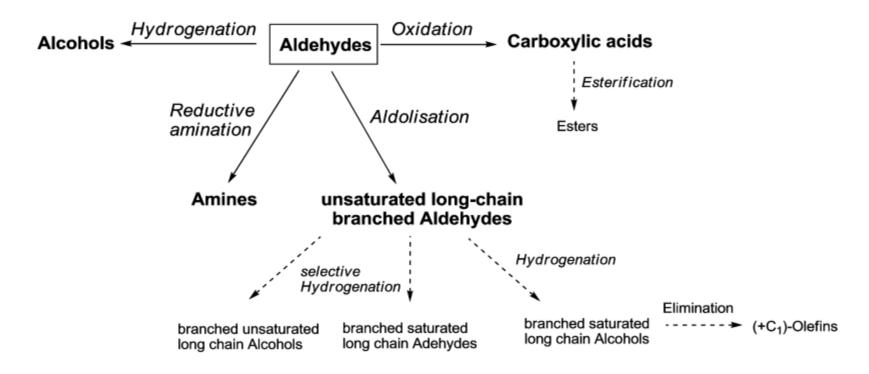

La Reazione di Idroformilazione

E' una reazione a tre componenti, in cui si ha la rottura di tre legami e la formazione di tre legami;

Consiste nell'addizione di CO e H₂ ad un doppio legame C-C, passando quindi da un alchene ad un'aldeide con un atomo di carbonio in più rispetto all'alchene di partenza;


La miscela CO/H₂ viene detta syngas (o gas di sintesi);

Introdotta da Otto Roelen nel 1938 e nota come Oxo-sintesi, oggi è una delle principali reazioni di catalisi omogenea applicata industrialmente; nel 2008 la produzione mondiale di aldeidi era di 10.4 milioni di tonnellate, in particolare di butanale.

I catalizzatori sono composti di coordinazione di Co o Rh.

Selectivity in hydroformylation reactions

I prodotti derivati dalle aldeidi

Idroformilazione vs.

Chimica di base

Catalisi asimmetrica?

Idrogenazione

Chimica fine

Catalisi asimmetrica

Evoluzione dei processi industriali di idroformilazione

1950's	HCo(CO)x catalysts; Oxo-alcohols
1960's	Shell-catalyst; HCo(CO)x + PPh3
1970's	Rh-catalysts; low pressure process
1980's	Aqueous-biphasic hydroformylation
1990's	Up to 99% linear aldehyde
2000's	Asymmetric hydroformylation

