Some more exercises on distributions

1) Let h be a function in $\mathcal{C}^1([0,1] \times \mathbb{R})$. Let $g : \mathbb{R} \to \mathbb{R}$ such that

$$g(x) = \int_0^1 h(s, x) \, ds.$$

Prove that g is in $\mathcal{C}^1(\mathbb{R})$ and

$$g'(x) = \int_0^1 \frac{\partial h}{\partial x}(s, x) \, ds$$

2) Let h be a function in $\mathcal{C}^{\infty}(\mathbb{R})$. Let $g: \mathbb{R} \to \mathbb{R}$ such that

$$g(x) = \begin{cases} \frac{h(x) - h(0)}{x} & \text{if } x \neq 0, \\ h'(0) & \text{if } x = 0. \end{cases}$$

Prove that g is in $\mathcal{C}^{\infty}(\mathbb{R})$.

3) Let $\tau_a \varphi$ the function $\tau_a \varphi(x) = \varphi(x-a)$ where $\varphi \in \mathcal{D}(\mathbb{R})$ and, similarly, $\tau_a T(\varphi) = T(\tau_{-a}\varphi)$ if $T \in \mathcal{D}'(\mathbb{R})$. Prove that, given $T \in \mathcal{D}'(\mathbb{R})$,

$$T' = \lim_{n} n(\tau_{-\frac{1}{n}}T - T),$$

where the limit is in the weak topology.

- 4) Prove that if f is an increasing function defined on \mathbb{R} then its derivative in the sense of distribution is a positive Radon measure.
- 5) A distribution $T \in \mathcal{D}'(\mathbb{R}^n)$ is said to be positively homogeneous of degree k if, for all $\lambda > 0$,

$$T(\frac{1}{\lambda^n}\varphi(\frac{\cdot}{\lambda})) = \lambda^k T(\varphi).$$

Prove that δ_0 is positively homogeneous of degree -n (where $\delta_0 \in \mathcal{D}'(\mathbb{R}^n)$) and $\mathrm{PV}_{\frac{1}{n}}$ is positively homogeneous of degree -1.

6) Prove that, given $f \in \mathcal{C}^{\infty}(\Omega)$ and $a \in \Omega$

$$f \cdot \delta_a = f(a)\delta_a,$$

where $f \cdot \delta_a$ is the multiplication the distribution δ_a with the smooth function f, i. e.

$$f \cdot \delta_a(\varphi) = \delta_a(f\varphi).$$

7) Prove that, on \mathbb{R} ,

$$\operatorname{Id}_{\mathbb{R}} \cdot \delta'_0 = -\delta_0 \quad \text{and} \quad \operatorname{Id}_{\mathbb{R}} \cdot \operatorname{PV}_{\frac{1}{x}} = 1,$$

where $\mathrm{Id}_{\mathbb{R}}$ is the identity on \mathbb{R} , i. e. $\mathrm{Id}_{\mathbb{R}}(x) = x$ for all $x \in \mathbb{R}$.

8) Let $f \in \mathcal{C}^{\infty}(\mathbb{R})$. Prove that there exist $\alpha \in \mathbb{R}$ and $g \in \mathcal{C}^{\infty}(\mathbb{R})$ such that

$$f \cdot \mathrm{PV}_{\frac{1}{x}} = \alpha \mathrm{PV}_{\frac{1}{x}} + g.$$

(Hint. May be exercise 2 is useful.)

- 9) Find all the distributions in $T \in \mathcal{D}'(\mathbb{R})$ such that $x \cdot T = 0$.
- 10) Find all the distributions in $T \in \mathcal{D}'(\mathbb{R})$ such that $x \cdot T = 1$.
- 11) Let $f :]a, b[\to \mathbb{R}$ a piecewise \mathcal{C}^1 . Compute T'_f .
- 12) Prove that, given I open interval of \mathbb{R} , the distributions on I such that T' = 0 are only the distributions associated to constant functions. Prove also that for all $T \in \mathcal{D}'(I)$ there exists $S \in \mathcal{D}'(I)$ such that T' = S.
- 13) Find all the distributions T in $\mathcal{D}'(\mathbb{R})$ such that

$$\mathrm{Id}_{\mathbb{R}} \cdot T' + T = 0.$$

14) Let f a function in $L^1_{loc}(\mathbb{R})$. Consider

$$F(x) = \int_0^x f(t) \, dt.$$

Compute the derivative of F in the sense of distributions.