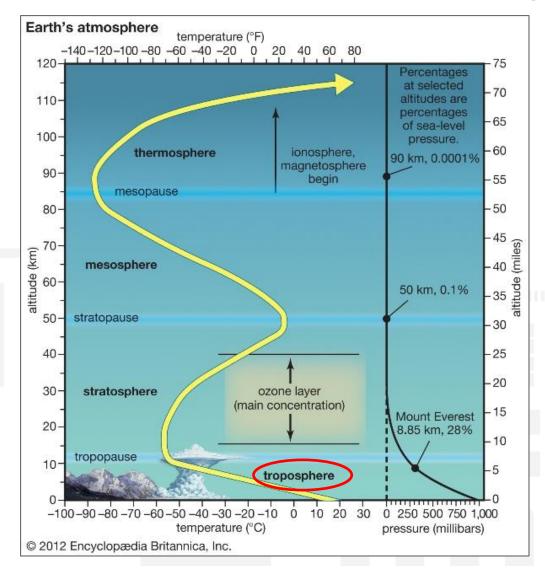


CORSO di CHIMICA AMBIENTALE A.A. 2022-23

2-3a – Chimica della Troposfera

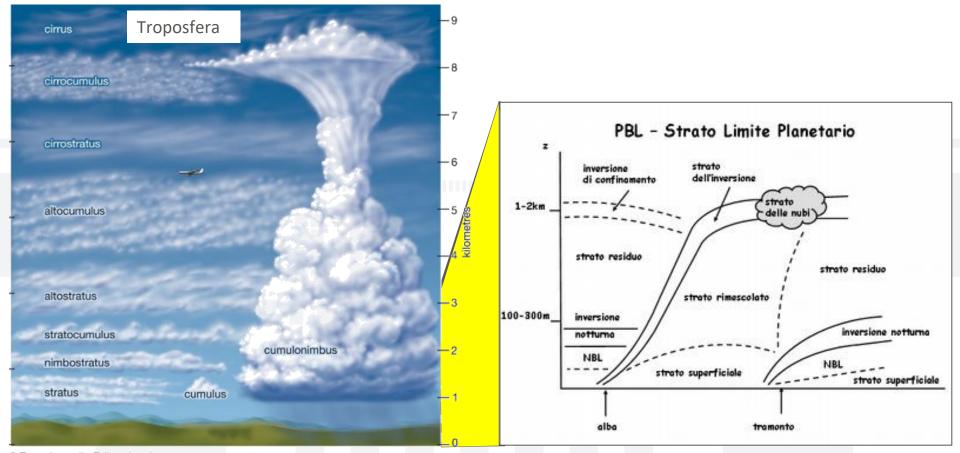

Docente:

Enrico Greco, PhD

(enrico.greco@units.it)

Assistant Professor, Department of Chemical and Pharmaceutical Sciences

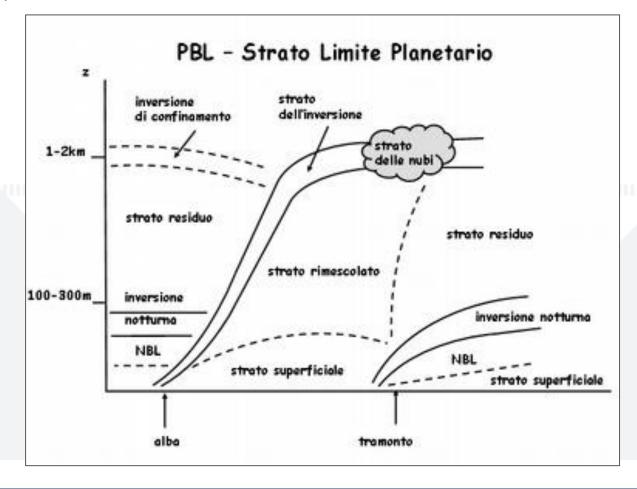
La troposfera


Troposfera:

- si estende dal livello del mare a 10-16 Km di altezza;
- è caratterizzata da una <u>distribuzione</u> <u>omogenea dei gas maggiori</u> a causa di un costante rimescolamento;
- <u>la temperatura diminuisce</u> con l'allontanarsi dalla superficie radiante della terra (mediamente 15°C a livello del mare e -56°C nel limite superiore);
- la formazione delle nubi, evaporazione e precipitazioni comportano una disomogeneità nella distribuzione dell'acqua.

Micrometeorologia e dispersione degli inquinanti

PBL: Planetary Boundary Layer (anche detto ABL = Atmospheric Boundary Layer)



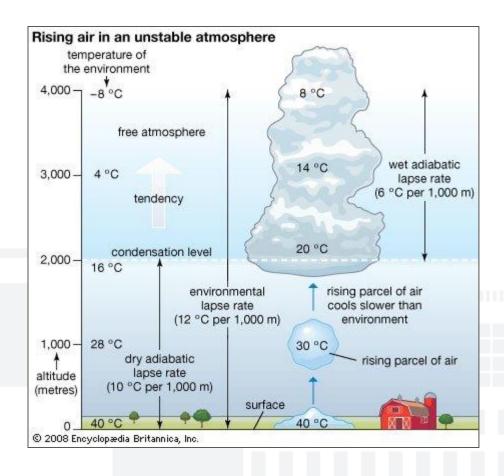
² Encyclopædia Britannica, Inc.

Planetary Boundary Layer

Il PBL descrive quella <u>parte di atmosfera che viene direttamente influenzata dalla presenza della</u> <u>superficie terrestre</u> e risponde ai cambiamenti indotti dalla superficie terrestre in breve tempo (circa un'ora o meno).

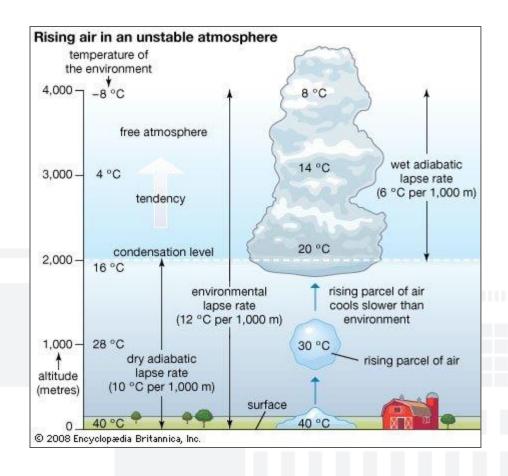
Planetary Boundary Layer

Il PBL descrive quella <u>parte di atmosfera che viene direttamente influenzata dalla presenza della</u> <u>superficie terrestre</u> e risponde ai cambiamenti indotti dalla superficie terrestre in breve tempo (circa un'ora o meno).


