whilst Italy, with the
highest UVBI has a negative relationship between mortality and UVBI. The reasons for these
large differences are unlikely to be due to registration13 although we can only speculate as to
possible explanations for the observed differences between nations. First, there may be differences
in behaviour affecting exposure which lead to differences in basic mortality rates between nations,
as well as differences in the relationship with UVBI. Northern Europeans may be more at risk of
intermittent high exposures due to the occurrence of less hot sunny days at home and more
recreational travel to warmer climates. There are also suggestions that damage to the ozone layer
may result in an increase in malignant melanoma in northern European countries, although this
effect may not be detectable at present.16,36 The lack of a positive association with UVB index for
Denmark and Germany compared to the United Kingdom in particular cannot be explained
here, but could be due to differences in knowledge of risk or other factors influencing behaviour.
A second set of explanatory factors which could be investigated in more detail are related to
differences between nations in genetic type, with high risk, fair skinned populations occurring in
northern Europe. Cavalli-Sforza et al.37 discuss genetic differences between European popula-
tions. Significant differences in genetic type are seen not only between nations, but within nations.
Whilst evidence tends to be patchy at local scales, France shows a distinct boundary between
north and south based on measured genetic factors as well as linguistics38 and Italy has a higher
prevalence of low risk dark skinned people in the south,39 potentially explaining the observed
negative relationship between mortality and UVB index. Further research is needed on these
regional differences in malignant melanoma and genetic type.

4.3. The usefulness of multi-level modelling

In summary, this study has demonstrated the potential usefulness of multi-level modelling in
epidemiological analyses of disease risk measured across a large and heterogeneous population
spanning several major geopolitical boundaries. The results have shown systematic differences in
the relationship between UVB exposure and malignant melanoma mortality in different nations
of the European community, which are of greater magnitude than variations seen between
regions within countries. Estimating a relationship with UVB exposure without taking into
account the hierarchical nature of the data has been shown to be mistaken, and there is unlikely
to be a genuine quadratic relationship between UVB and melanoma mortality in Europe as
previously suggested.9 However, this paper has also attempted to demonstrate the potential for
routine use of multi-level models to investigate health data which is contained within a hierarchy.
In this case, we dealt with data which were aggregated at the lowest level of analysis, but even if
we had used data on individuals, the same arguments as those developed here would apply to
higher levels in the hierarchy. For the particular case of spatially distributed data, there are
several issues to be addressed, which form the basis of research currently being undertaken by the
authors. For example, there is no reason to believe that the geopolitical units within which data
are collected are necessarily important to disease aetiology. If data are available in relatively small
units, such as enumeration districts, these could be built into more meaningful units (such as
neighbourhoods) based on the similarity of their characteristics.40 Different spatial structures can
also be imposed on the data which are not strictly hierarchical, but are cross-classified,1 for
example, Langford and Bentham27 examined mortality rates in districts which belonged to both
a geographical and a socio-economic higher level classification. Adjacency and proximity
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matrices may also be used to define potential spatial structures in the data,4,5 with random effects
being associated with particular autocorrelation structures linking the occurrence of disease in
a set of geographical areas. Work currently in progress41,42 is exploring the possibility of building
conditional and simultaneous autoregressive models into multi-level modelling analyses, which
would provide for models of spatial correlation between areas at different geographical scales
simultaneously. This is important, because in our present models we have assumed that areas are
exchangeable,43 and hence we shrink estimates for particular areas towards a global mean. For
smaller areas, particularly, countries, this may not be so, as malignant melanoma risk in
neighbouring counties may be expected to be similar as UVB exposure does not vary greatly at
this smaller geographical scale. Hence, it would perhaps be wiser to shrink estimates towards
local means, for example, the mean risk in adjacent countries. In addition, other explanatory
variables may be built into the spatial correlation structure. However, whilst the development of
the methodology is substantially advanced, there are still some computational difficulties to
overcome. A further issue relates to differences between nations. It would be unwise to assume
that the nine nations analysed here are drawn from the same population (and hence the effects
and exchangeable) as there are noticeable differences between nations in the relationship between
mortality and UVB exposure. It may be that a different hierarchical structure, perhaps distin-
guishing northern and southern European populations, would be more effective, and further
research is needed here. Langford and Lewis44 discuss methods for examining hidden structures
in multi-level models.

In conclusion, multi-level modelling offers a flexible and general framework for analysing
health data which is distributed in a hierarchical structure, geographical or otherwise. Further
research is also being focused on developing particular tools for different data structures
commonly found in epidemiology and public health medicine.

APPENDIX

In the Poisson model fitted in this paper, we have a non-linear relationship in equation (4) which
we need to linearize. Following the methods presented by Goldstein1 and Goldstein and
Rasbash,24 we can use a Taylor series approximation for the residuals by using the following
updating function for the t#1th interaction:
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for a simple two-level model with random effects u
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associated with the intercept at level 2. The

model can easily be generalized to include more levels and more complex random structures are
presented in the paper. The Taylor expansion shown includes the second-order term u2
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which improves estimation of the random parameters beyond a first-order approximation.
However, for some of the models presented in this paper, the second-order approximation did not
converge, and so a first-order approximation was used. However, a more important issue
concerns the function used for H. In this case, penalized (or predictive) quasi-likelihood estima-
tion has been used1,21 where the estimated residuals are added back onto the fixed part predictor,
so that:
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and estimation is made about the current value of û
j
rather than zero. This procedure, which can

be easily implemented in MLn, noticeably improves the estimation of the random parameters
and reduces bias compared to the marginal quasi-likelihood approach used in ML3.

Residuals at each level in the model may also be estimated with standard errors.1 The residuals
are posterior, or predicted residuals, so that for the residuals associated with the kth variable
random at level m, we estimate:

pL
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"E (p
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We do this by regressing all the residuals on ½I so that, for level m:
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m
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m
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where R
m

is a block diagonal matrix, with each block representing one unit at level m consisting of
the product of the explanatory variables for random coefficients at level m and the covariance
matrix of the residuals. Note that we have inherently assumed that the residuals have a multivari-
ate normal distribution at higher levels than level 1, and we take their unconditional covariance
matrix to be
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where the second term corrects for sampling variation of the fixed coefficients. For example, we
only have nine nations random at level 3 in the model presented here, although this term may be
ignored in larger samples. At level 1, we account for the fact that we are modelling Poisson
distributed counts, where var(O):k, and so we declare an explanatory variable in the random
part of the model for each unit at level 1 of z
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) . We can constrain the parameter

associated with this variable to be unity if we wish the variance to be exactly Poisson, or estimate
the parameter as explained in the text. Including a second level 1 variable of z
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the negative binomial distribution is being used to estimate the level 1 variance, with
var(O )"p2

1
k#p2

2
k2.
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