| ANOVA | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sum of Squares | df | Mean Square | F | p | η² | ||||||||
| SLC_ClassiRischio | 1.80 | 2 | 0.899 | 4.90 | 0.013 | 0.205 | |||||||
| Residuals | 6.98 | 38 | 0.184 | ||||||||||
| [3] | |||||||||||||
| ANOVA | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sum of Squares | df | Mean Square | F | p | η² | ||||||||
| SLC_ClassiRischio | 1.80 | 2 | 0.899 | 4.90 | 0.013 | 0.205 | |||||||
| Residuals | 6.98 | 38 | 0.184 | ||||||||||
| [3] | |||||||||||||
| Test for Homogeneity of Variances (Levene's) | |||||||
|---|---|---|---|---|---|---|---|
| F | df1 | df2 | p | ||||
| 0.962 | 2 | 38 | 0.391 | ||||
| [3] | |||||||
| Post Hoc Comparisons - SLC_ClassiRischio | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Comparison | |||||||||||||||||
| SLC_ClassiRischio | SLC_ClassiRischio | Mean Difference | SE | df | t | ptukey | pbonferroni | ||||||||||
| 0 | - | 1 | -0.327 | 0.180 | 38.0 | -1.81 | 0.179 | 0.234 | |||||||||
| - | 2 | -0.585 | 0.208 | 38.0 | -2.82 | 0.020 | 0.023 | ||||||||||
| 1 | - | 2 | -0.258 | 0.251 | 38.0 | -1.03 | 0.563 | 0.930 | |||||||||
[4]
| Estimated Marginal Means - SLC_ClassiRischio | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| 95% Confidence Interval | |||||||||
| SLC_ClassiRischio | Mean | SE | Lower | Upper | |||||
| 0 | 2.16 | 0.0796 | 2.00 | 2.32 | |||||
| 1 | 2.49 | 0.1620 | 2.16 | 2.81 | |||||
| 2 | 2.74 | 0.1917 | 2.36 | 3.13 | |||||
[4]
| Model Fit Measures | |||||
|---|---|---|---|---|---|
| Model | R | R² | |||
| 1 | 0.00 | 0.00 | |||
| Model Coefficients - SAS_Ansia | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictor | Estimate | SE | t | p | |||||
| Intercept | . | . | . | . | |||||
| sessoM0F1 | . | . | . | . | |||||
| Model Fit Measures | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Overall Model Test | |||||||||||||
| Model | R | R² | F | df1 | df2 | p | |||||||
| 1 | . | . | . | . | . | . | |||||||
| 2 | . | . | . | . | . | . | |||||||
| Model Comparisons | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Comparison | |||||||||||||||
| Model | Model | ΔR² | F | df1 | df2 | p | |||||||||
| 1 | - | 2 | . | . | . | . | . | ||||||||
| Model Coefficients - WART | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictor | Estimate | SE | t | p | |||||
| Intercept | . | . | . | . | |||||
| SAS_Ansia | . | . | . | . | |||||
| sessoM0F1 | . | . | . | . | |||||
| Model Coefficients - WART | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictor | Estimate | SE | t | p | |||||
| Intercept | . | . | . | . | |||||
| SAS_Ansia | . | . | . | . | |||||
| sessoM0F1 | . | . | . | . | |||||
| sexBYansia | . | . | . | . | |||||
| ANOVA | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sum of Squares | df | Mean Square | F | p | |||||||
| Model Fit Measures | |||||
|---|---|---|---|---|---|
| Model | R | R² | |||
| 1 | . | . | |||
| Model Coefficients - … | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictor | Estimate | SE | t | p | |||||
| Intercept | . | . | . | . | |||||
| ANOVA | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sum of Squares | df | Mean Square | F | p | |||||||
| SLC_ClassiRischio | 1.80 | 2 | 0.899 | 4.90 | 0.013 | ||||||
| Residuals | 6.98 | 38 | 0.184 | ||||||||
| [3] | |||||||||||
| Model Fit Measures | |||||
|---|---|---|---|---|---|
| Model | R | R² | |||
| 1 | . | . | |||
| Model Coefficients - … | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictor | Estimate | SE | t | p | |||||
