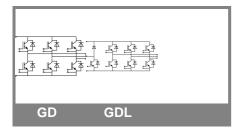


SEMITRANS<sup>®</sup> 6

### **IGBT** Modules

SKM 75GD123DL SKM 75GD123D SKM 75GDL123D

#### **Features**


- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, selt limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse Cal diodes
- Isolated copper baseplate using DCB Direct Bonding Technology
- Large clearance (9 mm) and creepage distance (13 mm)

#### **Typical Applications**

- Switched mode power supplies
- DC servo and robot drives
- Three phase inverters for AC motor speed control
- Switching (not for linear use)

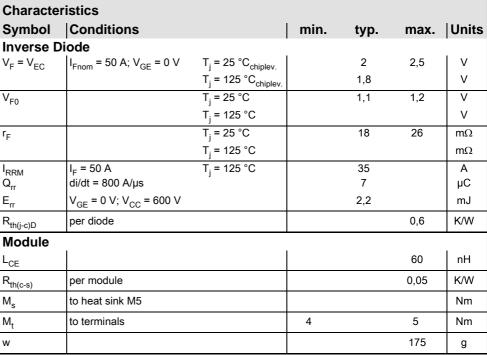
| <b>Absolute Maximum Ratings</b> $T_c = 25  ^{\circ}\text{C}$ , unless otherwise specified |                                                    |                           |           |       |
|-------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------|-----------|-------|
| Symbol                                                                                    | Conditions                                         |                           | Values    | Units |
| IGBT                                                                                      |                                                    |                           |           |       |
| V <sub>CES</sub>                                                                          | T <sub>j</sub> = 25 °C                             |                           | 1200      | V     |
| I <sub>C</sub>                                                                            | T <sub>j</sub> = 150 °C                            | T <sub>case</sub> = 25 °C | 75        | Α     |
|                                                                                           |                                                    | T <sub>case</sub> = 80 °C | 50        | Α     |
| I <sub>CRM</sub>                                                                          | I <sub>CRM</sub> =2xI <sub>Cnom</sub>              |                           | 100       | Α     |
| $V_{GES}$                                                                                 |                                                    |                           | ± 20      | V     |
| t <sub>psc</sub>                                                                          | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V | T <sub>j</sub> = 125 °C   | 10        | μs    |
| Inverse D                                                                                 | iode                                               |                           |           |       |
| I <sub>F</sub>                                                                            | T <sub>j</sub> = 150 °C                            | $T_{case}$ = 25 °C        | 75        | Α     |
|                                                                                           |                                                    | T <sub>case</sub> = 80 °C | 50        | Α     |
| I <sub>FRM</sub>                                                                          | I <sub>FRM</sub> =2xI <sub>Fnom</sub>              |                           | 100       | Α     |
| I <sub>FSM</sub>                                                                          | $t_{p} = 10 \text{ ms; sin.}$                      | T <sub>j</sub> = 150 °C   | 550       | Α     |
| Module                                                                                    |                                                    |                           |           |       |
| $I_{t(RMS)}$                                                                              |                                                    |                           | 100       | Α     |
| $T_{vj}$                                                                                  |                                                    |                           | - 40+ 150 | °C    |
| T <sub>stg</sub>                                                                          |                                                    |                           | - 40+ 125 | °C    |
| V <sub>isol</sub>                                                                         | AC, 1 min.                                         |                           | 2500      | V     |

