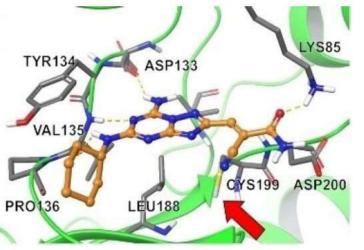

Crystal structure validation



Corso di Biocristallografia e Microscopia Elettronica rdezorzi@units.it

Importance of validation

Once deposited on PDB, the structure can be used for multiple different studies:

- Good and correct structures are crucial for docking and structure based drug-design
- Biochemical and mutagenetic analysis are often based on structures

 Model bias on calculated electron density

- Low data/parameter
- **Overparametrization**
- Entrapment of refinement in local minima
- Misinterpretation of electron density

Analysis based on posterior probability and Bayesian statistics:

- Chemical and physical knowledge
- Expectation values for geometric parameters
- Biochemical studies Improbable ≠ impossible

Bayesian statistics

P(A|B, C, D) Conditional probability: probability that event A occurs given the previous knowledge B, C, D...

 $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$

Bayes' theorem (inference theorem): the conditional probability of a hypothesis *H* given the evidence *E* is the probability of obtaining the evidence E given the model, multiplied by the probability of the model (hypothesis, H) and divided by the probability of the evidence (E).

Crystallographic question:

What is the probability that the **protein model** is correct, given

- (1) the crystallographic data and
- (2) the chemical/physical knowledge of the system?

Bayesian approach in crystallography

In crystallography: M model, D crystallographic data, I previous chemical/physical information

 $P(M|D,I) = \frac{P(D|M,I)P(M|I)}{P(D|I)}$

P(D|M,I)likelihood of the data, consistency of the data with the proposed modelP(M|I)consistency of the model with the previous knowledgeP(D|I)probability to obtain the dataset, considering previous knowledge (it
can be trated as normalization factor and neglected)

The best model is the one for which probability if maximized.

However, rather than maximizing the probability, in the maximum likelihood approach a negative logarithm is minimized:

$$L(M|D,I) = -\log[P(D|M,I)] - \log[P(M|I)]$$

The first term has a close relation with the χ^2 parameter:

$$\chi^2 = \sum_h W_h \left[F_{obs} - F_{calc}(M) \right]^2$$

 W_h can be calculated from the previous step considering the variance evaluated (Bayesian approach).

Global and local analyses

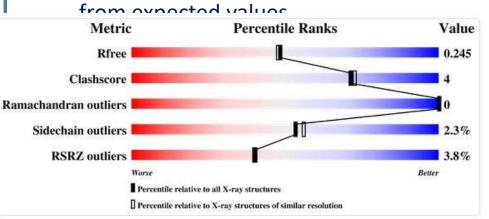
Global criteria for structure evaluation:

- R-values and their difference:

 $R_{free} = \frac{\sum_{h \in free} |F_{obs} - kF_{calc}|}{\sum_{h \in free} F_{obs}}$ $R_{work} = \frac{\sum_{h \notin free} |F_{obs} - kF_{calc}|}{\sum_{h \notin free} F_{obs}}$ Indication on overfitting or incomplete refinement

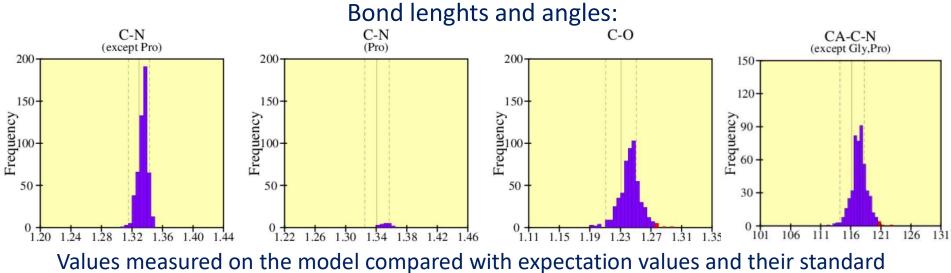
 Overall r.m.s.d. of bond distances and angles