| Intercept | . | . | . | . | |||||
| ANOVA | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sum of Squares | df | Mean Square | F | p | |||||||
| One-Way ANOVA (Welch's) | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| F | df1 | df2 | p | ||||||
| Model Fit Measures | |||||
|---|---|---|---|---|---|
| Model | R | R² | |||
| 1 | . | . | |||
| Model Coefficients - … | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictor | Estimate | SE | t | p | |||||
| Intercept | . | . | . | . | |||||
| Correlation Matrix | |||||||
|---|---|---|---|---|---|---|---|
| WART | SAS_Ansia | ||||||
| WART | Pearson's r | — | |||||
| p-value | — | ||||||
| 95% CI Upper | — | ||||||
| 95% CI Lower | — | ||||||
| SAS_Ansia | Pearson's r | 0.609 | — | ||||
| p-value | < .001 | — | |||||
| 95% CI Upper | 0.772 | — | |||||
| 95% CI Lower | 0.370 | — | |||||
| Moderation Estimates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Estimate | SE | Z | p | ||||||
| SLC_centrato | 0.2273 | 0.04466 | 5.09 | < .001 | |||||
| SD3_NARC_centrato | 0.0250 | 0.00881 | 2.84 | 0.005 | |||||
| SLC_centrato ✻ SD3_NARC_centrato | -0.0106 | 0.00899 | -1.18 | 0.236 | |||||
| Simple Slope Estimates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Estimate | SE | Z | p | ||||||
| Average | 0.227 | 0.0450 | 5.05 | < .001 | |||||
| Low (-1SD) | 0.276 | 0.0633 | 4.36 | < .001 | |||||
| High (+1SD) | 0.179 | 0.0585 | 3.05 | 0.002 | |||||
| Note. shows the effect of the predictor (SLC_centrato) on the dependent variable (WART) at different levels of the moderator (SD3_NARC_centrato) | |||||||||
| One-Way ANOVA | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| F | df1 | df2 | p | ||||||||
| WART | Welch's | 9.49 | 2 | 16.2 | 0.002 | ||||||
| Fisher's | 6.87 | 2 | 76 | 0.002 | |||||||
| Group Descriptives | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| SLC_ClassiRischio | N | Mean | SD | SE | |||||||
| WART | 0 | 57 | 2.19 | 0.411 | 0.0544 | ||||||
| 1 | 15 | 2.46 | 0.364 | 0.0939 | |||||||
| 2 | 7 | 2.70 | 0.287 | 0.1086 | |||||||
| Tukey Post-Hoc Test – WART | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | |||||||
| 0 | Mean difference | — | -0.265 | -0.506 | |||||
| t-value | — | -2.32 | -3.21 | ||||||
| df | — | 76.0 | 76.0 | ||||||
| p-value | — | 0.059 | 0.005 | ||||||
| 1 | Mean difference | — | -0.241 | ||||||
| t-value | — | -1.34 | |||||||
| df | — | 76.0 | |||||||
| p-value | — | 0.379 | |||||||
| 2 | Mean difference | — | |||||||
| t-value | — | ||||||||
| df | — | ||||||||
| p-value | — | ||||||||
| Descriptives | |
|---|---|
| N | |
| Missing | |
| Mean | |
| Median | |
| Minimum | |
| Maximum | |
| Model Fit Measures | |||||
|---|---|---|---|---|---|
| Model | R | R² | |||
| 1 | 0.391 | 0.153 | |||
| Model Coefficients - WART | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictor | Estimate | SE | t | p | |||||
| Intercept | 2.456 | 0.102 | 24.14 | < .001 | |||||
| D_MILD_LOW | -0.265 | 0.114 | -2.32 | 0.023 | |||||
| D_mild_High | 0.241 | 0.180 | 1.34 | 0.185 | |||||
[1] The jamovi project (2019). jamovi. (Version 1.0) [Computer Software]. Retrieved from https://www.jamovi.org.
[2] R Core Team (2018). R: A Language and envionment for statistical computing. [Computer software]. Retrieved from https://cran.r-project.org/.
[3] Fox, J., & Weisberg, S. (2018). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.
[4] Lenth, R. (2018). emmeans: Estimated Marginal Means, aka Least-Squares Means. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.