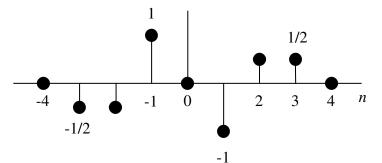
Teoria dei segnali

Prova scritta 21-6-2022


- 1) Determinare le soluzioni di $jz^3 = z^*$ (l'asterisco indica il complesso coniugato).
- 2) In figura è riportata la parte dispari $x_d[n]$ di un segnale (i termini non mostrati sono nulli).

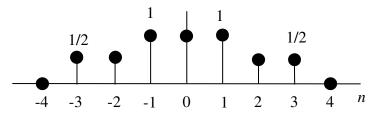
Ricavare tutti i valori di x[n] sapendo che:

$$x[n]=0, n>1;$$

 $x[0]=1;$

$$x[-1] \neq 0;$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} |X(e^{j\Omega})|^{2} d\Omega = 7$$


- 3) Un sistema risponde al segnale $x(t)=\sin(2\pi f_0 t)$ con il segnale $y(t)=f_0\cos(2\pi f_0 t)$. Determinare la risposta al gradino (che tipo di operazione esegue il sistema?).
- 4) Un sistema LTI tempo discreto risponde al segnale $x[n] = 3^n u[n]$ con il segnale $y[n] = \delta[n] 3\delta[n-1]$. Qual è la sua risposta impulsiva? (utilizzare la trasformata Z). Il sistema è causale? Il sistema è stabile?
- 5) Si consideri l'esperimento casuale che consiste nel ripetere per tre volte il lancio di un dado con sei facce numerate da 1 a 6.
 - a) Determinare la probabilità che esca almeno un numero dispari.
 - b) Determinare la probabilità che esca uno e un solo numero dispari.
 - c) Determinare la probabilità che sia uscito almeno un 3 sapendo che sono usciti due numeri dispari.
- Si consideri il processo aleatorio $x(t)\cos(2\pi f_0 t) y(t)\sin(2\pi f_0 t)$, ove x(t) e y(t) sono due processi aleatori a valor medio nullo e tra loro incorrelati. Dire, giustificando la risposta, se il processo è non stazionario, stazionario o ciclostazionario. Commentare il caso in cui sia $R_x(\tau) = R_y(\tau)$.

Teoria dei segnali

Prova scritta 21-6-2022

- 1) Determinare le soluzioni di $z^3 = jz^*$ (l'asterisco indica il complesso coniugato).
- 2) In figura è riportata la parte pari $x_p[n]$ di un segnale (i termini non mostrati sono nulli).

Ricavare tutti i valori di x[n] sapendo che: x[n]=0, n<-1; $x[1]\neq 0;$ $\frac{1}{2\pi} \int_{0}^{2\pi} |X(e^{j\Omega})|^2 d\Omega = 7$

- 3) Un sistema risponde al segnale $x(t) = \cos(2\pi f_0 t)$ con il segnale $y(t) = -f_0 \sin(2\pi f_0 t)$. Determinare la risposta al gradino (che tipo di operazione esegue il sistema?).
- Un sistema LTI tempo discreto risponde al segnale $x[n] = 3^n u[n]$ con il segnale $y[n] = \delta[n-1] 3\delta[n-2]$. Qual è la sua risposta impulsiva? (utilizzare la trasformata Z) Il sistema è causale? Il sistema è stabile?
- 5) Un operatore si avvale di 5 componenti elementari difettosi indipendenti che si guastano con probabilità q=1/4. L'operatore funziona se sono soddisfatte entrambe le seguenti condizioni.
 - a) Funzionano entrambi componenti 1 e 2, oppure funziona il componente 3.
 - b) Funziona il componente 4 oppure il componente 5.

Qual è la probabilità che l'operatore funzioni?

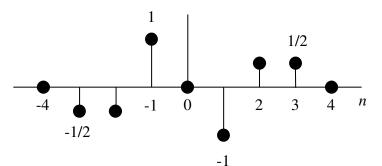
C'è la possibilità di sostituire uno dei componenti con uno più affidabile che si guasta con probabilità $q_1=q/2=1/8$. Quale componente conviene sostituire?

Si consideri il processo definito dalla $\{x^{(k)}(t)\}=A^{(k)}\cos(2\pi t + \theta^{(k)})$. Dove $A^{(k)}$ e $\theta^{(k)}$ sono v.a. indipendenti, con $A^{(k)}$ che può assumere con uguale probabilità i valori 1 e -1, mentre $\theta^{(k)}$ può assumere, sempre con uguale probabilità, i valori 0 e π . Dire se il sistema è stazionario o ciclostazionario in senso lato. Dire se è regolare (sempre in senso lato).

Teoria dei segnali

Prova scritta 21-6-2022

- 1) Determinare le soluzioni dell'equazione $z^2z^* = z$ (l'asterisco indica il complesso coniugato).
- 2) In figura è riportata la parte dispari $x_d[n]$ di un segnale (i termini non mostrati sono nulli).


Ricavare tutti i valori di x[n] sapendo che:

$$x[n]=0, n>1;$$

x[0]=1;

$$x[-1]\neq 0;$$

 $\frac{1}{2\pi} \int_0^{2\pi} \left| X \left(e^{j\Omega} \right)^2 d\Omega \right| = 7$

- 3) Un sistema risponde al segnale $x(t)=\sin(2\pi f_0 t)$ con il segnale $y(t)=f_0\cos(2\pi f_0 t)$. Determinare la risposta al gradino (che tipo di operazione esegue il sistema?).
- 4) Un sistema LTI tempo discreto risponde al segnale $x[n] = 3^{n-1}u[n-1]$ con il segnale $y[n] = \delta[n] 3\delta[n-1]$. Qual è la sua risposta impulsiva? (utilizzare la trasformata Z). Il sistema è causale? Il sistema è stabile?
- 5) In un comune si vota per eleggere uno tra tre candidati: A, B, C. 1/4 degli elettori è favorevole al candidato A, 1/3 al candidato B, il rimanente al candidato C. Sapendo che sono andati a votare i 2/3 degli elettori favorevoli al candidato A, i 3/4 degli elettori favorevoli al candidato B, i 3/5 degli elettori favorevoli al candidato C, qual è la probabilità che un elettore scelto a caso tra quelli che hanno votato sia favorevole al candidato C? Qual è la percentuale dei votanti?
- Si consideri il seguente processo aleatorio associato al lancio di una moneta. Si associ all'uscita del valore testa la funzione $x_T(t) = (t-1) [u(t)-u(t-1)]$, mentre all'uscita del valore croce è associata la funzione $x_C(t) = (1-t) [u(t)-u(t-1)]$. Dire se il processo è stazionario, regolare, ergodico, almeno per quanto riguarda il valor medio.