La termodinamica nelle reazioni di idroformilazione

$$H_2 + CH_3CH = CH_2 + CO \rightarrow CH_3CH_2CH_2C(O)H$$

 $\Delta G = 63$

-138

 $-117 (1) = -42 \text{ kJ.mol}^{-1}$

 ΔH

21

-109

 $-238 = -150 \text{ kJ.mol}^{-1}$

$$H_2 + CH_3CH = CH_2 \rightarrow CH_3CH_2CH_3$$

63 ΔG

-25

 $= -88 \text{ kJ.mol}^{-1}$

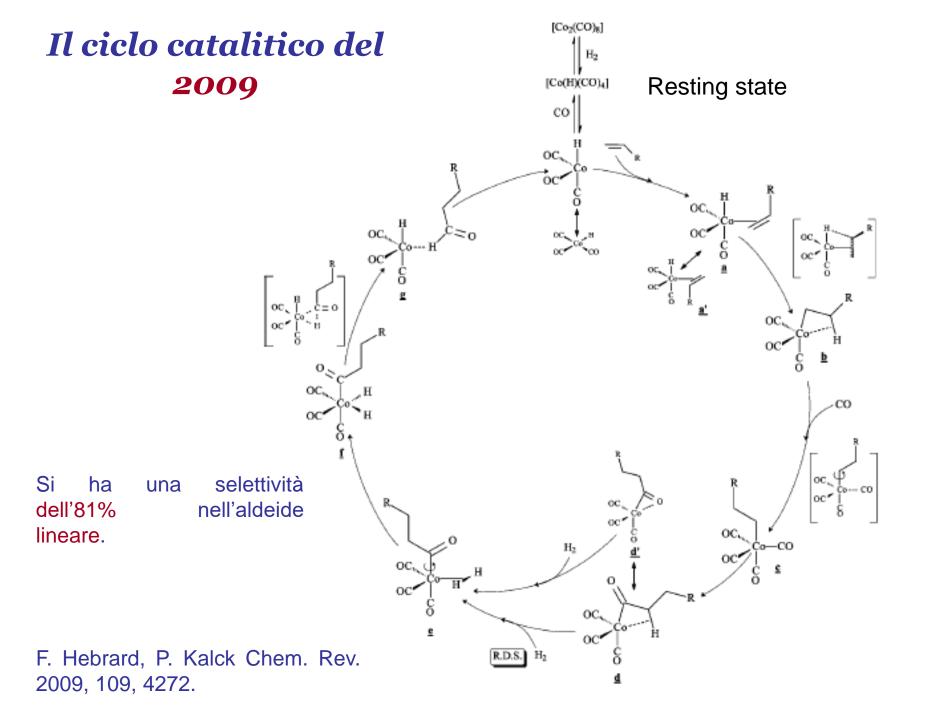
 $\Delta H = 21$

 $-105 = -126 \text{ kJ.mol}^{-1}$

Il sistema catalitico a base di Cobalto

Catalizzatore omogeneo: [HCo(CO)₄]

Condizioni di reazione: T = 100 - 200 °C


 $P_{tot} = 200 - 300 \text{ atm}$

v = k [Co][alchene][H₂][CO]⁻¹

Importante è capire come si può massimizzare il rapporto normale/iso variando i leganti ancillari e agendo sui parametri cinetici della reazione.

L'[HCo(CO)₄] è un ottimo catalizzatore per le reazioni di isomerizzazione di alcheni interni ad alcheni terminali.

Il ciclo catalitico del 1953

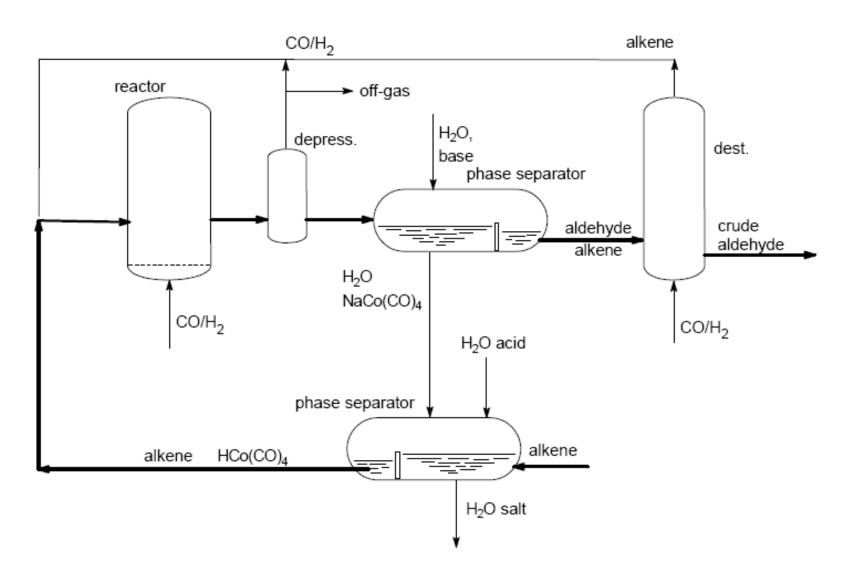
Idroformilazione di alcheni superiori

L'[HCo(CO)₄] è il catalizzatore usato in impianto.

Osservazioni:

- 1. La miscela di alcheni superiori C₁₀₋₁₄ contiene essenzialmente alcheni interni;
- 2. Il prodotto desiderato è l'aldeide lineare (selettività: 60 80%).

Dati sperimentali:


- 1. L'[HCo(CO)₄] è un ottimo catalizzatore per le reazioni di isomerizzazione di alcheni interni ad alcheni terminali;
- 2. L'[HCo(CO)₄] idroformila gli alcheni terminali con una velocità 1000 volte superiore che gli alcheni interni.