L'interazione fra atmosfera e superficie può avvenire attraverso diversi meccanismi:

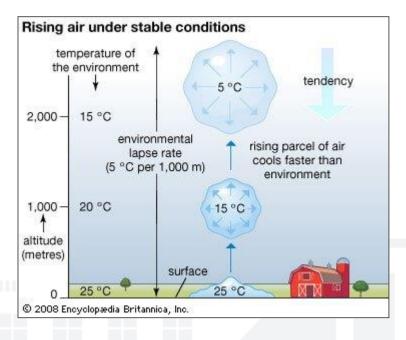
- attrito meccanico;
- evaporazione e traspirazione;
- trasferimento di calore;
- emissione di sostanze inquinanti;
- variazioni della circolazione atmosferica dovuta alla conformazione del terreno

Dispersione verticale degli inquinanti



PBL convettivo

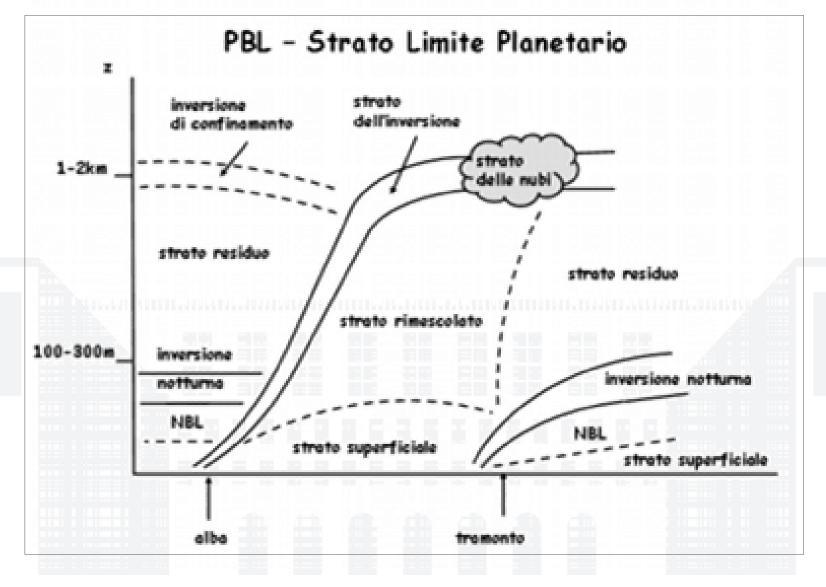
Con PBL convettivo si indica lo strato limite in condizioni di <u>forte insolazione</u> che causano vortici d'aria di natura convettiva ed aumento della produzione di <u>turbolenza</u> e di conseguenza un forte rimescolamento dell'atmosfera.



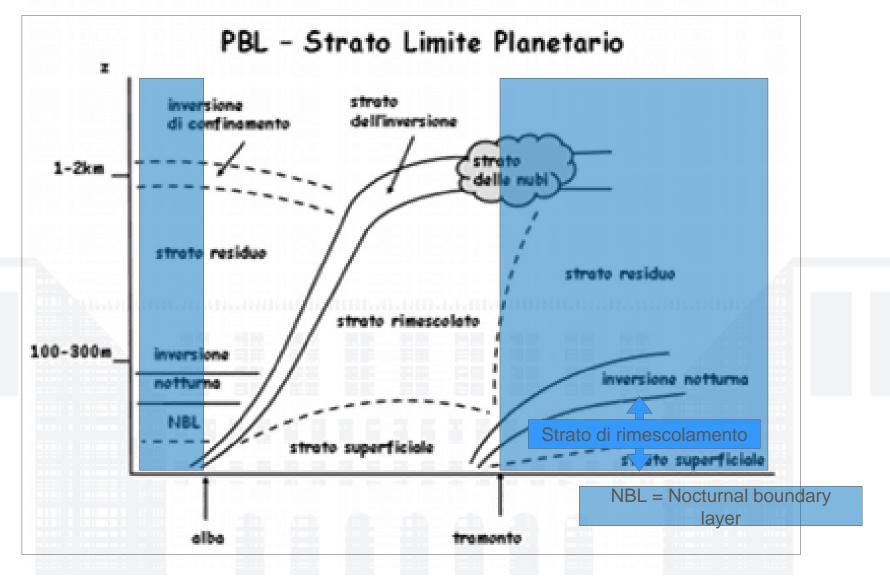
Dispersione verticale degli inquinanti

PBL convettivo

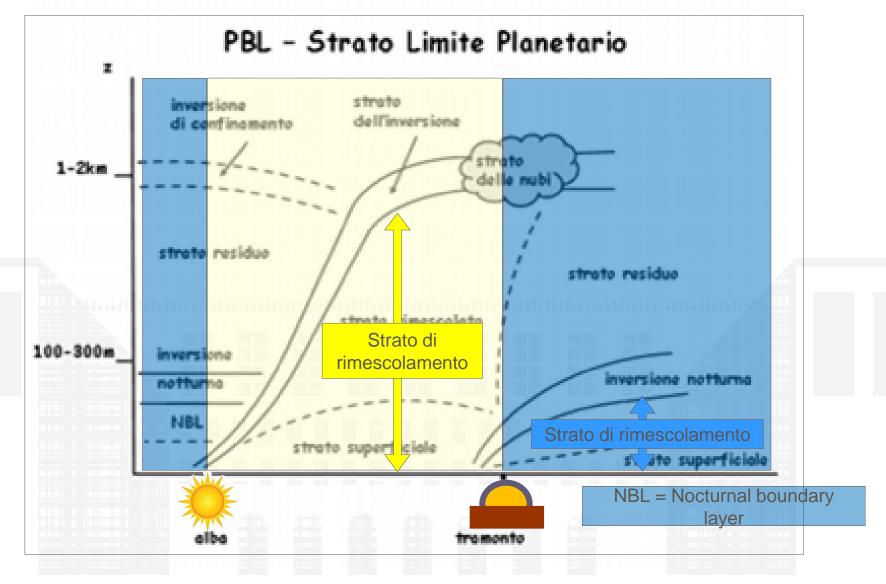
Con PBL convettivo si indica lo strato limite in condizioni di <u>forte insolazione</u> che causano vortici d'aria di natura convettiva ed aumento della produzione di <u>turbolenza</u> e di conseguenza un forte rimescolamento dell'atmosfera.

