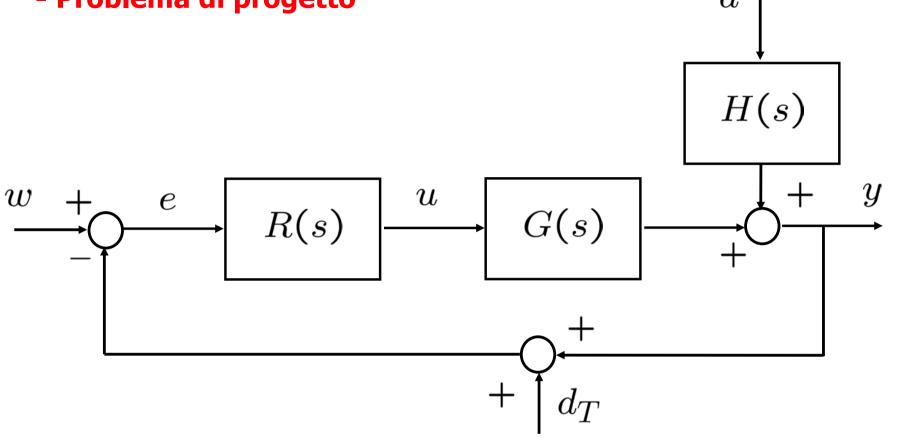
Progetto del controllore

Il caso dei sistemi LTI a tempo continuo



Determinare $\,R(s)\,$ in modo che il sistema soddisfi alcuni requisiti

- Principali requisiti e diagrammi di Bode

Asintotica stabilita`

$$\begin{array}{c}
\mu > 0 \\
0 \\
0
\end{array}$$
(Boo

Precisione statica

$$\begin{cases} \mu > 0 \\ \varphi_m > 0 \end{cases} \tag{Bode}$$

$$\begin{cases} g > 0 \text{ (poli in 0)} \\ \text{e/o} \\ \mu \text{ elevato} \end{cases}$$

Precisione dinamica

- velocita` di risposta

- smorzamento

- Principali requisiti e diagrammi di Bode

• Attenuazione disturbi in retroaz. $\qquad \qquad = \begin{cases} \omega_c & \text{non troppo elevata} \\ |L(j\omega)| & \text{piccolo per } \omega > \omega_c \end{cases}$

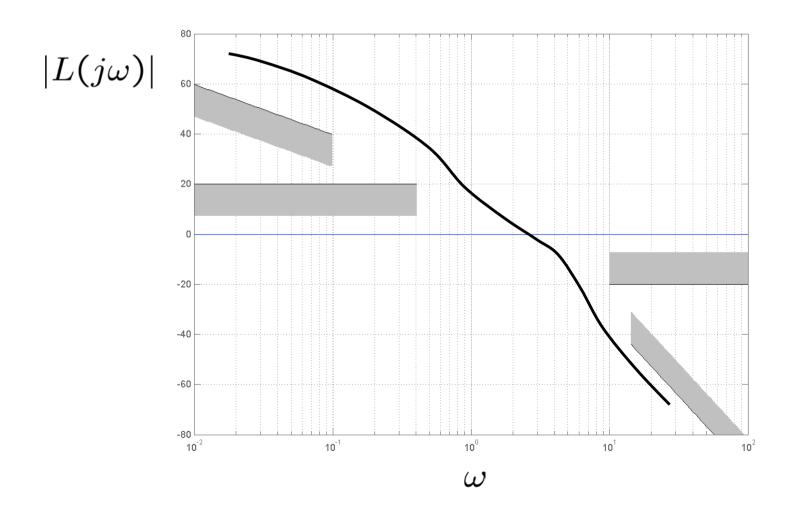
- Tipiche specifiche di progetto sui diagrammi di Bode

A partire dai requisiti si costruiscono opportune specifiche che forniranno vincoli di progetto. Per esempio:

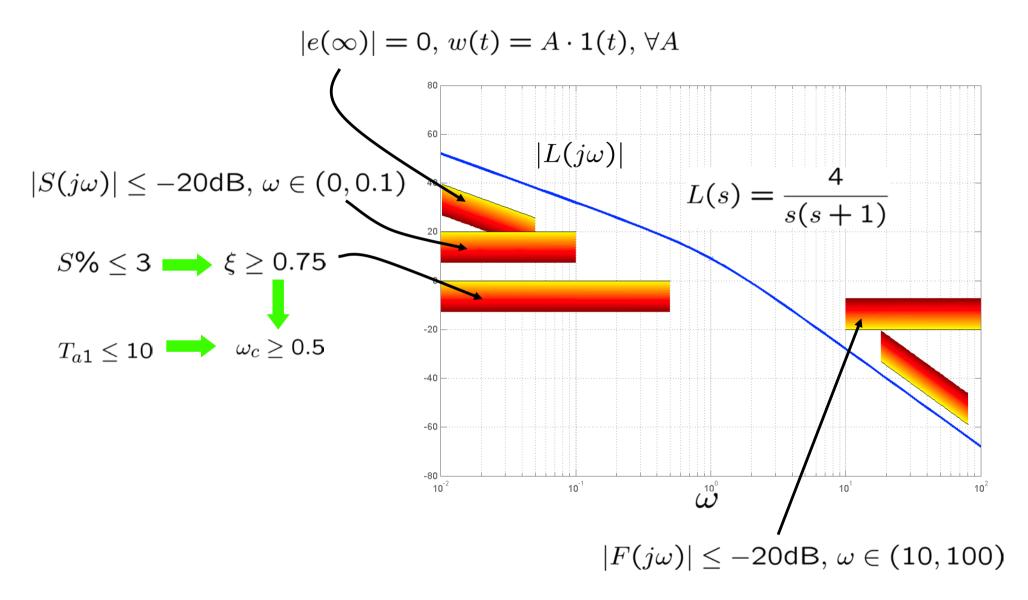
- $ullet |e(\infty)| \leq \overline{e} \qquad ext{con} \quad w, \ d \quad ext{specificati} \ igg\} \qquad ext{Specifica statica}$
- ullet Vincoli su $|L(j\omega)|$
- $\omega_{\min} \leq \omega_c \leq \omega_{\max}$ $\varphi_m \geq \bar{\varphi}_m$ Specifiche dinamiche $k_m \geq \bar{k}_m$