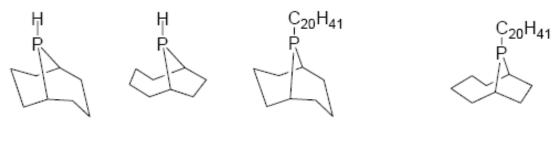
Idroformilazione di alcheni superiori

L'[HCo(CO)₄] è il catalizzatore usato in impianto.

$$\begin{array}{c|c} & & & \\ &$$

L'impianto e il problema del riciclo del catalizzatore: il processo Kuhlmann

Il processo Shell


Introduzione di catalizzatori con fosfine: l'[HCo(CO)₃(PR₃)].

Effetti dovuti all'uso delle monofosfine:

- 1. La reazione è un centinaio di volte più lenta
- 2. La selettività nell'aldeide lineare aumenta;
- 3. Il complesso carbonilico [HCo(CO)₃(PR₃)] è più stabile di [HCo(CO)₄];
- 4. Il catalizzatore diventa anche attivo verso la reazione di idrogenazione.

```
Cat. Prec. P (bar) T (°C) Pr. lin. (%) att. Cat. alcani (%) [HCo(CO)_4] 200 – 300 100 – 180 aldeidi 70 5 (145°C) 1 [HCo(CO)_3(PR_3)] 25 – 100 100 – 200 alcoli 90 1 (185°C) 15
```

Le monofosfine utilizzate

phobane mixture

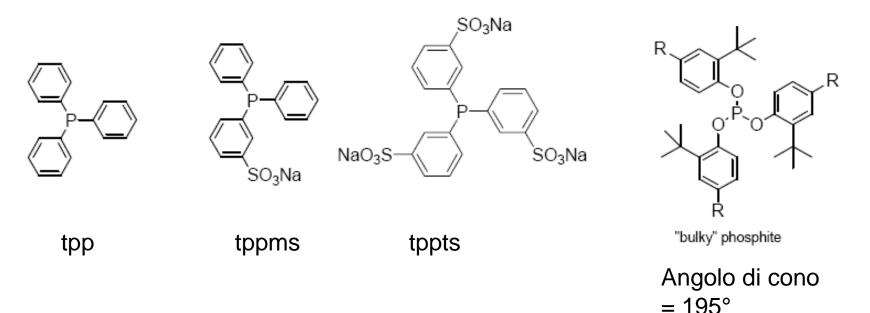
Alcuni complessi di cobalto

 $Co_2(CO)_8$ $HCo(CO)_4$ $Co_2(CO)_6L_2$ $HCo(CO)_3L$

Ordine di attività in funzione della fosfina:

 $Ph_2EtP > PhBu_2P > Bu_3P > Et_3P > PhEt_2P > Cy_3P$

Variazione del rapporto lineare/ramificato (5.5 – 3) in funzione della fosfina:


$$Bu_3P > Et_3P = PhEt_2P = Cy_3P = PhBu_2P > Ph_2EtP$$

Il sistema catalitico a base di Rodio LPO (Low Pressure Oxo process)

Caratteristiche generali:

- 1. Catalizzatori da 100 a 10000 volte più veloci di quelli di Co;
- 2. Elevata attività catalitica nelle reazioni di isomerizzazione;
- 3. Non sono catalizzatori per le reazioni di idrogenazione delle aldeidi;
- 4. Il Rh è molto più costoso del Co.

Le monofosfine utilizzate

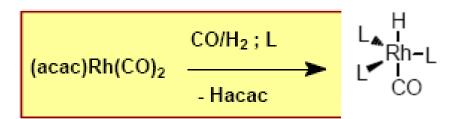
Le difosfine e i difosfiti

"BISBI"

