ANOVA

ANOVA
 Sum of SquaresdfMean SquareFpη²
SLC_ClassiRischio1.8020.8994.900.0130.205
Residuals6.98380.184   
[3]

 

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFpη²
SLC_ClassiRischio1.8020.8994.900.0130.205
Residuals6.98380.184   
[3]

 

Assumption Checks

Test for Homogeneity of Variances (Levene's)
Fdf1df2p
0.9622380.391
[3]

 

Post Hoc Tests

Post Hoc Comparisons - SLC_ClassiRischio
Comparison
SLC_ClassiRischio SLC_ClassiRischioMean DifferenceSEdftptukeypbonferroni
0-1-0.3270.18038.0-1.810.1790.234
 -2-0.5850.20838.0-2.820.0200.023
1-2-0.2580.25138.0-1.030.5630.930

 

[4]

Estimated Marginal Means

SLC_ClassiRischio

Estimated Marginal Means - SLC_ClassiRischio
95% Confidence Interval
SLC_ClassiRischioMeanSELowerUpper
02.160.07962.002.32
12.490.16202.162.81
22.740.19172.363.13

 

[4]

Linear Regression

argument is of length zero
Model Fit Measures
ModelR
10.000.00

 

Model Coefficients - SAS_Ansia
PredictorEstimateSEtp
Intercept....
sessoM0F1....

 

Linear Regression

there are aliased coefficients in the model
Model Fit Measures
Overall Model Test
ModelRFdf1df2p
1......
2......

 

Model Comparisons
Comparison
Model ModelΔR²Fdf1df2p
1-2.....

 

Model Specific ResultsModel 1Model 2

Model Coefficients - WART
PredictorEstimateSEtp
Intercept....
SAS_Ansia....
sessoM0F1....

 

Model Coefficients - WART
PredictorEstimateSEtp
Intercept....
SAS_Ansia....
sessoM0F1....
sexBYansia....

 

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFp
 

 

Linear Regression

Model Fit Measures
ModelR
1..

 

Model Coefficients - …
PredictorEstimateSEtp
Intercept....

 

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFp
SLC_ClassiRischio1.8020.8994.900.013
Residuals6.98380.184  
[3]

 

Linear Regression

Model Fit Measures
ModelR
1..

 

Model Coefficients - …
PredictorEstimateSEtp
Intercept....

 

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFp
 

 

One-Way ANOVA

One-Way ANOVA (Welch's)
 Fdf1df2p
 

 

Linear Regression

Model Fit Measures
ModelR
1..

 

Model Coefficients - …
PredictorEstimateSEtp
Intercept....

 

Correlation Matrix

Correlation Matrix
  WARTSAS_Ansia
WARTPearson's r 
 p-value 
 95% CI Upper 
 95% CI Lower 
SAS_AnsiaPearson's r0.609
 p-value< .001
 95% CI Upper0.772
 95% CI Lower0.370

 

Moderation

Moderation Estimates
 EstimateSEZp
SLC_centrato0.22730.044665.09< .001
SD3_NARC_centrato0.02500.008812.840.005
SLC_centrato ✻ SD3_NARC_centrato-0.01060.00899-1.180.236

 

Simple Slope Analysis

Simple Slope Estimates
 EstimateSEZp
Average0.2270.04505.05< .001
Low (-1SD)0.2760.06334.36< .001
High (+1SD)0.1790.05853.050.002
Note. shows the effect of the predictor (SLC_centrato) on the dependent variable (WART) at different levels of the moderator (SD3_NARC_centrato)

 

Simple Slope Plot

One-Way ANOVA

One-Way ANOVA
  Fdf1df2p
WARTWelch's9.49216.20.002
 Fisher's6.872760.002

 

Group Descriptives
 SLC_ClassiRischioNMeanSDSE
WART0572.190.4110.0544
 1152.460.3640.0939
 272.700.2870.1086

 

Post Hoc Tests

Tukey Post-Hoc Test – WART
  012
0Mean difference-0.265-0.506
 t-value-2.32-3.21
 df76.076.0
 p-value0.0590.005
1Mean difference -0.241
 t-value -1.34
 df 76.0
 p-value 0.379
2Mean difference  
 t-value  
 df  
 p-value  

 

Descriptives

Descriptives
 
N
Missing
Mean
Median
Minimum
Maximum

 

Linear Regression

Model Fit Measures
ModelR
10.3910.153

 

Model Coefficients - WART
PredictorEstimateSEtp
Intercept2.4560.10224.14< .001
D_MILD_LOW-0.2650.114-2.320.023
D_mild_High0.2410.1801.340.185

 

References

[1] The jamovi project (2019). jamovi. (Version 1.0) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2018). R: A Language and envionment for statistical computing. [Computer software]. Retrieved from https://cran.r-project.org/.

[3] Fox, J., & Weisberg, S. (2018). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.

[4] Lenth, R. (2018). emmeans: Estimated Marginal Means, aka Least-Squares Means. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.