- Rappresentazione grafica dei vincoli di progetto sui d. di Bode

I vincoli di progetto derivanti dalle specifiche che devono essere soddisfatte a progetto ultimato possono convenientemente essere riportati sui diagrammi di Bode.



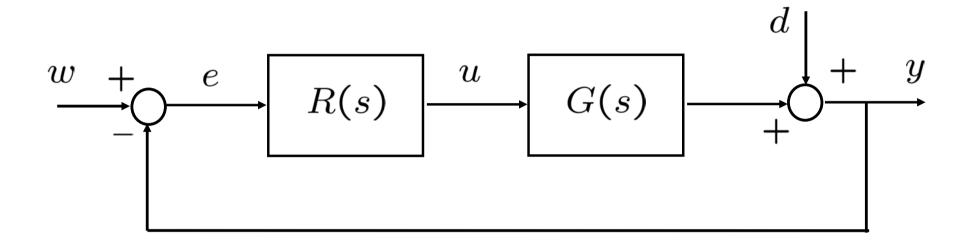
Esempio



- Progetto "per tentativi"

- Partendo da un controllore R(s) di struttura semplice (per esempio un semplice guadagno $R(s) = \mu_R$) si complica via via la sua funzione di trasferimento finche` tutte le specifiche sono **eventualmente** soddisfatte.
- Si puo` condurre lavorando quindi sul piano che sui diagrammi di Bode lavorando quindi in frequenza.

- Esempio 1



$$G(s) = \frac{10}{(1+10s)(1+5s)(1+s)}$$

- Specifiche di progetto

•
$$|e(\infty)| \leq 0.1$$
 cor

$$\begin{cases} w(t) = A \cdot 1(t), |A| \le 1 \\ d(t) = B \cdot 1(t), |B| \le 5 \end{cases}$$

- $\omega_c > 0.2$
- $\varphi_m \geq 60^\circ$

- Controllore

$$R(s) = \frac{\mu_R}{s^r} \frac{\prod (1 + sT_i)}{\prod (1 + s\tau_i)}$$

$$R_1(s) R_2(s)$$

- Progetto statico

$$L(s) = R(s)G(s) = R(s)\frac{10}{(1+10s)(1+5s)(1+s)}$$

Il progetto statico non e` influenzato da $R_2(s)$ in quanto $R_2(0)=1$

Guadagno =
$$10\mu_R > 0$$

Tipo = r

Ma:
$$e(\infty) = e_w(\infty) + e_d(\infty)$$

dove:
$$e_w(t) = e(t) \mid_{d(t)=0}$$
 sovrapposizione
$$e_d(t) = e(t) \mid_{w(t)=0}$$
 effetti

$$e(\infty) = e_w(\infty) + e_d(\infty)$$

$$|e(\infty)| \le |e_w(\infty)| + |e_d(\infty)|$$

Ma:

$$\frac{|A|}{1+10\mu_R} \le \frac{1}{1+10\mu_R} \qquad r = 0$$

$$|e_w(\infty)| = 0 \qquad r > 0$$

$$|e_d(\infty)| = \frac{\frac{|B|}{1 + 10\mu_R} \le \frac{5}{1 + 10\mu_R}}{0 \quad r > 0} \qquad r = 0$$

- Con
$$r=1$$

$$e(\infty) = 0, \quad \forall \mu_R \quad \longrightarrow \quad R_1(s) = \frac{\mu_R}{s}$$

- Con
$$r=0$$

$$|e(\infty)| \le \frac{1}{1+10\mu_R} + \frac{5}{1+10\mu_R} = \frac{6}{1+10\mu_R}$$