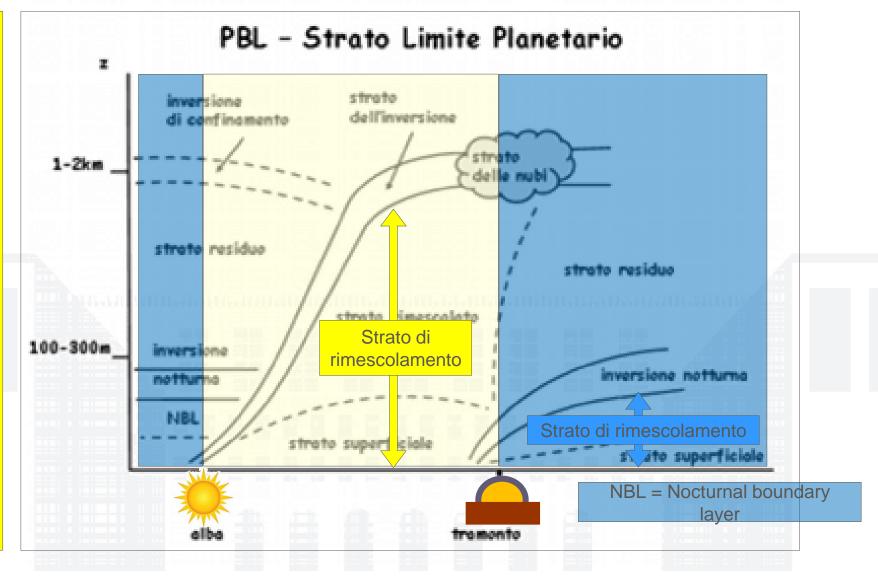


PBL stabile


In condizioni <u>di raffreddamento della superficie</u> terrestre, la turbolenza e il <u>rimescolamento</u> atmosferico sono <u>deboli</u>.

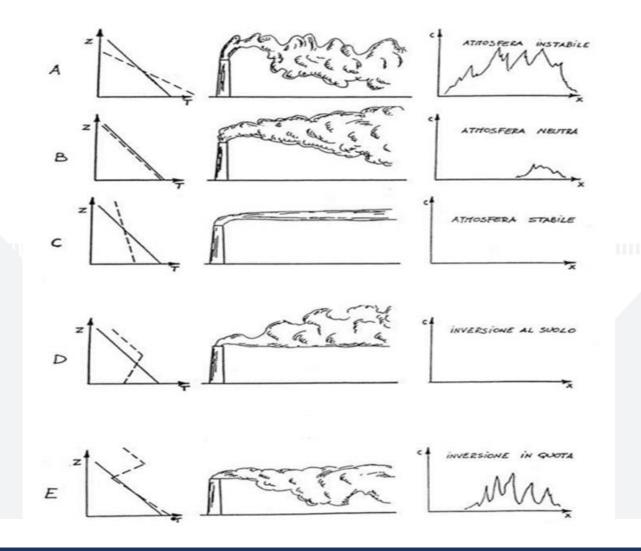
Durante la presenza di <u>inversioni termiche</u> (la superficie terrestre è più fredda dell'aria che sta appena al di sopra di essa) sono <u>inibiti i moti verticali</u> dell'atmosfera e tutti gli inquinanti emessi al suolo sono contenuti sotto una <u>cappa</u> (tappo) che ne impedisce la dispersione.




Altezza dello strato
di rimescolamento
= l'altezza dello
strato adiacente alla
superficie all'interno
del quale <u>un</u>
composto viene
disperso

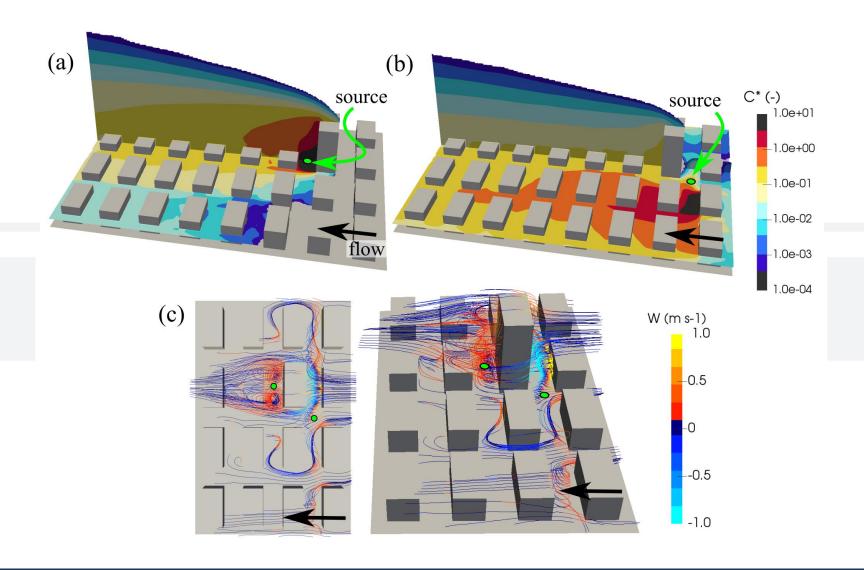
composto viene
disperso
verticalmente per
turbolenza
meccanica o
convettiva in un
tempo pari a un'ora
circa.

