
Tuesday’s Lecture 1

Physics Simulations with Python:
prerequisites, tools and basic concepts

Laboratorio di Fisica Computazionale
Computational Physics Laboratory

Antimo Marrazzo (Physics Department, UniTS)
AA 2022/23 II semester







• «Python is an easy to learn, powerful programming language» (source: 
official Python tutorial)
• Few catches:
• Easy to start coding, difficult to loose accents from other languages
• You only miss what you know about: several powerful featues potentially 

unexploited 
• Often harder (or not obvious) to produce efficient code for numerical 

simulations, especially at the HPC level. (Fortran is a Formula TRANslator, it was 
designed for number crunching; Python is more general purpose, from web 
design to data analysis)

What is Python?



• Python is an interpreted, interactive, object-oriented programming language. 
It incorporates modules, exceptions, dynamic typing, very high level dynamic
data types, and classes. 
• It supports multiple programming paradigms beyond object-oriented

programming, such as procedural and functional programming.
• Python combines remarkable power with very clear syntax. 
• It has interfaces to many system calls and libraries, as well as to various

window systems, and is extensible in C or C++. It is also usable as an extension 
language for applications that need a programmable interface. Finally, Python 
is portable: it runs on many Unix variants including Linux and macOS, and on 
Windows.

[Source: docs.python.org]

What is Python? (really)



• It dramatically reduces the time to develop codes (especially true if the 
programmer time is worth more than CPU time)
• “Python as a glue”: ease of integrating C, C++ and Fortran code
• Great for prototyping code
• Great for data analysis, machine learning & visualizing data
• It can be made efficient with extensions and libraries
• It has becoming extremely popular also in computational science (existing 

projects and available libraries)
• NB: Pythonic strategies, tools and style are radically different w.r.t compiled 

codes…especially if you were originally trained with C or Fortran!

Why Python? 
(in a Computational Physics Laboratory)



• This course is about computational physics, *not* a coding class
->For a dedicated introduction to Bash and the Python programming language have a 
look at the I semester course 682SM Abilità informatiche e telematiche, slides and 
other material available on the 682SM Teams channel (access code at 
https://www.units.it/en/node/10905)

• We will not teach you how to code in Python from scratch
->check out 682SM for that
->we will revise key concepts through short summaries and code examples

• We will not require you to know how to code in Python
• The proven capability to develop a code for numerical simulations in modern 

Fortran AND Python (i.e. using both!) will be evaluated very positively
• We will show you that implementing physics simulations sometimes requires 

different strategies in Python than in C or Fortran 90.

A disclaimer

https://www.units.it/en/node/10905


Homework #1
• Make sure you are familiar with these topics
• Basic Python syntax.
• Basic built-in datastructures (lists, tuples and dictionaries).
• Control structures (if-else, while, for).
• How to write and use functions and modules.
• File I/O.

at the level of the course 682SM Abilità informatiche e telematiche.

• If you come from modern Fortran, check out this Python-Fortran Rosetta 
Stone https://www.fortran90.org/src/rosetta.html (Python with NumPy and 
Fortran are actually rather similar in terms of expressiveness and features)

https://www.fortran90.org/src/rosetta.html


The Python interpreter
• Python is an interpreted language: the interpreter runs programs by 

executing one statement at a time.



IPython
• IPython is an enhanced Python interpreter with tab completion, history 

and other advanced features, including the support for interactive data 
visualizations and tools for parallel computing.



Jupyter Notebooks and Jupyter Lab 

• Jupyter Notebooks 
• Spin-off of IPython
• Web-based application for creating & sharing 

computational documents
• “Web-based” notebooks allow to mix code, text 

(e.g. Markdown, HTML) and interactive 
visualization
• They can be used with any programming 

language (but particularly useful in Python)

• Jupyter Lab
• Web-based interactive development

environment for notebooks, code, and data

Source: jupyter.org



Integrated Development Environments (a.k.a. IDEs)
• IDEs are pieces of software which aid computer programmers to write codes
• IDEs are designed to maximise productivity (i.e. save time)
• There exists a large number of them, with a wide range of functionalities:
• Basic features (code editor): vim, emacs, nano, …

-> very useful to use on remote machines (e.g. HPC clusters)
• More advanced (also GUI, compilers/interpreters, support for version control, …): 

Eclipse, Xcode, Visual Studio Code, …
->very powerful to develop code (and write in LaTeX as well!)



Virtual environments

• It is good practices to develop projects in isolated virtual environments on 
top of an existing Python installation, essentially folders which contains all the 
necessary executables to use the packages that a Python project would need, 
including their own independent set of Python packages.
• Very easy through the package virtualenv
• pip install virtualenv
• -> to create the environment: virtualenv yourpythonenv
• -> to enter the environment: source yourpythonenv/bin/activate (on Windows: 

yourpythonenv\Scripts\activate)
• -> to exit: deactivate



…let’s use Jupyter Notebooks!
(now we switch to the .ipynb)



• An extensive list at https://wiki.python.org/moin/PythonBooks
• For beginners with a Physics background (very recommended!)

Effective Computation in Physics: Field Guide to Research with Python
(A. Scopatz & K. D. Huff, O’Reilly, 2015)

• For advanced Python users: 
Fluent Python: Clear, Concise, Effective Programming (L. Ramalho, O’Reilly, 2015)

But … nobody learns coding on books!
1) Learn by doing: practice, practice and practice
2) Python official documentation: https://docs.python.org/3/
3) Stackoverflow: https://stackoverflow.com

Some references



The Ubuntu VMs in Aula Poropat are already configured for the course,
you can use those (even from remote!)

At home
• Option 0 (Linux): for Ubuntu

• sudo apt-get install python3 ipython3 python3-pip python3-numpy python3-numexpr python3-
matplotlib cython3 python3-cffi python3-scipy

• pip3 install jupyter numba virtualenv
• Option 1 (Windows, Linux, MacOS): https://www.python.org/downloads/
• Option 2 (Windows, Linux, MacOS): Anaconda installer (most packages you need for 

this course are pre-installed)
• If you use Windows, consider also to install an Ubuntu VM with VirtualBox

Installing a Python development environement
(useful resources)