imponendo
$$|e(\infty)| \leq 0.1$$

$$\frac{6}{1+10\mu_R} \le 0.1 \quad \longrightarrow \quad \mu_R \ge 5.9$$

Potremmo quindi scegliere $R_1(s) = 8$

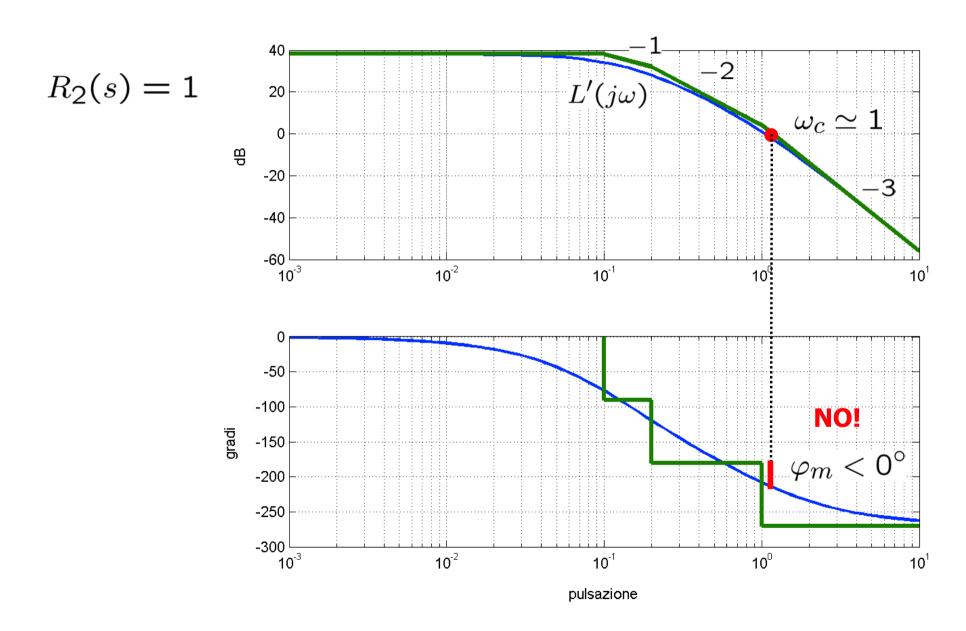
$$R_1(s) = 8$$

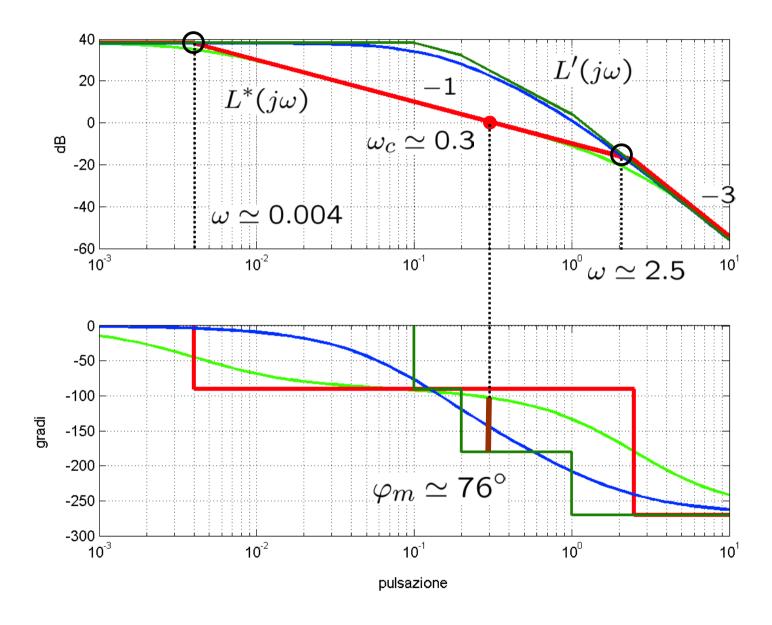
- Progetto dinamico (A)

$$R_1(s) = 8$$

$$L(s) = 8 G(s) R_2(s) = L'(s) R_2(s)$$

$$\operatorname{con} \quad L'(s) = \frac{80}{(1+10s)(1+5s)(1+s)}$$





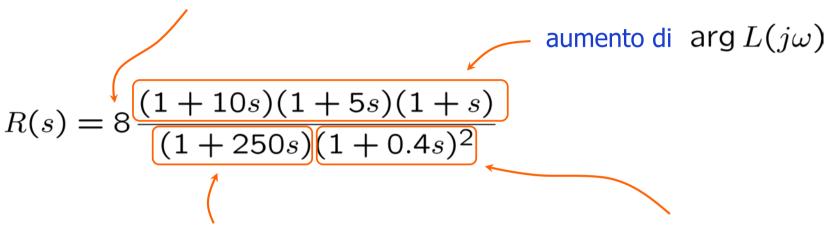
- Procedura seguita nel secondo tentativo del progetto (A): Parte 10, 18

- \bullet Si fissa una pulsazione di taglio soddisfacente: $\omega_c=0.3\geq0.2$
- ullet Si prende una retta con pendenza -1, passante per ω_c e si individuano le pulsazioni corrispondenti alle intersezioni con il diagramma asintotico di L'
- Si determina quindi la funzione di trasferimento d'anello $L^*(s)$ corrispondente al nuovo diagramma asintotico
- Essendo evidentemente $L^*(s) = R_2(s)L'(s)$ si ha $R_2(s) = \frac{L^*(s)}{L'(s)}$
- Nel nostro caso quindi: $L^*(s) = \frac{80}{(1+s/0.004)(1+s/2.5)^2}$

$$R_2(s) = \frac{(1+10s)(1+5s)(1+s)}{(1+250s)(1+0.4s)^2} \qquad e \qquad R(s) = 8R_2(s)$$