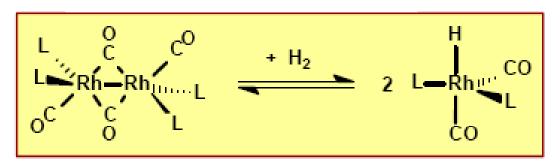
general formula of diphosphite

Union Carbide 1997

La sintesi della Vitamina A


Il processo BASF

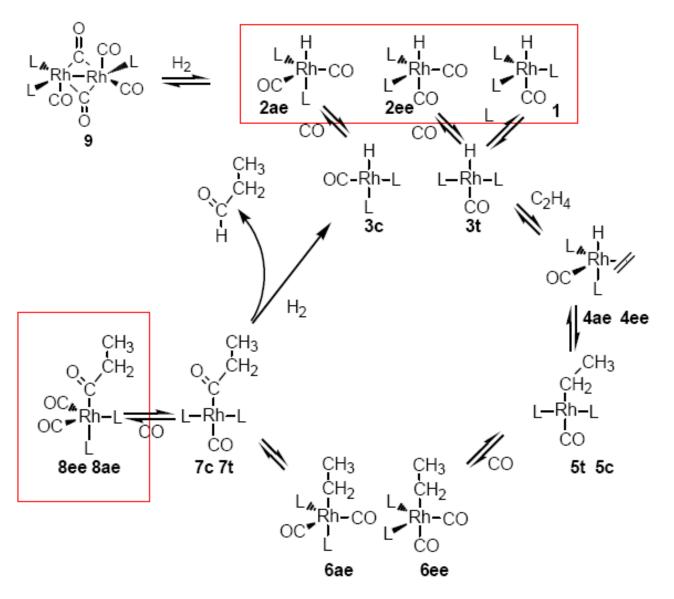
Il processo Hoffmann-La Roche


 $[Rh] = [RhH(CO)_3]$

Il sistema Rh/tpp

Sistema catalitico in situ

Specie inattiva


La legge cinetica

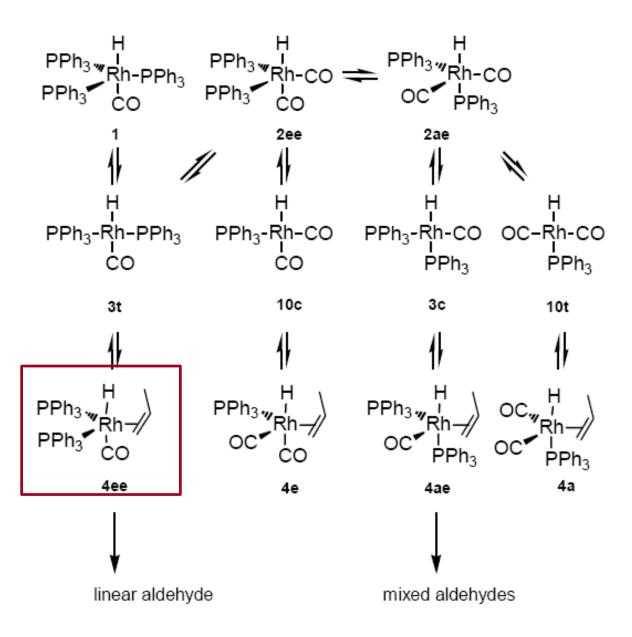
 $v = k [alchene]^{1} [Rh]^{1} [H_{2}]^{1} [PPh_{3}]^{-1} [CO]^{-1}$

La legge cinetica per la sintesi del butanale

L'equazione di d'Oro $V = k [C_3H_6]^{0.6}[Rh]^1[H_2]^0[PPh_3]^{-0.7}[CO]^{-0.1}$ (conditions 90-110°C, 1-25 bar CO, 1-45 bar H_2 , PPh_3/Rh ratio 300:1 to 7:1)

Il meccanismo proposto per il sistema Rh/tpp

Il meccanismo proposto per il sistema Rh/tpp


Il resting state:

- a. Alte concentrazioni di fosfina: il resting state è [HRh(PPh₃)₃CO];
- b.Basse concentrazioni di fosfina: il resting state è [HRh(PPh₃)₂(CO)₂].

Il rate determining step:

- a. Alte concentrazioni di fosfina: il resting state è [HRh(PPh₃)₃CO] e il rds è la coordinazione e l'inserzione migratoria dell'alchene;
- b. Alte concentrazioni di CO e per i sistemi con i fosfiti: il resting state è l'intermedio acilico e il rds è la reazione con H₂.