| Characteristics T <sub>c</sub> = 25 °C, unless of |                                                  |                                         | nless oth | erwise sp | ecified |       |
|---------------------------------------------------|--------------------------------------------------|-----------------------------------------|-----------|-----------|---------|-------|
| Symbol                                            | Conditions                                       |                                         | min.      | typ.      | max.    | Units |
| IGBT                                              |                                                  |                                         |           |           |         |       |
| $V_{GE(th)}$                                      | $V_{GE} = V_{CE}$ , $I_C = 2 \text{ mA}$         |                                         | 4,5       | 5,5       | 6,5     | V     |
| I <sub>CES</sub>                                  | $V_{GE} = 0 V, V_{CE} = V_{CES}$                 | T <sub>j</sub> = 25 °C                  |           | 0,4       | 1,2     | mA    |
| V <sub>CE0</sub>                                  |                                                  | T <sub>i</sub> = 25 °C                  |           | 1,4       | 1,6     | V     |
|                                                   |                                                  | T <sub>j</sub> = 125 °C                 |           | 1,6       | 1,8     | V     |
| r <sub>CE</sub>                                   | V <sub>GE</sub> = 15 V                           | T <sub>j</sub> = 25°C                   |           | 22        | 28      | mΩ    |
|                                                   |                                                  | T <sub>j</sub> = 125°C                  |           | 30        | 38      | mΩ    |
| V <sub>CE(sat)</sub>                              | I <sub>Cnom</sub> = 50 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = °C <sub>chiplev.</sub> |           | 2,5       | 3       | V     |
| C <sub>ies</sub>                                  |                                                  |                                         |           | 3,3       | 4,3     | nF    |
| C <sub>oes</sub>                                  | $V_{CE} = 25, V_{GE} = 0 V$                      | f = 1 MHz                               |           | 0,5       | 0,6     | nF    |
| C <sub>res</sub>                                  |                                                  |                                         |           | 0,22      | 0,3     | nF    |
| t <sub>d(on)</sub>                                |                                                  |                                         |           | 44        | 100     | ns    |
| t <sub>r</sub>                                    | $R_{Gon} = 22 \Omega$                            | $V_{CC} = 600V$                         |           | 56        | 100     | ns    |
| E <sub>on</sub>                                   |                                                  | I <sub>C</sub> = 50A                    |           | 8         |         | mJ    |
| t <sub>d(off)</sub>                               | $R_{Goff} = 22 \Omega$                           | T <sub>j</sub> = 125 °C                 |           | 380       | 500     | ns    |
| t <sub>f</sub>                                    |                                                  | $V_{GE} = \pm 15V$                      |           | 70        | 100     | ns    |
| $E_{off}$                                         |                                                  |                                         |           | 5         |         | mJ    |
| R <sub>th(j-c)</sub>                              | per IGBT                                         |                                         |           |           | 0,32    | K/W   |



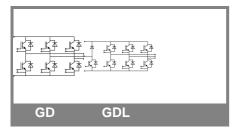


#### **IGBT** Modules


SKM 75GD123DL SKM 75GD123D SKM 75GDL123D

#### **Features**

- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, selt limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse Cal diodes
- Isolated copper baseplate using DCB Direct Bonding Technology
- Large clearance (9 mm) and creepage distance (13 mm)


#### **Typical Applications**

- Switched mode power supplies
- DC servo and robot drives
- Three phase inverters for AC motor speed control
- Switching (not for linear use)



This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

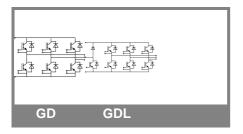
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.