- Quindi la soluzione (A) presenta le seguenti caratteristiche:

garantisce la precisione statica



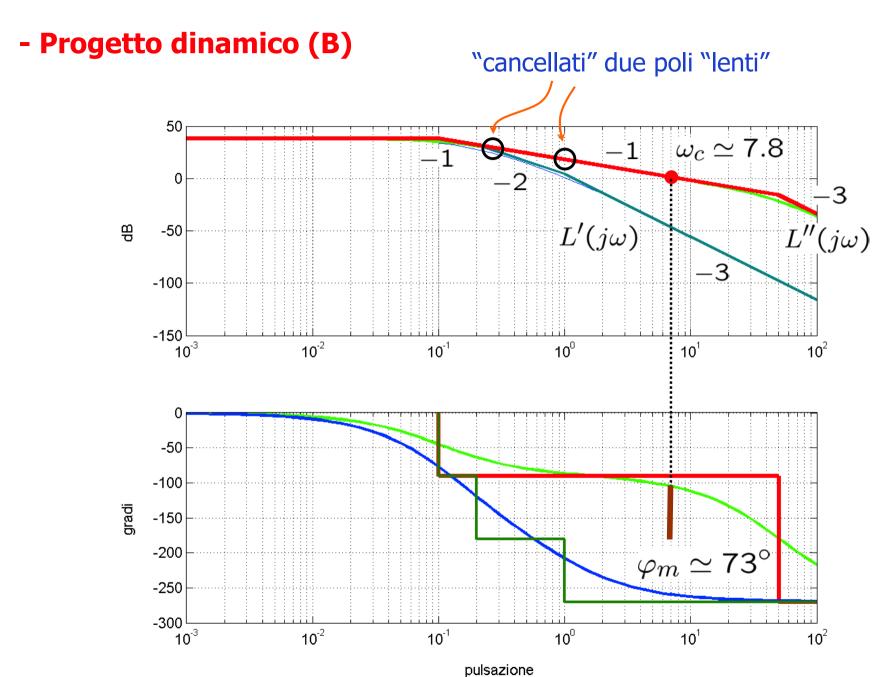
fa scendere $|L(j\omega)|$ a bassa frequenza (per "tagliare a -1")

- necessari per la realizzabilita`
- favoriscono l'attenuazione dei disturbi in retroazione

- Motivazioni dei "raccordi" tra L'(s) e $L^*(s)$

A bassa frequenza per non alterare il progetto statico

Ad alta frequenza per la realizzabilita` fisica



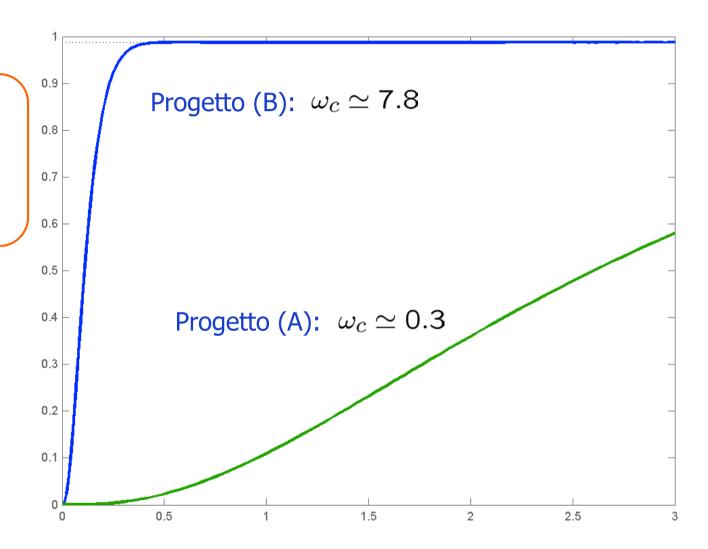
- Procedura seguita nel progetto (B):

- Si ha cura di mantenere invariato il progetto statico
- Si mantiene il polo in −0.1 (cioe` quello piu` "lento") per avere la "discesa" con pendenza -1
- Si cancellano i poli opportuni in modo da attraverso l'asse a 0 dB con pendenza -1
- Si aggiunge un pari numero di poli sufficientemente a destra della pulsazione di taglio ottenuto
- Nel nostro caso quindi: $L''(s) = \frac{80}{(1+10s)(1+0.02s)^2}$

$$R_2(s) = \frac{(1+5s)(1+s)}{(1+0.02s)^2}$$
 e $R(s) = 8R_2(s)$

- Confronto risposte al gradino del sist. in anello chiuso

Nel Progetto (B) la banda passante e` molto maggiore da cui una velocita` di risposta maggiore



- Inconvenienti associati ad ω_c elevata

- Alti valori dei segnali di controllo generati dal controllore
- Scarsa attenuazione dei disturbi in retroazione
- Scarsa robustezza rispetto a:
 - ritardi di tempo (ricordiamo che lo sfasamento in ritardo cresce con $\;\omega\;$
 - incertezze sul modello ad alta frequenza

- Progetto statico e dinamico (C)

$$R_1(s) = \frac{\mu_R}{s}$$
 (quindi cambiamo anche il progetto statico)

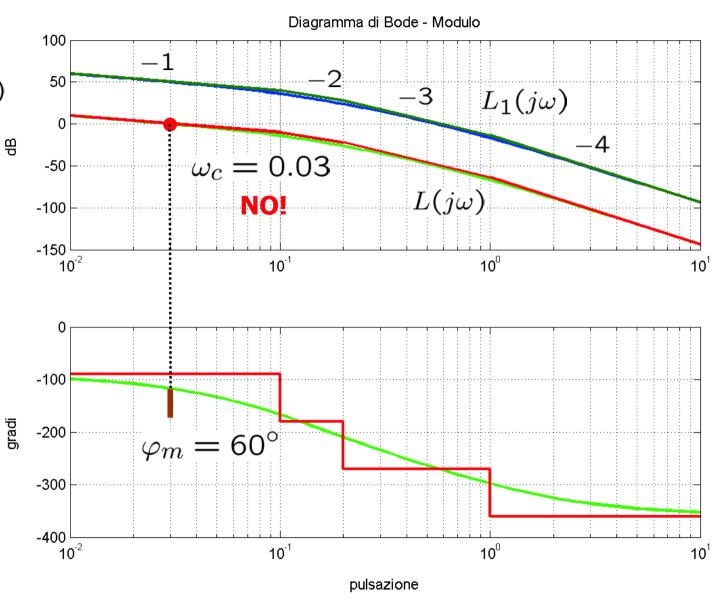
$$L(s) = \frac{G(s)}{s} \mu_R R_2(s) = L_1(s) \mu_R R_2(s)$$

