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To understand diffraction phenomena and to 
analyze crystallographic data: 

analyze crystal order. 

Sharp edges and plane faces
Regular crystal habit depends on internal 
long-range order of crystal structure.

Diffraction properties of crystals depend on 
their internal order: X-ray interaction with the 
ordered molecules forming the crystal. 

Combination of the requirements for:
long-range order

and 
symmetries between molecules in the crystal

=
230 space groups for crystals, 

But only 65 allowed for protein crystals  
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Point group symmetry elements
Point group symmetry elements are invariant points of transformations able 
to relate a point (x,y,z) to its symmetry related (x’,y’,z’).

Inversion center: Mirror plane:

During each of this transformations, a generic point of coordinates (x,y,z) is transformed 
in a symmetric point, with coordinates (x’,y’,z’), by a matrix operator:

Inversion center, i:

x’ = i x

i = 

Rotation axis, e.g. 4 along z:

x’ = A x

A = 

Mirror plane, e.g. in yz:

x’ = m x

m = 

Rotation axis:



Rotation axes
A rotation operation n (or of order n) describes a rotation of each point of 
360°/n around the rotation axis:

1 Rotation of 360°
(identity!)

2 Rotation of 180° 3 Rotation of 120°

4 Rotation of 90° 5 Rotation of 72° 6 Rotation of 60°
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And more:

7 8

10 12

5NBZ

3B8O

2YHP

6SH4

When symmetry 
elements are 
present, they 

involve more than 
one protein chain: 

proteins are 
ASYMMETRIC!



Translational periodicity: lattice and unit cell
Crystals are formed by repeated units along the three directions, but to 
simplify the problem we can start to describe lattice in the 2D case

How to cover a floor with tiles??



Due to the requirement for translational periodicity, lattices can have only the 
following rotational symmetries:

1, 2, 3, 4 and 6 

Translational periodicity: lattice and unit cell
Crystals are formed by repeated units along the three directions, but to 
simplify the problem we can start to describe lattice in the 2D case

How to cover a floor with tiles??

In 2D, the lattice is 
formed by a repeted 
unit, translated in 2 

directions:

a

b g
O

The repetitive unit is called 
unit cell. The lattice is 

defined by an origin of the 
translations and the unit cell 
parameters (or dimensions):

(in 2D) a, b and g



Even when symmetry elements include a 3-fold axis or a 6-fold axis, unit cell 
can be described as a parallelogram:

In 3D:
Unit cell parameters:

a, b, c and a, b, g



Crystal families and crystal systems

Crystal 
family

Crystal 
system Unit cell dimentions Minimal symmetry 

elements

Triclinic Triclinic a, b, c, a, b, g none

Monoclinic Monoclinic a, b, c, b
(a, g=90°)

2

Orthorhom
bic

Orthorhom
bic

a, b, c
(a=b=g=90°)

three perpendicular 
2 axes

Tetragonal Tetragonal a, c
(b=a, a=b=g=90°)

4

Hexagonal
Trigonal

a, c
(b=a, a=b=90°, g=120°)

3

Hexagonal 6

Cubic Cubic a
(b=a, c=a, a=b=g=90°)

four 3 axes along 
diagonal directions



Intermolecular contacts and crystal packing

Crystals are held together by 
intermolecular contacts, that 
determine their packing:

Crystal packing must be 
evaluated:

1) to evaluate the effect of 
crystal contacts on 
protein conformation

2) to obtain biologically 
active unit (for 
symmetry related 
oligomers)

Different origin choices are possible (while unit cell dimensions are the same!) 
for a lattice with no additional symmetry.

6V14

Triclinic: 
a, b, c
a, b, g



Choice of the origin
The choice of the origin depends on the symmetry of 
the crystal lattice. 

Case in point: lattice with 2-fold axis along b
(monoclinic lattice)

ac plane

5KO3

ab plane

bc plane

Monoclinic: 
a, b, c

a=g=90°, b



Choice of the origin
Case in point: lattice with 4-fold axis along c (tetragonal lattice)

ab plane

5DOE

ac and bc planes

4-fold axes
2-fold axes

Tetragonal: 
a=b, c

a=b=g=90°



Primitive and centered lattices
Primitive lattices have nodal points (nodes) at the vertices of the unit cell. 

But further translations are possible in the unit cell, forming centered lattices, 
with additional nodes:

Primitive
lattice Face(s) centered

lattices

Face centered Body 
centered

lattice

Base centered

A primitive lattice can always describe the structure, but in presence of specific 
elements of symmetry it can be useful to describe the lattice as centered.