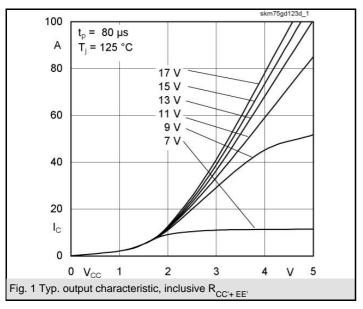


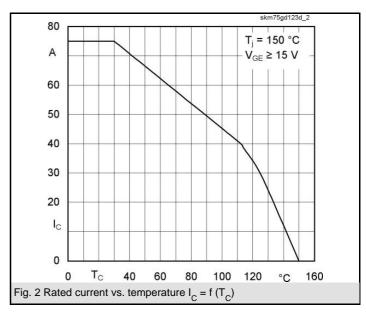
SEMITRANS<sup>®</sup> 6

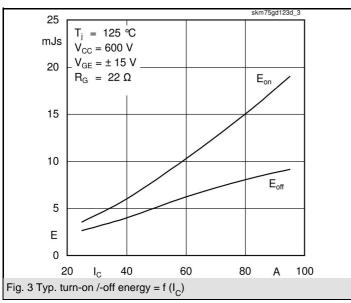
### **IGBT Modules**

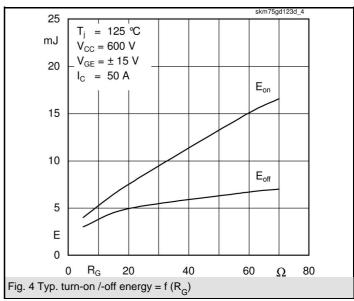

SKM 75GD123DL SKM 75GD123D SKM 75GDL123D

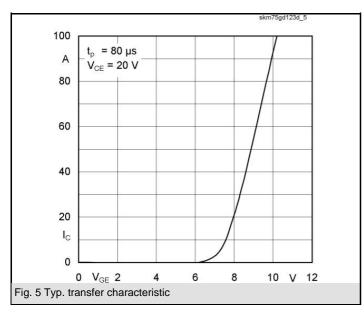
| F | eat | tur | es |
|---|-----|-----|----|
|   | -u  | ιиі | CO |

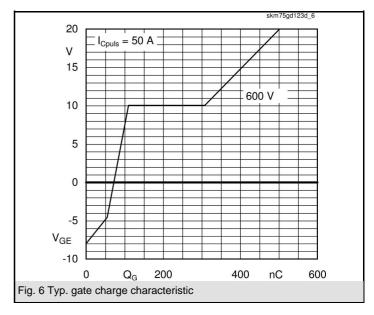

- MOS input (voltage controlled)
- N channel, homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, selt limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse Cal diodes
- Isolated copper baseplate using DCB Direct Bonding Technology
- Large clearance (9 mm) and creepage distance (13 mm)

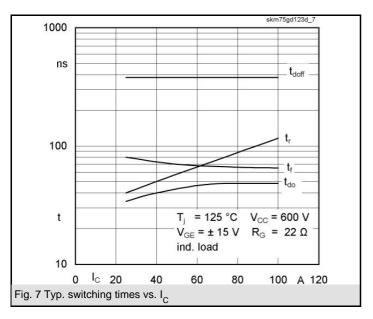

#### **Typical Applications**

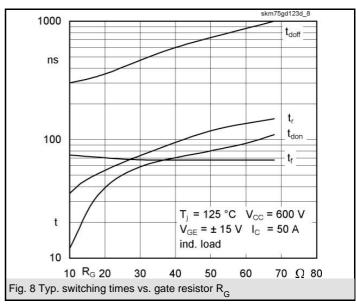

- Switched mode power supplies
- DC servo and robot drives
- Three phase inverters for AC motor speed control
- Switching (not for linear use)