con
$$L_1(s) = \frac{10}{s(1+10s)(1+5s)(1+s)}$$

$$R_2(s) = 1$$

$$L(s) = \mu_R L_1(s)$$

$$\mu_R = 10^{-5/2}$$
 e



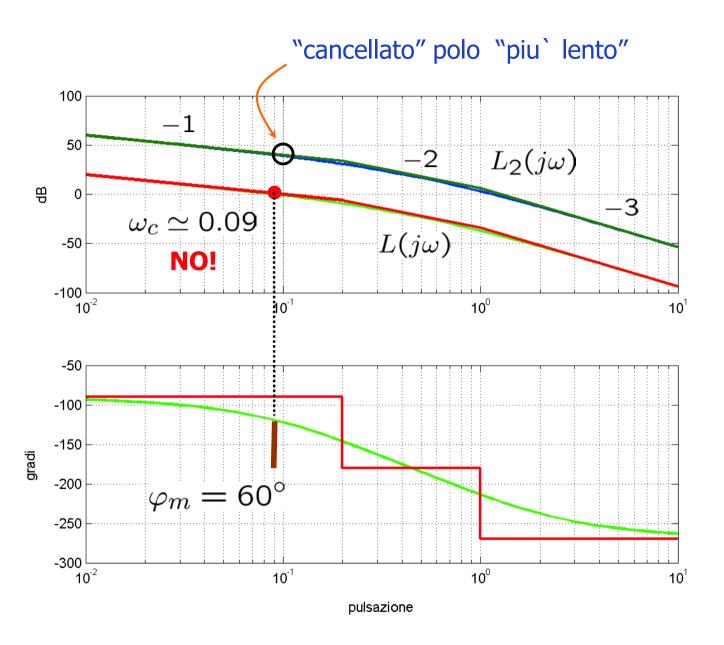
- Tentativo 2

$$R_2(s) = (1 + 10s)$$

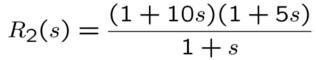
$$L(s) = \mu_R L_2(s)$$

$$L_2(s) = \frac{10}{s(1 + 5s)(1 + s)}$$

$$\mu_R \simeq 0.01$$



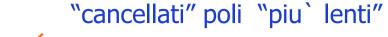
- Tentativo 3

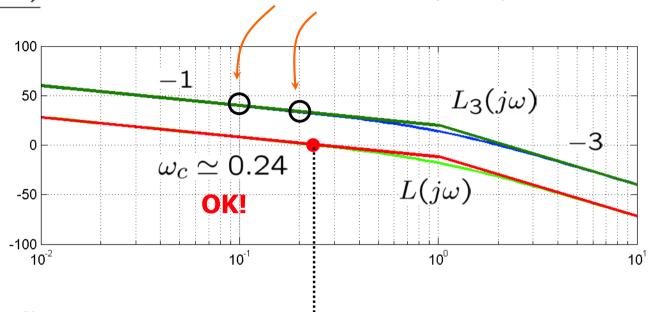


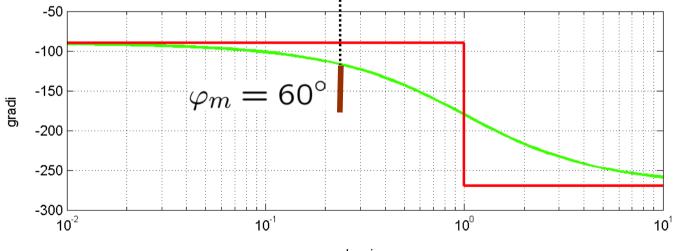
$$L(s) = \mu_R L_3(s)$$

$$L_3(s) = \frac{10}{s(1+s)^2}$$

$$\mu_R \simeq 0.0254$$







- Riassumendo:

$$G(s) = \frac{10}{(1+10s)(1+5s)(1+s)}$$

(A):
$$R(s) = \frac{8(1+10s)(1+5s)(1+s)}{(1+250s)(1+0.4s)^2}$$

$$\omega_c \simeq 0.3$$

$$\varphi_m \simeq 76^{\circ}$$

(B):
$$R(s) = \frac{8(1+5s)(1+s)}{(1+0.02s)^2}$$

$$\omega_c \simeq 7.8$$

$$\varphi_m \simeq 73^{\circ}$$

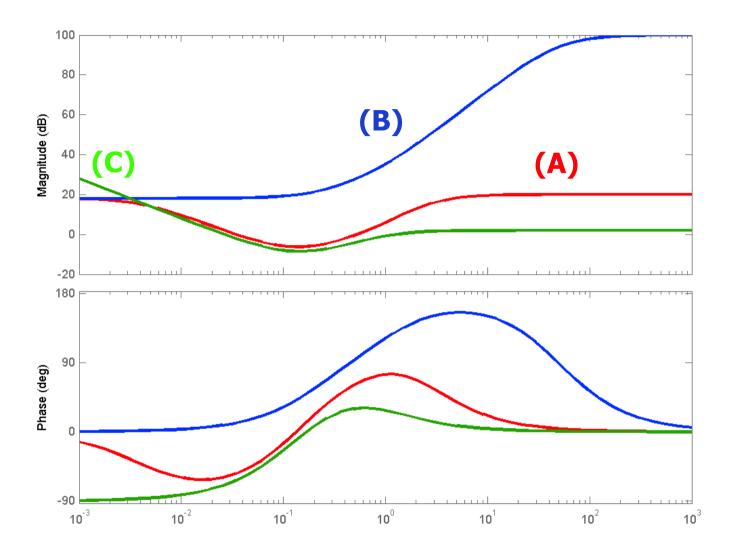
(C):
$$R(s) = \frac{0.0254(1+10s)(1+5s)}{s(1+s)}$$

$$\omega_c \simeq 0.24$$

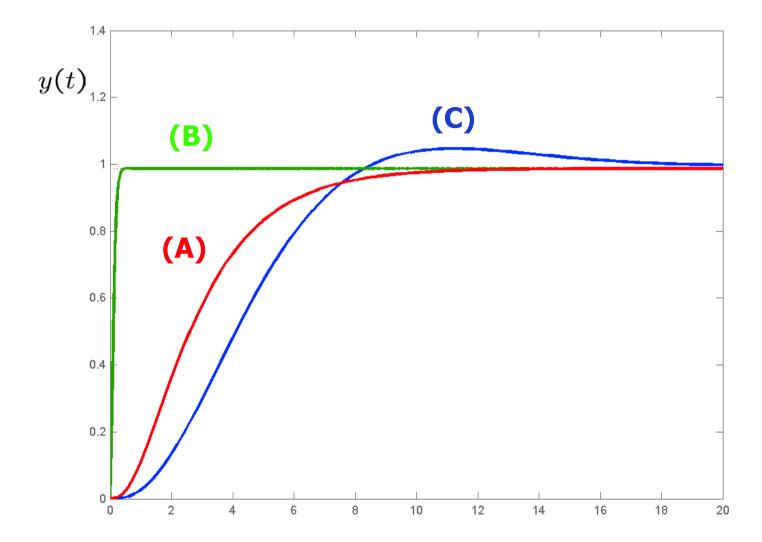
$$\varphi_m \simeq 63^{\circ}$$

$$e(\infty) = 0$$

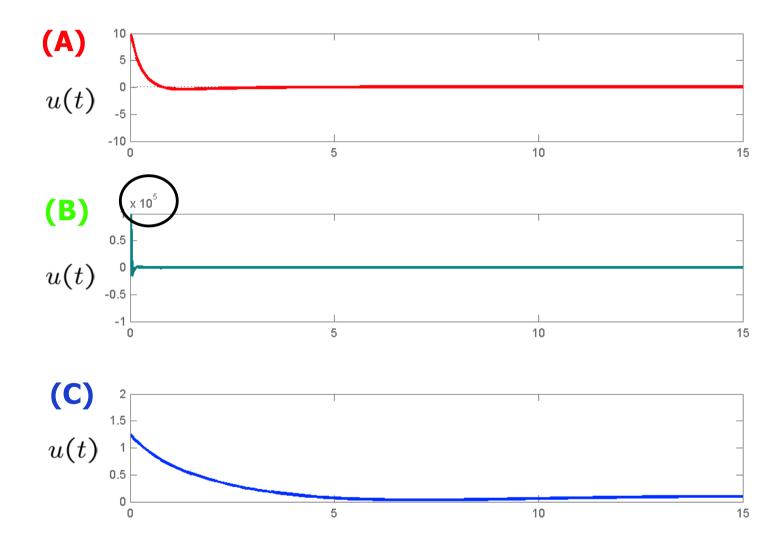
- Diagrammi di Bode dei diversi controllori:



- Risposte al gradino in anello chiuso:



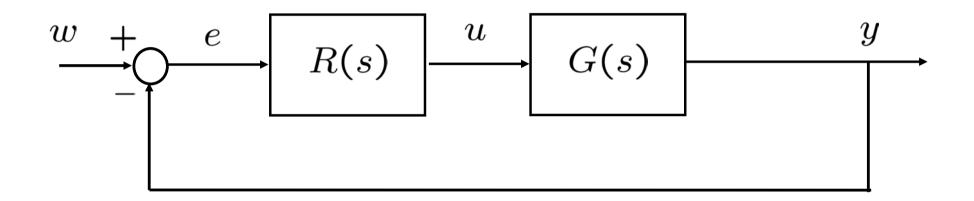
- Segnali di controllo:



- Progetto per sistemi a fase non minima/instabili

- Se il sistema da controllare non e` a fase minima o e` instabile, non si puo` utilizzare il criterio di Bode ed inoltre non si possono effettuare cancellazioni di zeri o poli a parte reale positiva quindi il progetto per tentativi va condotto con cautela.
- Inoltre la presenza di tali zeri/poli pone delle limitazioni su cio` che puo` essere ottenuto in termini di prestazioni