Crystal families + centering = 14 Bravais lattices

Face 
centered, F

Body 
centered, I

Base 
centered, C

Triclinic lattice

Primitive, P

Monoclinic lattice

Primitive, P

Primitive, P

Orthorhombic lattice

Face centered, F Body centered, IPrimitive, P

Cubic lattice

Base centered, C Body centered, IPrimitive, P

Tetragonal lattice

Hexagonal lattice

Primitive, P Rhombohedral, R



Crystal families + centering = 14 Bravais lattices

Face 
centered, F

Body 
centered, I

Base 
centered, C

Triclinic lattice

Primitive, P

Monoclinic lattice

Primitive, P

Primitive, P

Orthorhombic lattice

Face centered, F Body centered, IPrimitive, P

Cubic lattice

Base centered, C Body centered, IPrimitive, P

Tetragonal lattice

Hexagonal lattice

Primitive, P Rhombohedral, R

t = (½, ½, 0)
t1 = (0, ½, ½) 
t2 = (½, 0, ½)
t3 = (½, ½, 0)

t1 = (0, ½, ½) 
t2 = (½, 0, ½)
t3 = (½, ½, 0)

t = (½, ½, 0)

t = (½, ½, ½)

t = (½, ½, ½)

t = (½, ½, ½)

t1 = (⅔, ⅓, ⅓) 
t2 = (⅓, ⅔, ⅔) 



Case in point: monoclinic C2 lattice

5RE9

ac plane

ab plane

bc plane

Monoclinic: 
a, b, c

a=g=90°, b



Rotation + translation = screw axis
Besides the point group symmetry elements, additional symmetry elements are 
possible in crystal cells: 

Screw axis Nm

Rotation of order N
Translation of m/N

of the unit cell

• screw axis = rotation + translation • glide planes = mirror + translation

120° rotation

translation 

31

Screw axis 31

Rotation of order 3
Translation of 1/3 of the unit cell

6R8H



Symmetry operations
Symmetry operations are represented with specific figures when perpendicular 
to the plane, or arrows when parallel to the plane of the figure:

2-fold axis

21 screw axis

3-fold axis

31 screw axis

32 screw axis

4-fold axis

41 screw axis
42 screw axis
43 screw axis

6-fold axis

61 screw axis
62 screw axis
63 screw axis
64 screw axis
65 screw axis

Rototranslations 
in opposite 
directions!

Rototranslations 
in opposite 
directions!

Rotation axes

Rototranslation 
axes



Each symmetry operation can be represented by:
(1) a square matrix S and (2) a translation vector t

that transform a generic point x with coordinates (x,y,z) in its symmetric x’
with coordinates (x’,y’,z’): ᇱ

ଵଵ ଵଶ ଵଷ

ଶଵ ଶଶ ଶଷ

ଷଵ ଷଶ ଷଷ

+
௫

௬

௭

Fractional coordinates

The coordinate system of this equation, however, is not the orthogonal 
system in which we describe the atomic structure with distances in Å (i.e. in 
the pdb file).

The matrices S and vectors t are defined in the coordinate system of each 
specific lattice, i.e. having the x,y,z directions along the translational vectors 
that define the lattice. In addition, this coordinate system has fractional 
coordinates, that are calculated as fractions of the unit cell parameters in 
each direction.

Example: the coordinate system of a monoclinic lattice has 2 directions (x and 
z) that are not perpendicular, but form an angle equal to b.



Transformation: 4-fold axis along c direction of a tetragonal lattice 

+

Transformation: 21 screw axis along the b direction

+ ଵ
ଶ



Space groups
Space groups are a combination of:
• point group operations (inversion center, symmetry axes, mirror planes), 
• symmetry operations involving translations (screw axes, glide planes),
• centering translations (base-, face-, body-centering),
• lattice translations.

A space group: 
(1) is a closed group (combinations of its elements yield the identity 

transformation), 
(2) contains the identity transformation, 
(3) contains inverse transformations of its elements (inversion property),
(4) contains combinations of its elements (associativity property).

In 3D, 230 space groups, 
but only 65 for protein structures*

* *
*



International Tables of 
Crystallography

Volume A

Volume containing information for 
each of the 230 space groups:
- Symmetry elements and their 

position
- Origin choice
- General positions and their 

multiplicity
- Asymmetric unit
- Systematic absences
- ...



