Lemma 1. Let $\rho \in]0,1[$. Let $A \subseteq]a, b[$ such that for all $]\alpha, \beta[\subseteq]a, b[$,

$$
\lambda^*(A \cap \alpha, \beta) \le \rho (\beta - \alpha).
$$

Then $\lambda^*(A) = 0$. Consequently A is measurable and $\lambda(A) = 0$.

Proof. We recall that

$$
\lambda^*(A) = \inf \{ \sum_{n=1}^{+\infty} (\beta_n - \alpha_n) : A \subseteq \bigcup_{n=1}^{+\infty} \alpha_n, \beta_n[\}.
$$

Since $A \subseteq [a, b]$, in the previous definition it is not restrictive to suppose that, for all $n, \,]\alpha_n, \beta_n[\subseteq]a, b[$. Let $\varepsilon > 0$. From the definition of outer measure we have that there exists a sequence $([\alpha_n, \beta_n])_n$ of subintervals of $]a, b[$, such that

$$
A \subseteq \bigcup_{n=1}^{+\infty} |\alpha_n, \beta_n|
$$
 and $\sum_{n=1}^{+\infty} (\beta_n - \alpha_n) < \lambda^*(A) + \varepsilon$.

Recalling now that the outer measure is countably subadditive, we have

$$
\lambda^*(A) \leq \sum_{n=1}^{+\infty} \lambda^*(A \cap \alpha_n, \beta_n[1] \leq \sum_{n=1}^{+\infty} \rho(\beta_n - \alpha_n) \leq \rho(\lambda^*(A) + \varepsilon).
$$

Since this is true for all $\varepsilon > 0$, we deduce that

$$
\lambda^*(A) \le \rho \lambda^*(A)
$$

and the conclusion follows.