- Esempio 2 (a fase non minima)



$$G(s) = \frac{10(1-2s)}{s(1+10s)(1+0.1s)}$$

- Specifica di progetto: $\varphi_m \ge 40^\circ$

- Il termine
$$\frac{(1-2s)}{s}$$

- Non e` cancellabile.
- Da` contributo negativo alla fase: -90° arcgtg (2ω)

in
$$\omega = 0.5$$
 tale contributo vale -135°

 ω_c Non potra` superare di molto $\omega=0.5$

Lo zero a fase non minima da` una limitazione forte alla velocita` di risposta ottenibile a valle del progetto del controllore

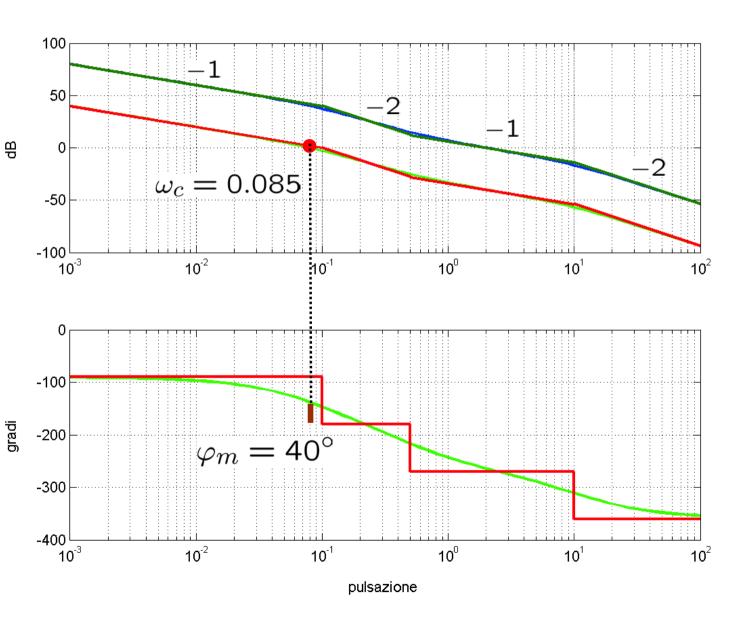
- Tentativo 1
$$\arg G(j\omega) = -140^{\circ}$$
 in $\omega \simeq 0.085$