L'altezza

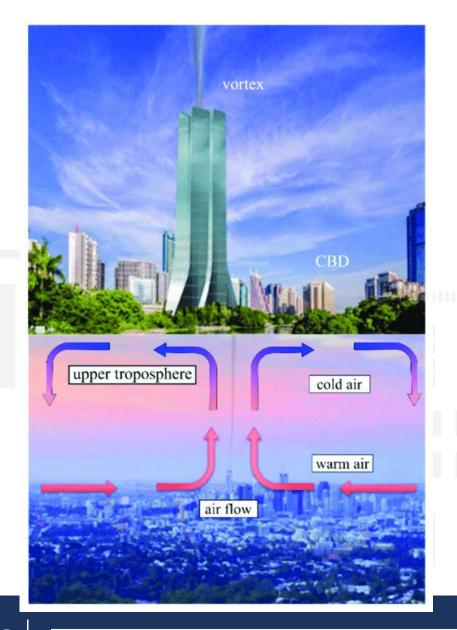

rimescolamento

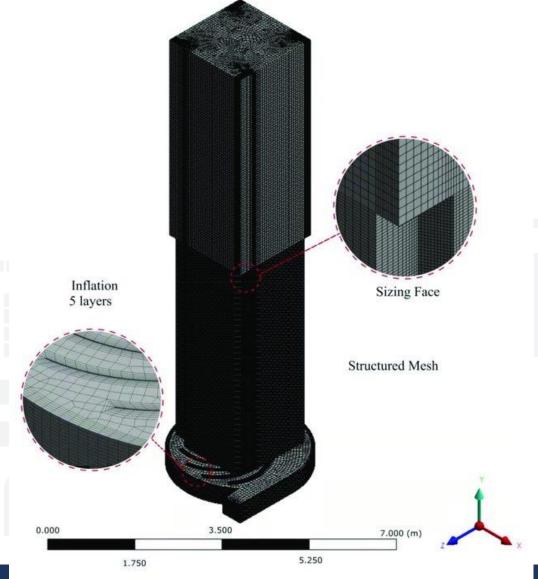
influenza
direttamente la
concentrazione degli
inquinanti immessi
vicino alla superficie.

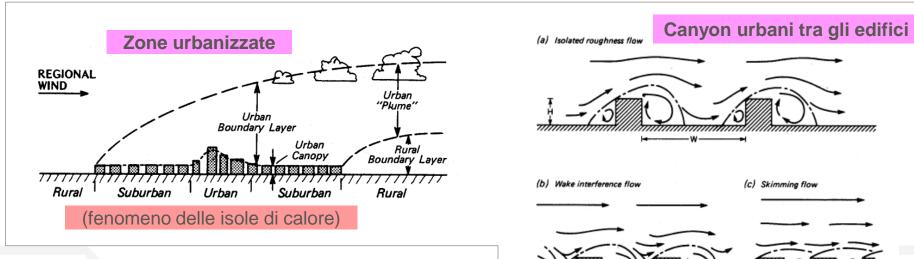
Emissioni da camino: esempio

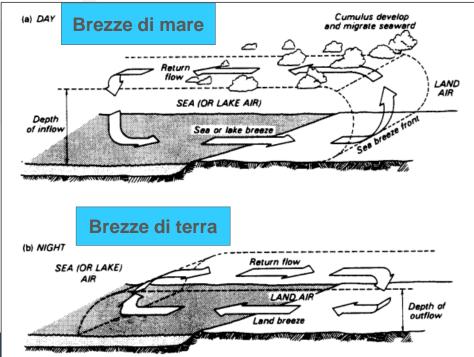


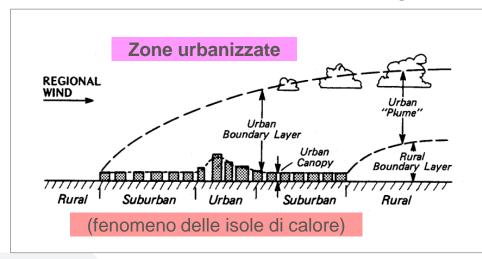
Situazioni superficiali eterogenee

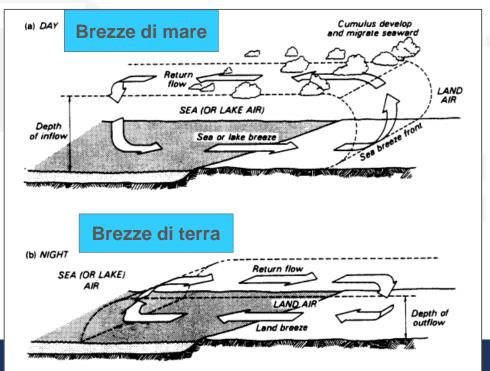


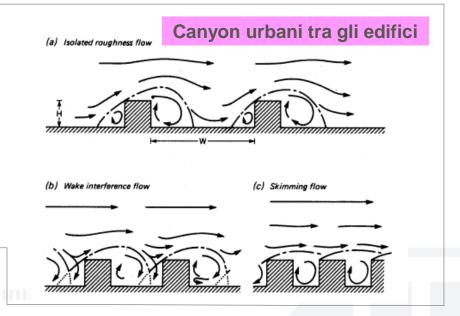

How tall buildings affect wind and air quality

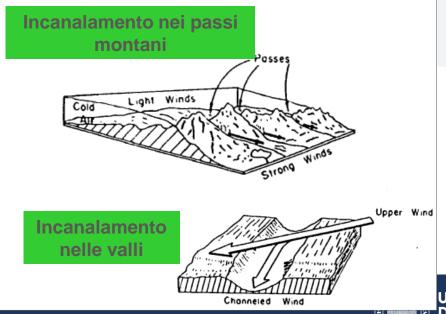

How tall buildings affect wind and air quality



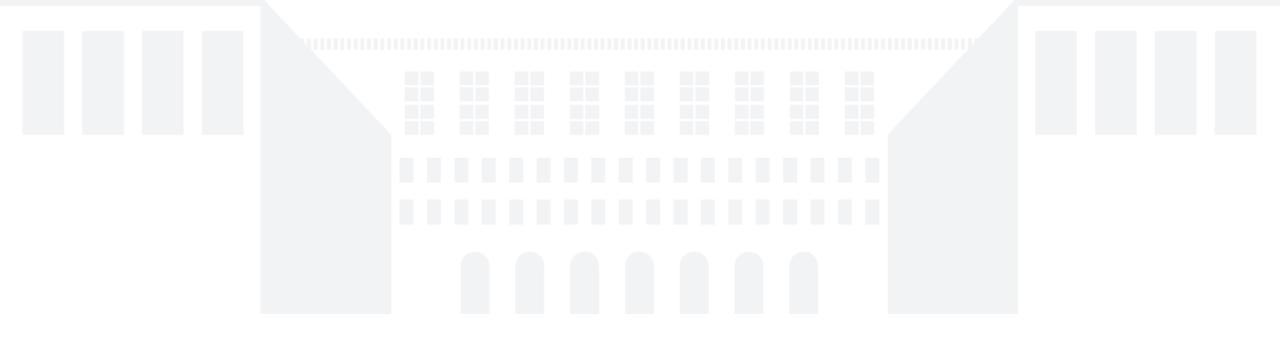

Situazioni superficiali eterogenee



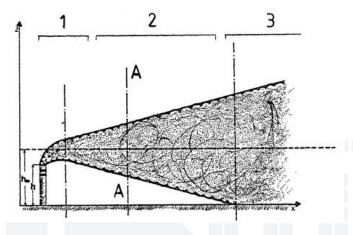




Situazioni superficiali eterogenee



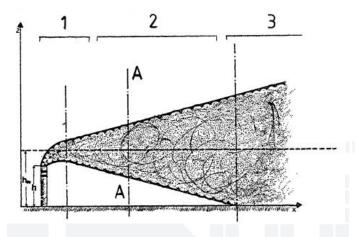
INPUT: caratteristiche tecniche e parametri emissivi della <u>sorgente</u> + modello <u>meteorologico</u> + <u>orografia</u> del territorio