La regioselettività

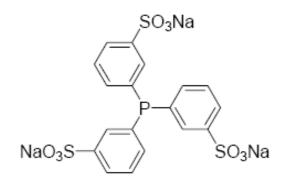
Alcuni esempi di idroformilazioni catalizzate da Rh: l'effetto della natura della fosfina

Effetti sterici

La selettività nell'aldeide lineare aumenta:

all'aumentare dell'angolo di Tolman del legante; passando dalle fosfine ai fosfiti.

Effetti elettronici

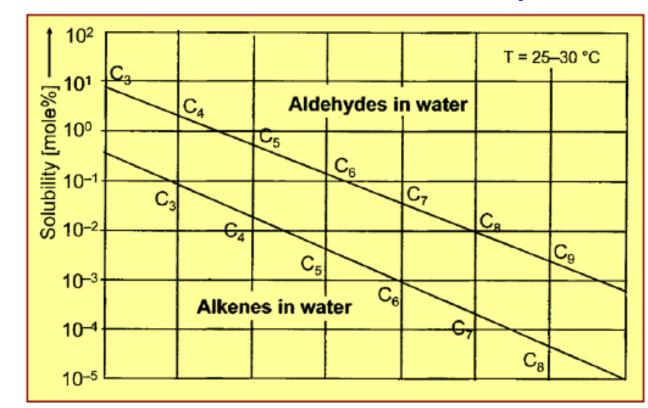

Leganti con **sostituenti elettron-attrattori** aumentano la velocità di formazione e le concentrazioni all'equilibrio degli intermedi 3 e 7; rallentano le reazioni di addizione ossidativa;

Fosfine **con maggiore basicità di Lewis** di tpp danno catalizzatori più lenti;

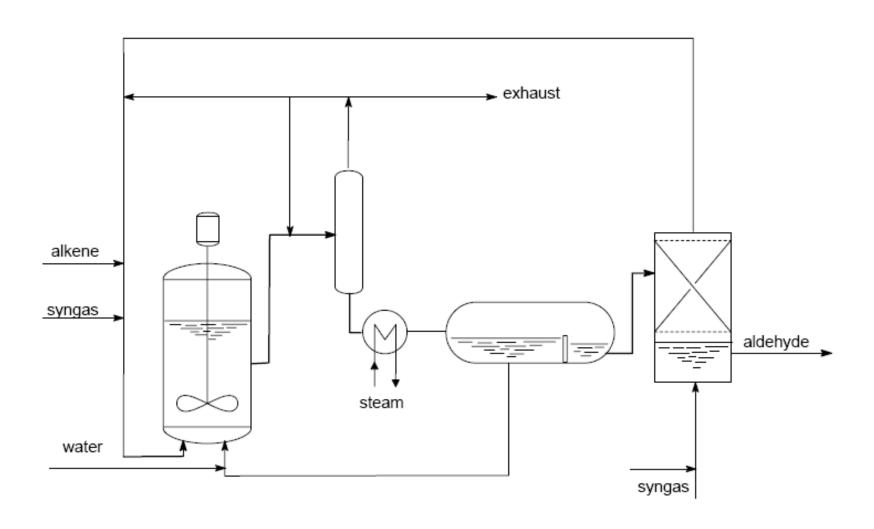
I fosfiti danno, nella maggior parte dei casi, catalizzatori più veloci.