$$R(s) = \mu_R$$

$$L(s) = \mu_R G(s)$$

$$\mu_R \simeq 0.01$$

$$\omega_c=$$
 0.085 $_{\odot}$



- Tentativo 2
$$\arg G(j\omega) = -1$$

$$R(s) = \mu_R \frac{1+10s}{1+0.1s}$$

$$L(s) = \mu_R \frac{10(1-2s)}{s(1+0.1s)^2}$$

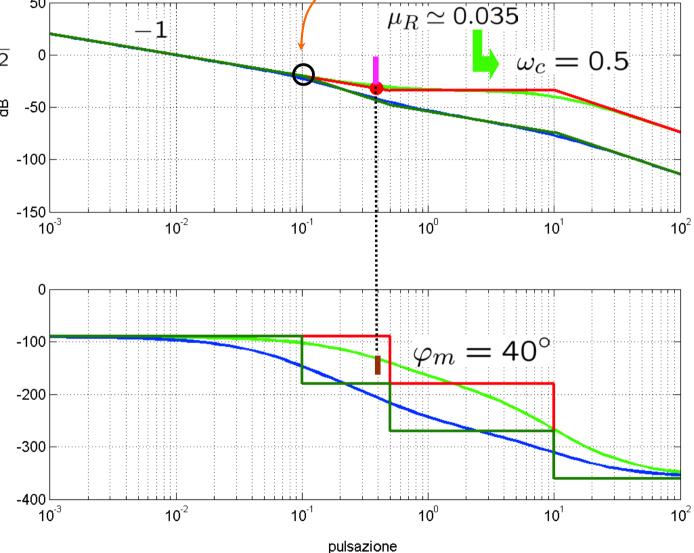
$$\frac{9}{100}$$

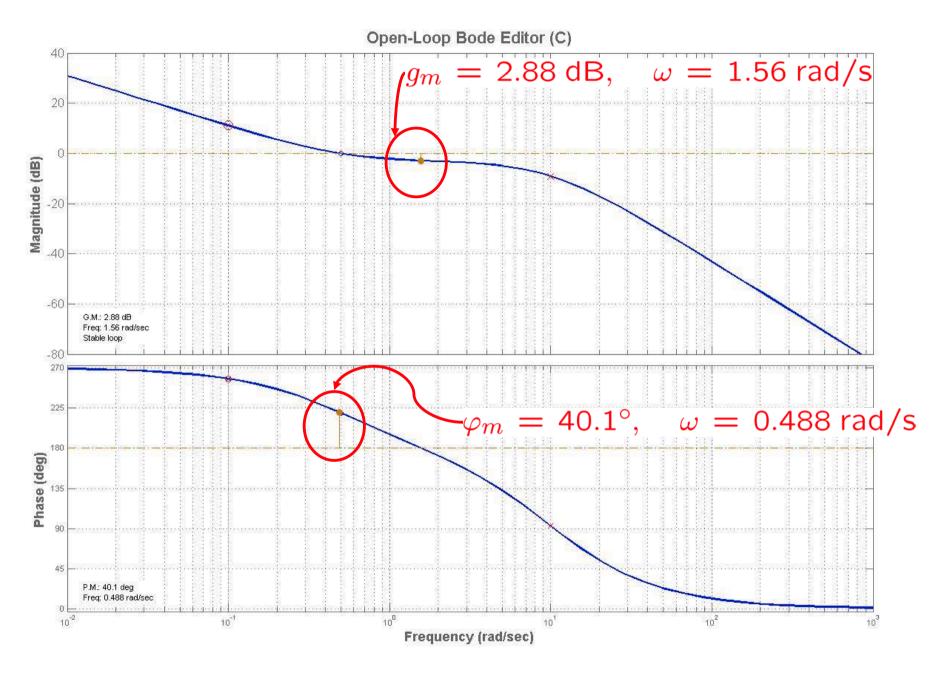
$$-150$$

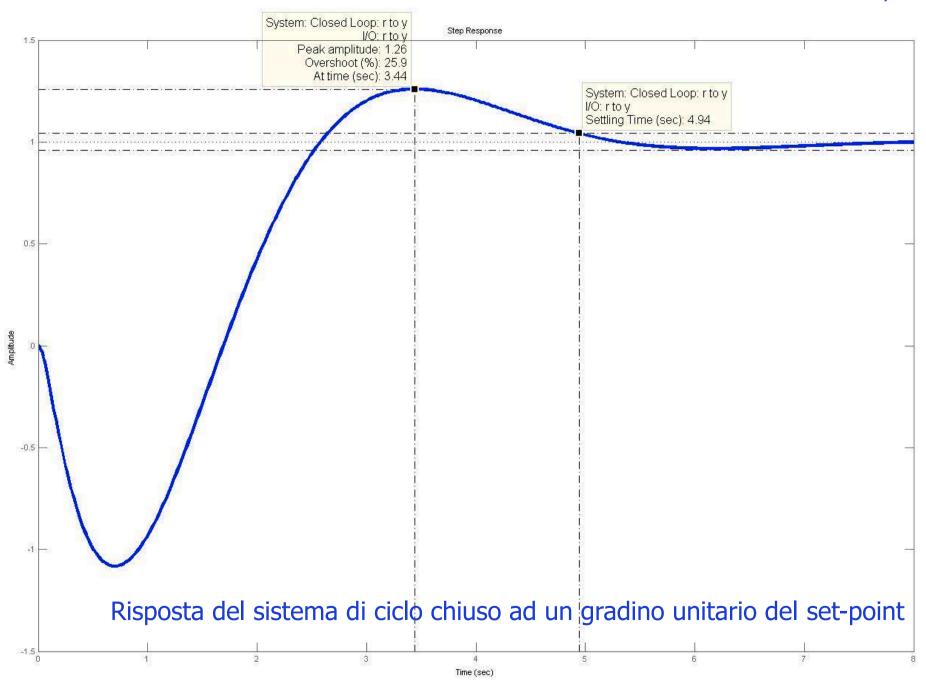
$$0$$
0

gradi

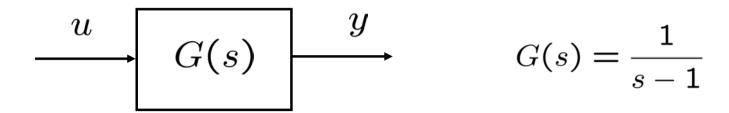
"cancellato" polo "piu' lento"







- Esempio 3 (instabile in anello aperto)

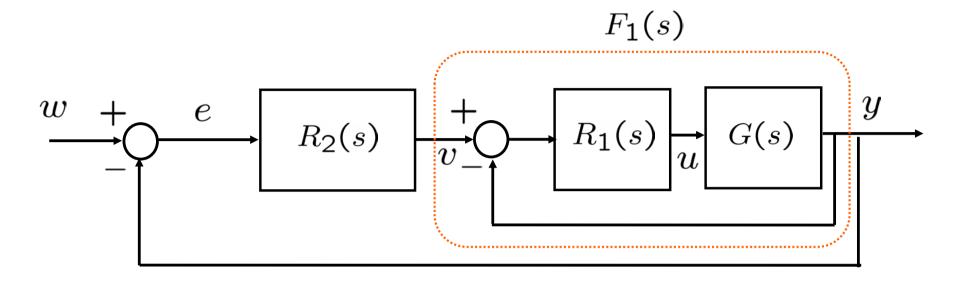


- Specifiche di progetto:

•
$$|e(\infty)| = 0$$
 con $w(t) = A \cdot 1(t)$

- $\omega_c \geq 0.5$ $\varphi_m \geq 45^\circ$

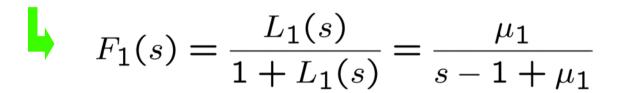
La via piu` semplice e` utilizzare il cosiddetto schema a doppio anello:



- $R_{\mathbf{1}}(s)$ ha il compito di stabilizzare il sistema da controllare
- $R_2(s)$ ha il compito di far si`che le specifiche di progetto siano soddisfatte

Il progetto di $R_1(s)$ puo` essere condotto semplicemente cosi`:

$$R_1(s) = \mu_1 \longrightarrow L_1(s) = \frac{\mu_1}{s-1}$$



Scegliendo per esempio $\mu_1=11$ si otterrebbe $F_1(s)=\frac{1.1}{1+0.1\,\mathrm{s}}$

Il progetto di $R_2(s)$ e` ora molto semplice. Per esempio

$$R_2(s) = \frac{5}{s}$$

$$L_1(s) = \frac{5.5}{s(1+0.1s)}$$