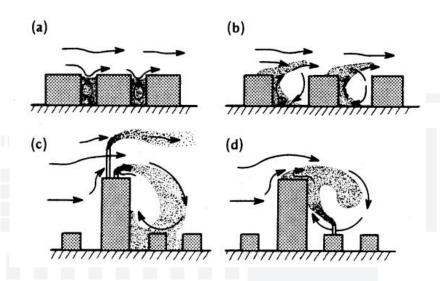
INPUT: caratteristiche tecniche e parametri emissivi della <u>sorgente</u> + modello <u>meteorologico</u> + <u>orografia</u> del territorio

MODELLO GAUSSIANO PLUME

(o " a pennacchio", è il meno complesso)


- Zona 1 (zona ascensionale);
- Zona 2 (zona di trasporto senza interazione col suolo);
- Zona 3 (zona di interazione col suolo)

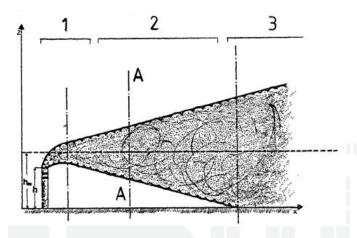
INPUT: caratteristiche tecniche e parametri emissivi della <u>sorgente</u> + modello <u>meteorologico</u> + orografia del territorio


MODELLO GAUSSIANO PLUME

(o " a pennacchio", è il meno complesso)

- Zona 1 (zona ascensionale);
- Zona 2 (zona di trasporto senza interazione col suolo);
- Zona 3 (zona di interazione col suolo)

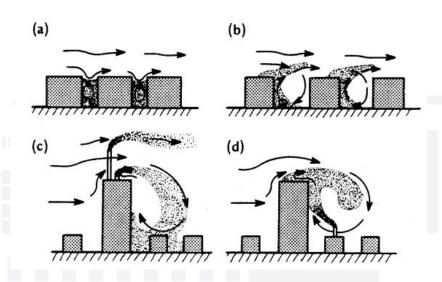
Al modello orografico vengono aggiunte le situazioni complesse locali:



INPUT: caratteristiche tecniche e parametri emissivi della <u>sorgente</u> + modello <u>meteorologico</u> + orografia del territorio

MODELLO GAUSSIANO PLUME

(o " a pennacchio", è il meno complesso)



- Zona 1 (zona ascensionale);
- Zona 2 (zona di trasporto senza interazione col suolo);
- Zona 3 (zona di interazione col suolo)

Altri tipi di modelli:

- modello EULERIANO;
- modello LAGRANGIANO a particelle;
- modelli di dispersione di tipo PUFF

Al modello orografico vengono aggiunte le situazioni complesse locali:

Nei modelli di dispersione si possono anche considerare i processi trasformazione chimica in atmosfera delle specie emesse

Esempio di risultato di un modello di dispersione

Catena modellistica CALMET-CALPUFF

(modello di dispersione lagrangiano non stazionario che simula il rilascio di inquinanti dalla sorgente come una serie di pacchetti discreti di materiale, detti *puff*, emessi ad intervalli di tempo prestabiliti)

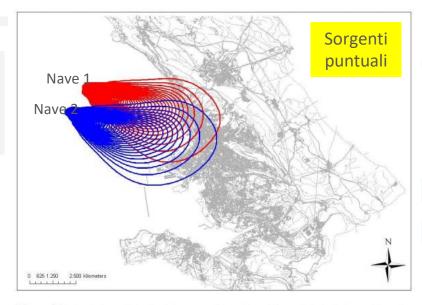


Figura 4.9: simulazione di isoplete di concentrazione di ipotetiche emissioni da due navi in rada nelle condizioni meteorologiche verificatesi tra le ore 1:00 e 2:00 PM del 12/07/2010

Esempio di risultato di un modello di dispersione

Catena modellistica CALMET-CALPUFF

(modello di dispersione lagrangiano non stazionario che simula il rilascio di inquinanti dalla sorgente come una serie di pacchetti discreti di materiale, detti *puff*, emessi ad intervalli di tempo prestabiliti)

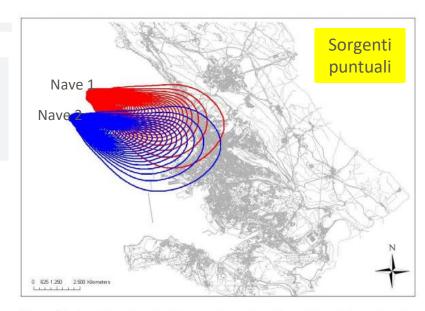


Figura 4.9: simulazione di isoplete di concentrazione di ipotetiche emissioni da due navi in rada nelle condizioni meteorologiche verificatesi tra le ore 1:00 e 2:00 PM del 12/07/2010

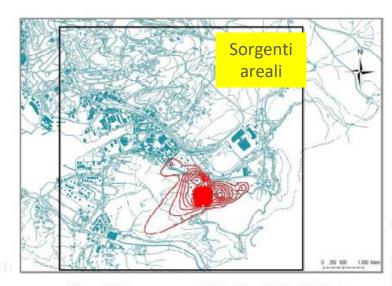


Figura 4.4: Giornata con vento ENE a 60°, velocità media 10 m/s.