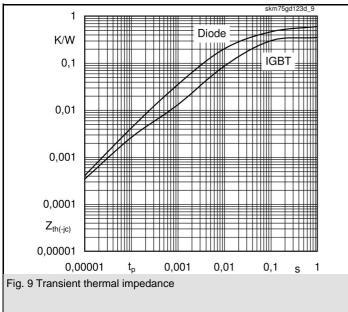


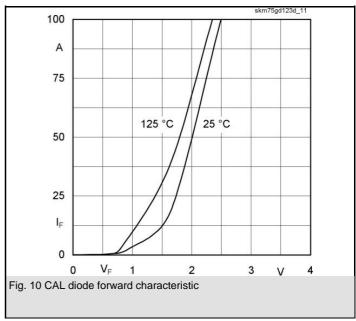


| Z <sub>th</sub><br>Symbol | Conditions | Values | Units |
|---------------------------|------------|--------|-------|
| Z <sub>th(j-c)l</sub>     |            |        |       |
| R <sub>i</sub>            | i = 1      | 240    | mk/W  |
| R <sub>i</sub>            | i = 2      | 68     | mk/W  |
| R <sub>i</sub>            | i = 3      | 9,2    | mk/W  |
| R <sub>i</sub>            | i = 4      | 2,8    | mk/W  |
| tau <sub>i</sub>          | i = 1      | 0,06   | S     |
| tau <sub>i</sub>          | i = 2      | 0,0228 | S     |
| tau <sub>i</sub>          | i = 3      | 0,0013 | S     |
| tau <sub>i</sub>          | i = 4      | 0,0002 | s     |
| Z <sub>th(j-c)D</sub>     |            |        |       |
| R <sub>i</sub>            | i = 1      | 400    | mk/W  |
| R <sub>i</sub>            | i = 2      | 168    | mk/W  |
| R <sub>i</sub>            | i = 3      | 28     | mk/W  |
| R <sub>i</sub>            | i = 4      | 4      | mk/W  |
| tau <sub>i</sub>          | i = 1      | 0,0831 | S     |
| tau <sub>i</sub>          | i = 2      | 0,0112 | s     |
| tau <sub>i</sub>          | i = 3      | 0,0013 | s     |
| tau <sub>i</sub>          | i = 4      | 0,08   | s     |

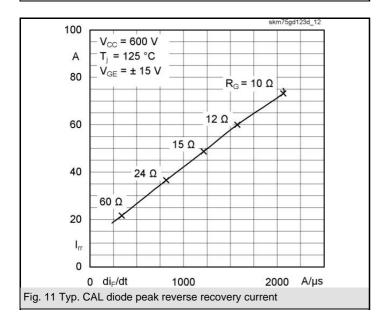


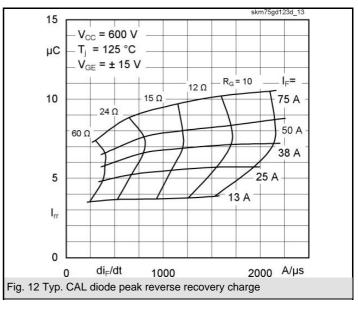



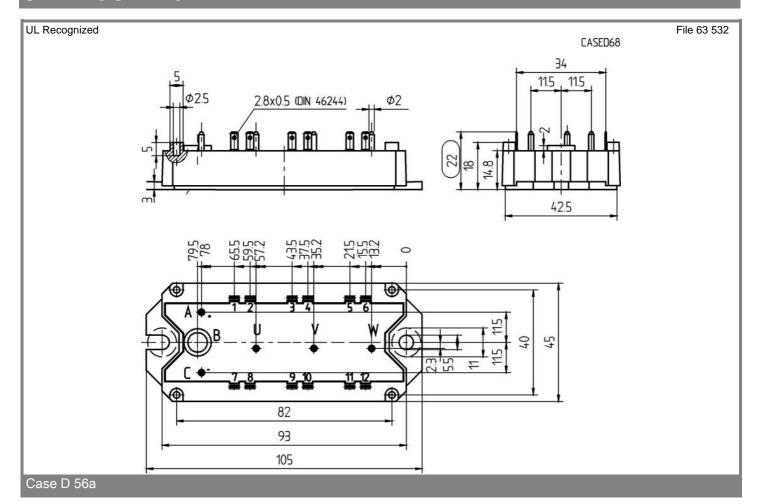



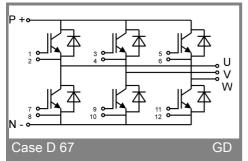



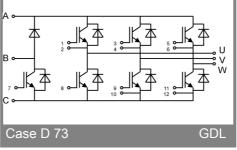














6 13-01-2009 NOS © by SEMIKRON