Depending on restraints used in refinement


- Average B-factor

Local criteria for structure evaluation:

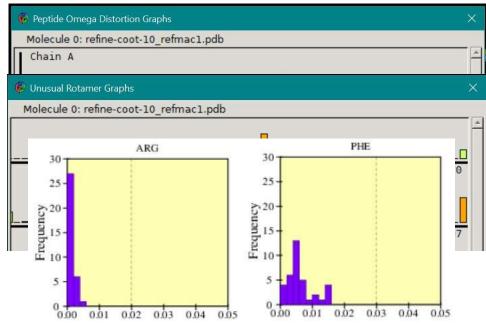
Residue-by-residue analysis of:


GEOMETRY ANALYSIS

- Geometric parameters: deviation

- Real space R-value
- Fitting of the model in the electron density: Real Space Cross-correlation Coefficient
- B-factor values for each residue

Geometry analysis: bonds and angles

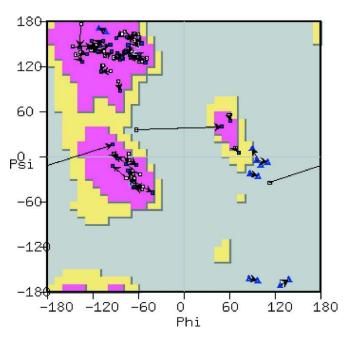


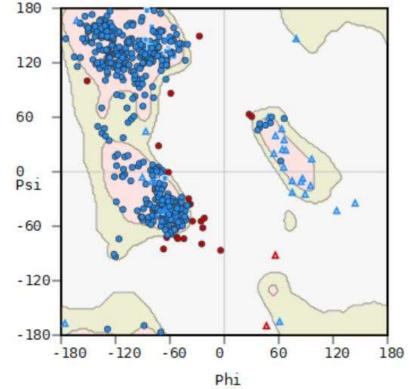
deviations.

In addition:

- ω angle (peptide bond dihedral angle)
- Side chain conformations
- Planarity of side chains

• ...

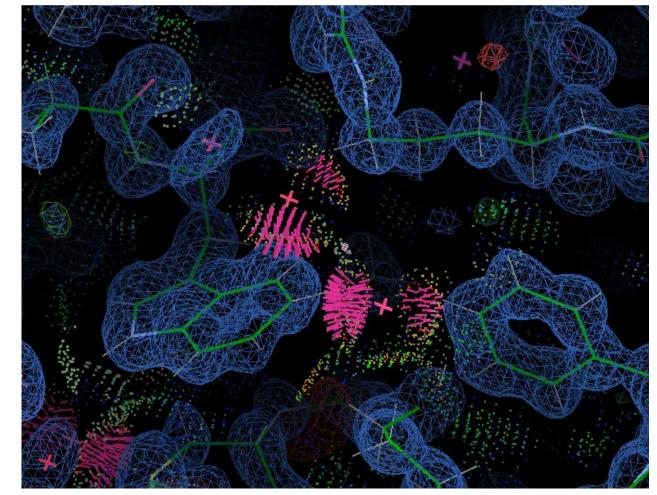



Geometry analysis: Ramachandran plots

Usually, angles ϕ and ψ are not restrained during refinement \rightarrow good for cross-validation!