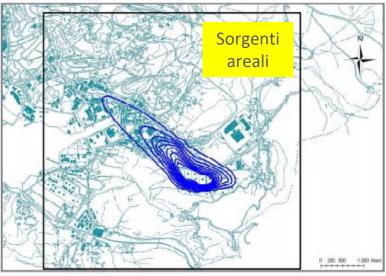


Figura 4.5: Giornata con vento SE a 135º, velocità media 8 m/s

Sostanze e processi chimici nella troposfera

Origine: naturale o antropica

Molecole presenti allo stato **gassoso** (gas inorganici e composti organici volatili)

Molecole presenti nel **particolato** (composti organici e inorganici, metalli)

Microinquinanti ("micro" riferito alla quantità, non alla pericolosità!)

Sostanze e processi chimici nella troposfera

Origine: naturale o antropica

Molecole presenti allo stato **gassoso** (gas inorganici e composti organici volatili)

Molecole presenti nel **particolato** (composti organici e inorganici, metalli)

Tipologia:

- <u>"componenti primarie"</u>: vengono introdotte come tali in atmosfera dalle sorgenti;
- <u>"componenti secondarie"</u>: si formano nell' atmosfera a partire da quelle primarie;

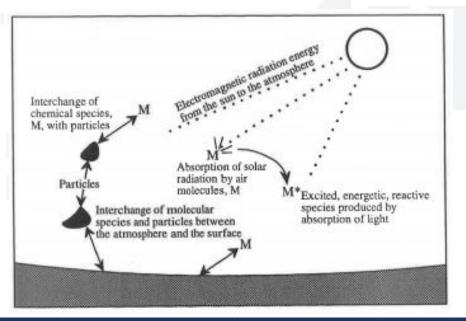
Microinquinanti ("micro" riferito alla quantità, non alla pericolosità!)

Sostanze e processi chimici nella troposfera

Origine: naturale o antropica

Molecole presenti allo stato **gassoso** (gas inorganici e composti organici volatili)

Tipologia:


- <u>"componenti primarie"</u>: vengono introdotte come tali in atmosfera dalle sorgenti;
- "componenti secondarie": si formano nell' atmosfera a partire da quelle primarie;

Processi:

- > condensazione;
- reazioni chimiche e fotochimiche;
 - > adsorbimento;
- rimozione attraverso precipitazioni secche e umide.

Molecole presenti nel **particolato** (composti organici e inorganici, metalli)

Microinquinanti ("micro" riferito alla quantità, non alla pericolosità!)

Principali gas inorganici presenti nella troposfera

Composti del carbonio:

- CO
- CO₂

Composti dello zolfo:

- H₂S
- SO₂

Composti dell'azoto:

 NO_x

- NO
- NO₂
- N₂O
- NH₃

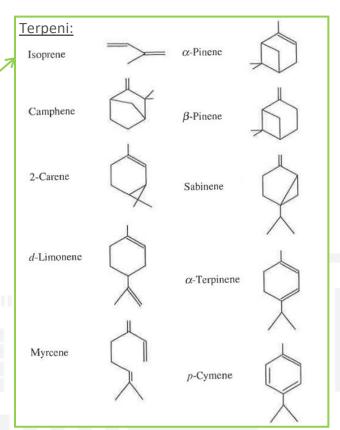
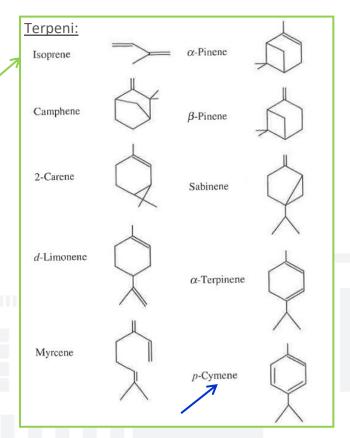
Composti del cloro:

HCl

TABLE 2.8 Some Atmospheric Organic Species

Class	Compound	Formula	Typical Source	Sink
Alkanes	Methane	CH ₄	Microbial processes, natural gas	ОН
	Ethane	C_2H_6	Motor vehicles	OH
	Hexane	C_6H_{14}	Motor vehicles	OH
Alkenes	Ethene	C_2H_4	Motor vehicles, microbial processes	OH, O ₃
	Propene	C_3H_6	Motor vehicles	OH, O ₃
	Isoprene	C_5H_8	Vegetation	OH, O
Alkynes	Acetylene	C_2H_2	Motor vehicles	OH
Aromatics	Benzene	C_6H_6	Motor vehicles	OH
	Toluene	C_7H_8	Motor vehicles	OH
Aldehydes	Formaldeyde	HCHO	Motor vehicles	$h\nu$, OH
	Acetaldehyde	CH ₃ CHO	Motor vehicles	$h\nu$, OH
	Acrolein	CH2CHCHO		
Ketones	Acetone	CH ₃ C(O)CH ₃		$h\nu$, OH
Acids	Formic acid	НСООН		Rain
	Acetic acid	CH ₃ COOH		Rain
Alcohols	Methanol	CH ₃ OH		OH

TABLE 2.8	Some Atmospheric Organic Species				
Class	Compound	Formula	Typical Source	Sink	
Alkanes	Methane CH ₄	Microbial processes, natural gas	ОН		
	Ethane	C_2H_6	Motor vehicles	OH	
	Hexane	C_6H_{14}	Motor vehicles	OH	
Alkenes	Ethene	C_2H_4	Motor vehicles, microbial processes	OH, O ₃	
	Propene	C_3H_6	Motor vehicles	OH, O ₃	
	Isoprene	C ₅ H ₈	Vegetation	OH, O_3	
Alkynes	Acetylene	C ₂ H ₂	Motor vehicles	OH	
Aromatics	Benzene	C_6H_6	Motor vehicles	OH	
	Toluene	C_7H_8	Motor vehicles	OH	
Aldehydes	Formaldeyde	HCHO	Motor vehicles	$h\nu$, OH	
,	Acetaldehyde	CH ₃ CHO	Motor vehicles	$h\nu$, OH	
	Acrolein	CH2CHCHO			
Ketones	Acetone	CH ₃ C(O)CH ₃		$h\nu$, OH	
Acids	Formic acid	НСООН		Rain	
	Acetic acid	CH ₃ COOH		Rain	
Alcohols	Methanol	CH ₃ OH		OH	

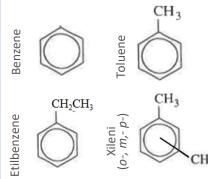
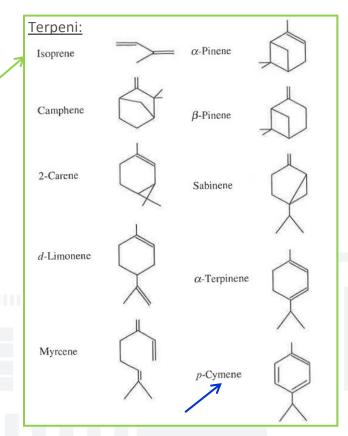