Projections of 
the unit cell 

with symmetry 
elements

Name: type of 
lattice (P) and 

symmetry 
elements along 
the lattice main 

axes

Crystal 
system and 
Patterson 
symmetry

Origin position, 
asymmetric unit limits 

in fractional 
coordinates, symmetry 

operations



Symmetry 
equivalents for 
a generic point 

in fractional 
coordinates Reflections 

allowed by 
systematic 
absences





Enantiomorphic space groups
Enantiomorphic space groups, with screw axis in opposite directions: 

Enantiomorphic pairs: 
(tetragonal) P 41 and P 43 , P 41 2 2 and P 43 2 2, P 41 21 2 and P 43 21 2, I 43 2 2, ...
(hexagonal) P 31 and P 32 , P 31 2 1 and P 32 2 1 , P 31 1 2 and P 32 1 2, P 61 and P 65 , 
P 61 2 2 and P 65 2 2 , P 62 and P 64 , P 62 2 2 and P 64 2 2
(cubic) P 41 3 2 and P 43 3 2.



Besides the symmetry elements of the space group, other symmetry elements 
may occur in a crystal structure, including symmetry elements not allowed by 
the lattice periodicity (e.g. 5-fold axes, 7-fold axes, ...).

They are called Non-Crystallographic Symmetry (NCS). 

Two protein chains related by NCS are crystallographically independent and 
both belong to the asymmetric unit. Usually, NCS is not perfect.

Non-crystallographic symmetry

2RCF 6SH4



Asymmetric unit
Lysozyme (pdb: 193L): 
tetragonal lattice, space group P 43 21 2, unit cell a = 78.54 Å, c = 37.77 Å 

Asymmetric units: 
smallest, independent 
part of the crystals 
structure, from which 
the whole structure is 
obtained upon 
application of the 
symmetry operations



pdb file
The pdb file contains: 
• atomic Cartesian coordinates only of the asymmetric unit, in Å and in an 

orthogonal system (ATOM cards),
• lattice informations, i.e. unit cell dimensions (a, b, c, a, b, g) in Å and °, and 

space group symbol and number (CRYST card) 
• transformation matrix from Cartesian (orthogonal) coordinates in Å to 

fractional coordinates in the specific crystallographic system (SCALE card)



How to apply crystal symmetry with Pymol?
When opening a pdb file with the software Pymol, only the asymmetric unit 
appears. However, often the asymmetric unit is NOT the biologically active 
assembly. In addition, analysis of packing may be important to detect crystal 
artifacts. 

The whole lattice can be reconstructed from (1) the contents of the asymmetric 
unit, (2) the unit cell parameters, and (3) the space group (i. e., information 
about the symmetry of the unit cell). 



How to apply crystal symmetry with Pymol?
The command symexp instructs the program to retrieve the information 
requires and show on the screen the symmetric molecules within a certain 
distance from a center. 

1) Open pdb file (1dpx.pdb, 
lysozyme)

2) Select and area of the structure 
for which crystal contacts should 
be analyzed (Arg residues on the 
surface)

3) Create a sphere with radius n (10) 
of the symmetric molecules 
around the selected position
(center of sphere = sele) as new 
objects (name = sym), according 
to the symmetry elements present 
in the original pdb file (object 
name = 1dpx). Comand:

symexp sym, 1dpx, sele, 10



Miller indices
Crystal lattice: described in the real space (coordinates x,y,z)

In the real space of the crystal lattice, 

we can define families of parallel planes.

To identify this planes, we can use the 
Miller indices (h,k):

starting from the origin of the lattice and 
moving in a lattice direction, we can count 
the number of planes until the next node.

O

x

y

For the blue set of planes: the first Miller index (in x direction) is 1, the second is 1.

For the red set of planes: the first Miller index is 2, the second is -1.

For the green set of planes: the first Miller index is 2, the second is 0.

Which of the families has the shorter distance between planes?

The distance between planes depends on the Miller indices: planes with higher Miller 
indices have shorter distances. 

(1,1)

(2,-1)

(2,0)



From the real to the reciprocal lattice

A family of planes in real space can be described by a vector ∗ in reciprocal space.

The vector ∗ is obtained by the combination of the Miller indices and the base 
vectors of the lattice: ∗ ∗ ∗ ∗

The modulus of ∗ is: ∗ ଵ
ௗ , with distance between planes of the family in the 

real space. 

(For an orthogonal system: ௛௞௟
௔మ

௛మ
௕మ

௞మ
௖మ

௟మ

 
)

Reciprocal lattice: described in the reciprocal space by the Miller indices (h,k,l).

The origin of the lattice is common to the real lattice.

Reciprocal lattice dimensions: ∗ ଵ
௔

∗ ଵ
௕

∗ ଵ
௖

Direction of the reciprocal lattice base vectors: ∗ , ∗

∗ , ∗

∗ , ∗

The reciprocal lattice is a mathematical construction, but it is useful to 
describe diffraction phenomena. 