Ramachandran violations are possible, but should be carefully analyzed:

- 1. Evaluate electron density of the residue (often Ramachandran violations in disordered loops poorly modeled)
- 2. Analyze similar structures: strained conformations may have important biochemical roles

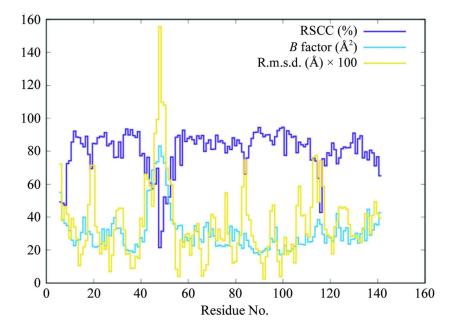

Kleywegt plots: analysis of difference in backbone dihedral angles for residues of NCS related molecules.

Geometry analysis: clashes

Non-bonding contacts shorter than van der Waals radii of atoms.

Software can recognize hydrogen bonding networks and identify hydrophobic close contacts.

Particularly dangerous contacts with symmetry related molecules.


Electron density validation

Real Space R-value (RSR):

$$RSR = \frac{\sum_{\boldsymbol{r}} |\rho_{obs}(\boldsymbol{r}) - \rho_{calc}(\boldsymbol{r})|}{\sum_{\boldsymbol{r}} |\rho_{obs}(\boldsymbol{r}) + \rho_{calc}(\boldsymbol{r})|}$$

with $\rho_{obs} = \sum_{r} (2F_{obs} - F_{calc}) \cdot \exp(-i\varphi_{calc})$ and $\rho_{calc} = \sum_{r} F_{calc} \cdot \exp(-i\varphi_{calc})$ for each voxel of the real space (*r*)

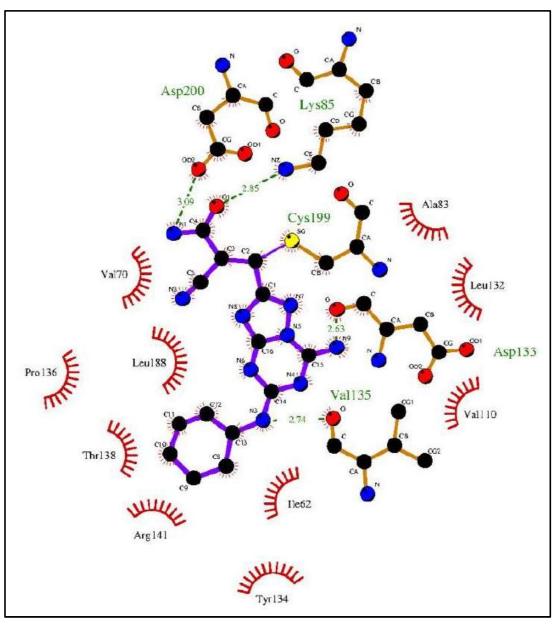
Values are plotted residue by residue, often together with the B-factor value.

Real Space Cross-correlation Coefficient (RSCC):

$$RSCC = \frac{\sum_{r} \left[\rho_{obs}(\boldsymbol{r}) - \overline{\rho_{obs}(\boldsymbol{r})} \right] \cdot \left[\rho_{calc}(\boldsymbol{r}) - \overline{\rho_{calc}(\boldsymbol{r})} \right]}{\left(\sum_{r} \left[\rho_{obs}(\boldsymbol{r}) - \overline{\rho_{obs}(\boldsymbol{r})} \right]^{2} \cdot \sum_{r} \left[\rho_{calc}(\boldsymbol{r}) - \overline{\rho_{calc}(\boldsymbol{r})} \right]^{2} \right)^{1/2}}$$

Visual analysis of maps: bias-minimized maps, omit maps (using calculated phases and amplitudes from model where a specific portion was removed).

Ligands


For known ligands: Geometric restraint file are available for the main ligands

For new ligands: Geometric restraints should be generated considering chemical knowledge (e.g. ibridization state, bond leght and angles...)

Omit maps and difference maps are extremely useful tools to confirm the presence of ligands.

Often, ligands occupy the binding site only in a percentage of proteins. **Partial occupancy** should be considered together with **B-factor values**.

Careful analysis of ligand contacts (**LIGPLOT**):