Effetto dell'alchene

Il processo Ruhrchemie/Rhone-Poulenc

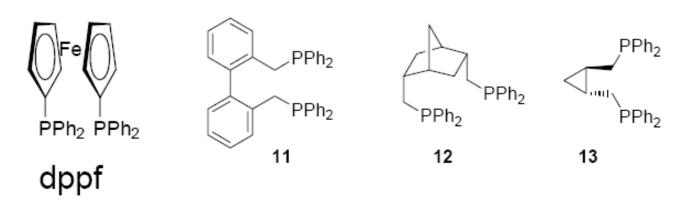

Ruhrchemie-Rhone Poulenc 1986

Propene and 1-butene

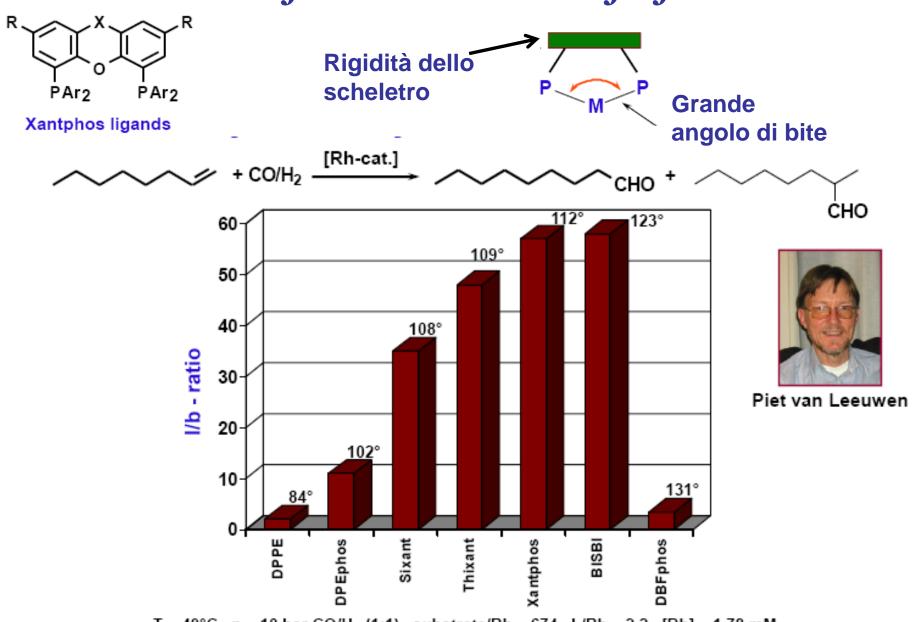

Same chemistry as tpp

Solubilità: 1 kg di legante in 1 kg di acqua!

Solubilità di alcheni e aldeidi in acqua



Il processo Ruhrchemie/Rhone-Poulenc



Idroformilazione con difosfine

Ligand	Bite angle	Rate m.m ⁻¹ .h ⁻¹	Ratio I:b
12	126	2550	2.6–4.3
BISBI, 11	113/120	3650	25
13	107	3200	4.4–12
DIOP [also 56]	102	3250	4.0-8.5
dppf [also 33]	99	3800	3.6–5
dppp	91	600	0.8–2.6
dppe	85		2.1
PPh ₃ ^a		6000	2.4

Idroformilazione con difosfine

T = 40°C, p = 10 bar CO/H₂ (1:1), substrate/Rh = 674, L/Rh = 2.2, [Rh] = 1.78 mM

Idroformilazione asimmetrica

I fosfino-fosfiti

Condizioni di reazione: T = 60 - 80 °C, $P_{TOT} = 100$ bar.

Conversioni > 99 %; b/l : 86 - 92 %.

Ligand	% e.e.	
46 (S,R)	94 (S)	
46 (R,R)	25 (R)	
47 (R,S)	85 (R)	46 (R,S)-BINAPHOS 47 (R,S) Me
48 (R,)	83 (R)	PPh. Me PPh2
49 (S,R)	94 (S)	Me O-P-O
49 (R,R)	16 (R)	48(R) 49a (S,R) 50 (R)
50 (,R)	69 (S)	49b (R,R)

Il complesso cataliticamente attivo che dà alti e.e. nelle reazioni di idroformilazione asimmetrica: coordinazione ae del legante!

$$\begin{array}{c|c}
P & O = \\
\hline
OP & O = \\
\hline
OP & O = \\
\hline
- Hacac
\end{array}$$

$$\begin{array}{c|c}
CO/H_2 \\
\hline
- Hacac
\end{array}$$


$$\begin{array}{c|c}
H \\
P-Rh \\
\hline
CO \\
OP
\end{array}$$

$$\begin{array}{c|c}
Ph \\
\hline
- CO
\end{array}$$

$$\begin{array}{c|c}
Ph \\
\hline
- CO
\end{array}$$

$$\begin{array}{c|c}
P \\
P-Rh \\
\hline
OP
\end{array}$$

La stereodifferenziazione

Una delle possibili applicazioni dell'idroformilazione asimmetrica

Idroformilazione: Applicazione nella sintesi di fragranze

Börner A. et al. ChemCatChem 2014, 6, 382.