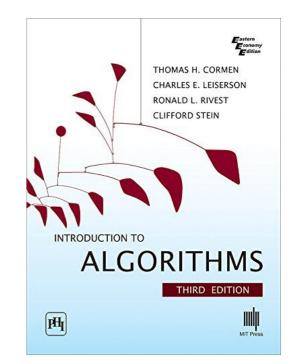
Giulia Bernardini *giulia.bernardini@units.it*Office: 3.29 (C5, 3rd floor)

Algorithmic Design a.y. 2022/2023

What can you expect from this course?

Algorithmics tells us:


- Whether a program will be effective before coding it
- How to estimate the execution time of a program
- Whether the program strategy can be improved

You will learn how to:

- Abstract the notion of program (pseudocodes)
- Define a measure of efficiency/complexity
- Actually compute this measure for existing algorithms
- Design algorithms that perform well for this measure

Material

- **Textbook:** *Introduction to Algorithms* (3rd Edition) Cormen, Leiserson, Rivest, Stein. MIT Press.
- Chapters from other books that I will provide
- Exercises

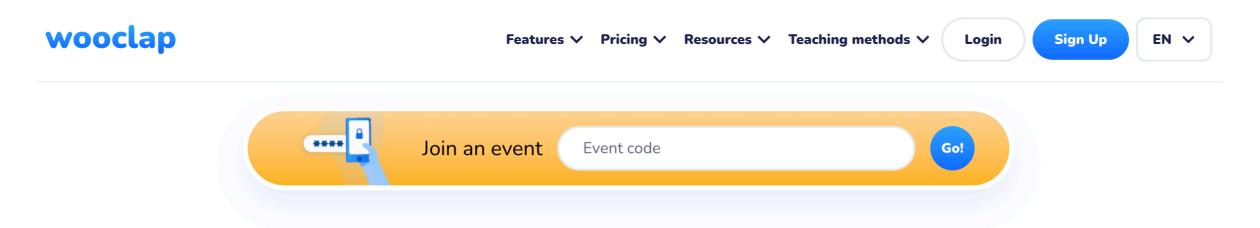
- Slides (sometimes). Disclaimer: the slides are not enough to pass the examination. You need to take notes/read the book
- Video recordings

I will upload everything on moodle as well: https://moodle2.units.it/course/view.php?id=10259

Team: CD2022 587SM-2 ALGORITHMIC DESIGN

Lectures

- **Tuesdays** 10.15-13 in room 0B of H3 building with two breaks of 10/15 minutes in between (sometimes only 2 hours: 10.15-12)
- Wednesdays 10.15-12 in room B of C2 building with one break of 15 minutes in between
- Easter break: 6-12 April
- No lectures on: 25-26 April


Examination

- 15/20 minutes oral presentation about a recent paper individually assigned to each of you at the end of the course. Important: longer presentations will be penalised. To learn how to identify and present only the most important aspects of a problem and its solution is an essential part of this course.
- A thorough oral examination over the whole content of the course (right after the presentation)
- The presentation and the oral examination are given separate grades. The final grade is given by 40% the presentation's grade + 60% the oral examination's grade, provided they are both above the passing mark.
- We will agree on a few dates in each exam session using doodles / emails

Wooclap

Go to www.wooclap.com and use the code BERNARDINIO

You do not need to create an account and you can answer to questions anonymously!

Interactive presentations for memorable classes

Wooclap, the tool to interact, capture attention and measure understanding.

Try Wooclap for free

What quantity does the algorithm below compute?

```
Algorithm 4 Some computation on A
```

```
INPUT: An array A = A[1, \ldots, n] of integers (positive and negative). OUTPUT: ???

i \leftarrow 1; total \leftarrow 0; counter \leftarrow 0;

while i \leq n do

if A[i] > 0 then

total \leftarrow total + A[i];

counter \leftarrow counter + 1;

i \leftarrow i + 1;

if counter > 0 then

return \frac{\text{total}}{\text{counter}};

else

return FAIL;
```

What quantity does the algorithm below compute?

The loop is not endless

```
Algorithm 4 Some computation on A
     INPUT: An array A = A[1, ..., n] of integers (positive and negative).
     OUTPUT: ???
    i \leftarrow 1; total \leftarrow 0; counter \leftarrow 0;
     while i \leq n do
        if A[i] > 0 then

total \leftarrow total + A[i];

counter \leftarrow counter + 1;

i \leftarrow i + 1;
                                                     i is incremented at every iteration of the loop
    if counter > 0 then
         return \frac{\text{total}}{\text{counter}};
     else
         return FAIL;
```

What quantity does the algorithm below compute?

It does not always fail

```
Algorithm 4 Some computation on A
```

```
INPUT: An array A = A[1, \ldots, n] of integers (positive and negative). OUTPUT: ???

i \leftarrow 1; total \leftarrow 0; counter \leftarrow 0;

while i \leq n do

if A[i] > 0 then

total \leftarrow total + A[i];

counter \leftarrow counter + 1;

if counter > 0 then

return \frac{\text{total}}{\text{counter}};

else

return FAIL;
```

What quantity does the algorithm below compute?

It skips the negative elements...

```
Algorithm 4 Some computation on A
    INPUT: An array A = A[1, ..., n] of integers (positive and negative).
    OUTPUT: ???
    i \leftarrow 1; total \leftarrow 0; counter \leftarrow 0;
    while i \leq n do
        if A[i] > 0 then
                                              total stores the sum of the positive elements;
             \mathsf{total} \leftarrow \mathsf{total} + A[i];
                                              count stores the number of positive elements
             counter \leftarrow counter +1;
        i \leftarrow i + 1;
    if counter > 0 then
        return \frac{\text{total}}{\text{counter}};
    else
         return FAIL;
```

What quantity does the algorithm below compute?

It returns the average of the positive elements of A!

```
Algorithm 4 Some computation on A
    INPUT: An array A = A[1, ..., n] of integers (positive and negative).
    OUTPUT: ???
    i \leftarrow 1; total \leftarrow 0; counter \leftarrow 0;
    while i \leq n do
        if A[i] > 0 then
             total \leftarrow total + A[i];
             counter \leftarrow counter +1;
        i \leftarrow i + 1;
    if counter > 0 then
                               This is the average of the positive elements, if there are any!
        return \frac{\text{total}}{\text{counter}};
    else
        return FAIL;
```