TABLE 2.8 Some Atmospheric Organic Species

Class	Compound	Formula	Typical Source	Sink
Alkanes	Methane	CH ₄	Microbial processes, natural gas	ОН
	Ethane	C_2H_6	Motor vehicles	OH /
	Hexane	C_6H_{14}	Motor vehicles	OH
Alkenes	Ethene	C_2H_4	Motor vehicles, microbial processes	OH, O ₃
	Propene	C_3H_6	Motor vehicles	OH, O ₃
	Isoprene	C_5H_8	Vegetation	OH, O_3
Alkynes	Acetylene	C_2H_2	Motor vehicles	OH
Aromatics	Benzene	C_6H_6	Motor vehicles	OH
	Toluene	C_7H_8	Motor vehicles	OH
Aldehydes	Formaldeyde	HCHO	Motor vehicles	$h\nu$, OH
,	Acetaldehyde	CH ₃ CHO	Motor vehicles	$h\nu$, OH
	Acrolein	CH2CHCHO		
Ketones	Acetone	CH ₃ C(O)CH ₃		$h\nu$, OH
Acids	Formic acid	НСООН		Rain
	Acetic acid	CH ₃ COOH		Rain
Alcohols	Methanol	CH ₃ OH		OH

Composti aromatici:


Composti ossigenati:

O HCH Formaldehyde	CH ₃ C Acetalde		O CH ₃ CCH ₃ Acetone
O CH ₃ CCH ₂ (Methylethylke		$CH_2 = Acro$	
CH ₃ OH CH ₃ CH ₂ O	Н	HCO CH ₃ C	

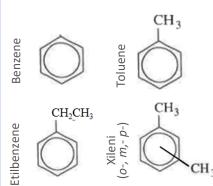


TABLE 2.8 Some Atmospheric Organic Species

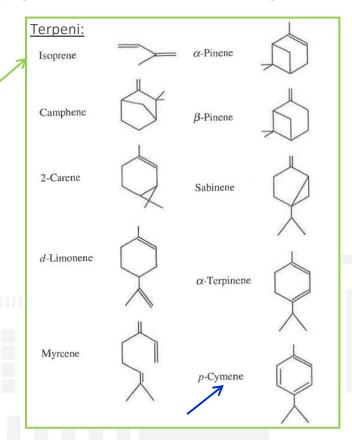
Class	Compound	Formula	Typical Source	Sink
Alkanes	Methane	CH ₄	Microbial processes, natural gas	ОН
	Ethane	C_2H_6	Motor vehicles	OH /
	Hexane	C_6H_{14}	Motor vehicles	OH
Alkenes	Ethene	C_2H_4	Motor vehicles, microbial processes	OH, O ₃
	Propene	C_3H_6	Motor vehicles	OH, O ₃
	Isoprene	C ₅ H ₈	Vegetation	OH, O_3
Alkynes	Acetylene	C_2H_2	Motor vehicles	OH
Aromatics	Benzene	C_6H_6	Motor vehicles	OH
	Toluene	C_7H_8	Motor vehicles	OH
Aldehydes	Formaldeyde	HCHO	Motor vehicles	$h\nu$, OH
	Acetaldehyde	CH ₃ CHO	Motor vehicles	$h\nu$, OH
	Acrolein	CH2CHCHO		
Ketones	Acetone	CH ₃ C(O)CH ₃		$h\nu$, OH
Acids	Formic acid	HCOOH		Rain
	Acetic acid	CH ₃ COOH		Rain
Alcohols	Methanol	CH ₃ OH		OH

Composti aromatici:

Composti ossigenati:

O HCH Formaldehyde	CH ₃		O CH ₃ CCH ₃ Acetone
O CH ₃ CCH ₂ t Methylethylk		-	O = CHCH rolein
CH ₃ OH CH ₃ CH ₂ O	Н		ООН СООН

Composti del cloro: Composti dello zolfo:


- CH₃Br
- CH₃Cl
 - CFC

- CS
- OCS
- CH₃SH
- CH₃SCH₃ (DMS)
 - CH₃S₂CH₃
- CH₃SO₃H (MSA)

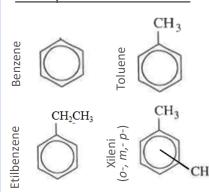
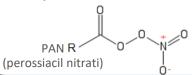


TABLE 2.8 Some Atmospheric Organic Species

Class	Compound	Formula	Typical Source	Sink
Alkanes	Methane	CH ₄	Microbial processes, natural gas	ОН
	Ethane	C_2H_6	Motor vehicles	OH /
	Hexane	C_6H_{14}	Motor vehicles	OH
Alkenes	Ethene	C_2H_4	Motor vehicles, microbial processes	OH, O ₃
	Propene	C_3H_6	Motor vehicles	OH, O ₃
	Isoprene	C ₅ H ₈	Vegetation	OH, O_3
Alkynes	Acetylene	C_2H_2	Motor vehicles	OH
Aromatics	Benzene	C_6H_6	Motor vehicles	OH
	Toluene	C_7H_8	Motor vehicles	OH
Aldehydes	Formaldeyde	HCHO	Motor vehicles	$h\nu$, OH
	Acetaldehyde	CH ₃ CHO	Motor vehicles	$h\nu$, OH
	Acrolein	CH2CHCHO		
Ketones	Acetone	CH ₃ C(O)CH ₃		$h\nu$, OH
Acids	Formic acid	HCOOH		Rain
	Acetic acid	CH ₃ COOH		Rain
Alcohols	Methanol	CH ₃ OH		OH

Composti aromatici:


Composti ossigenati:

O HCH	O ∥ CH₃CH	O ∥ CH₃CCH₃
Formaldehyde	Acetaldehyde	Acetone
O CH ₃ CCH ₂ Methylethylk		O = CHCH crolein
CH ₃ OH CH ₃ CH ₂ C		COOH 3COOH

Composti del cloro: Composti dello zolfo:

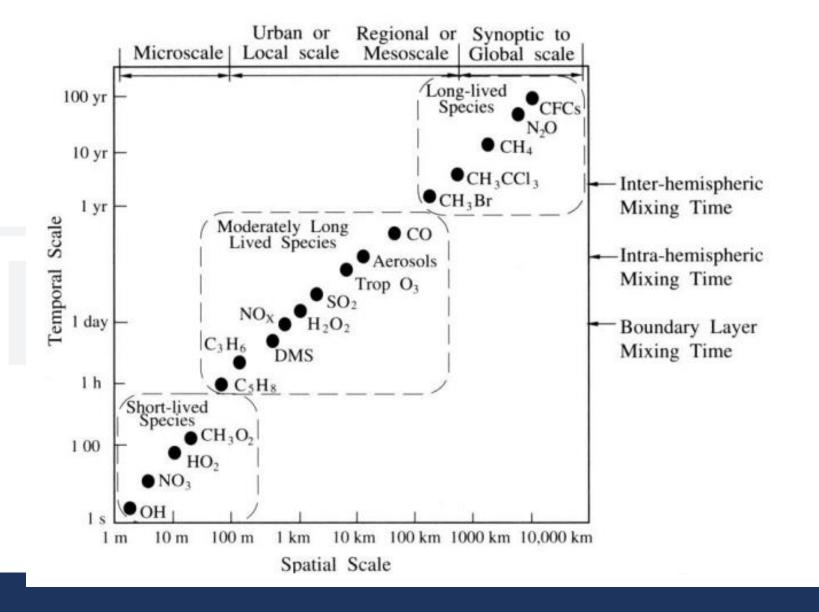
- CH₃Br
- CH₃Cl
- CFC

Composti dell'azoto:

- CS₂
- OCS
- CH₃SH
- CH₃SCH₃ (DMS)
 - CH₃S₂CH₃
- CH₃SO₃H (MSA)

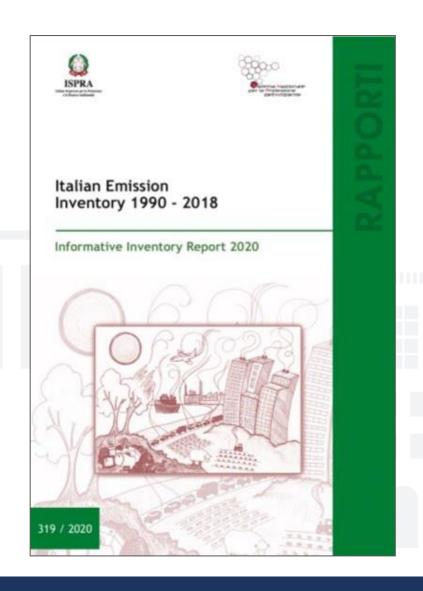
UNIVERSITÀ DEGLI STUDI DI TRIESTE

Origine delle specie chimiche presenti nella troposfera


Table 1 Gaseous chemical composition of the atmosphere (1 ppt = 10^{-12} , 1 ppb = 10^{-9} , 1 ppm = 10^{-6}).

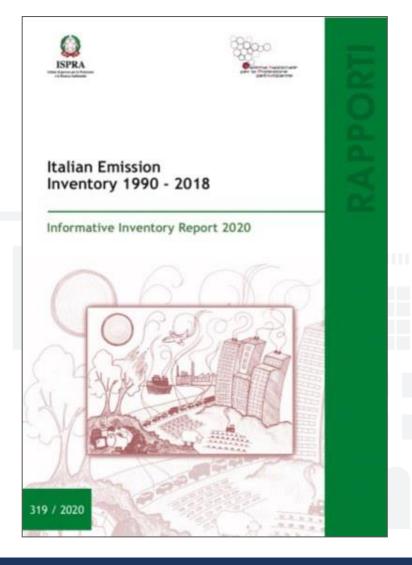
Constituent	Chemical formula	Mole fraction in dry air	Major sources
Nitrogen	N_2	78.084%	Biological
Oxygen	O_2	20.948%	Biological
Argon	Ar	0.934%	Inert
Carbon dioxide	CO_2	360 ppm	Combustion, ocean, biosphere
Neon	Ne	18.18 ppm	Inert
Helium	He	5.24 ppm	Inert
Methane	CH_4	1.7 ppm	Biogenic, anthropogenic
Hydrogen	H_2	0.55 ppm	Biogenic, anthropogenic, photochemical
Nitrous oxide	N_2O	0.31 ppm	Biogenic, anthropogenic
Carbon monoxide	CO	50-200 ppb	Photochemical, anthropogenic
Ozone (troposphere)	O_3	10-500 ppb	Photochemical
Ozone (stratosphere)	O_3	0.5-10 ppm	Photochemical
NMHC	C_xH_y	5-20 ppb	Biogenic, anthropogenic
Chlorofluorocarbon 12	CF_2Cl_2	540 ppt	Anthropogenic
Chlorofluorocarbon 11	CFCl ₃	265 ppt	Anthropogenic
Methylchloroform	CH ₃ CCl ₃	65 ppt	Anthropogenic
Carbon tetrachloride	CCl ₄	98 ppt	Anthropogenic
Nitrogen oxides	NO _x	10 ppt-1 ppm	Soils, lightning, anthropogenic
Ammonia	NH ₃	10 ppt-1 ppb	Biogenic
Hydroxyl radical	OH	0.05 ppt	Photochemical
Hydroperoxyl radical	HO_2	2 ppt	Photochemical
Hydrogen peroxide	H_2O_2	0.1-10 ppb	Photochemical
Formaldehyde	CH ₂ O	0.1-1 ppb	Photochemical
Sulfur dioxide	SO_2	10 ppt-1 ppb	Photochemical, volcanic, anthropogenic
Dimethyl sulfide	CH ₃ SCH ₃	10-100 ppt	Biogenic
Carbon disulfide	CS ₂	1-300 ppt	Biogenic, anthropogenic
Carbonyl sulfide	OCS	500 ppt	Biogenic, volcanic, anthropogenic
Hydrogen sulfide	H ₂ S	5-500 ppt	Biogenic, volcanic

Source: Brasseur et al. (1999) and Prinn et al. (2000).



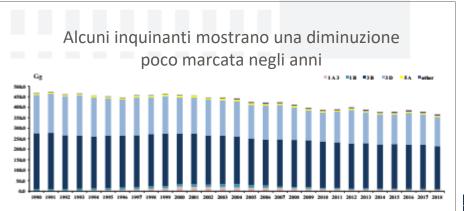
Tempi di vita e distribuzione spaziale

Inventario delle emissioni

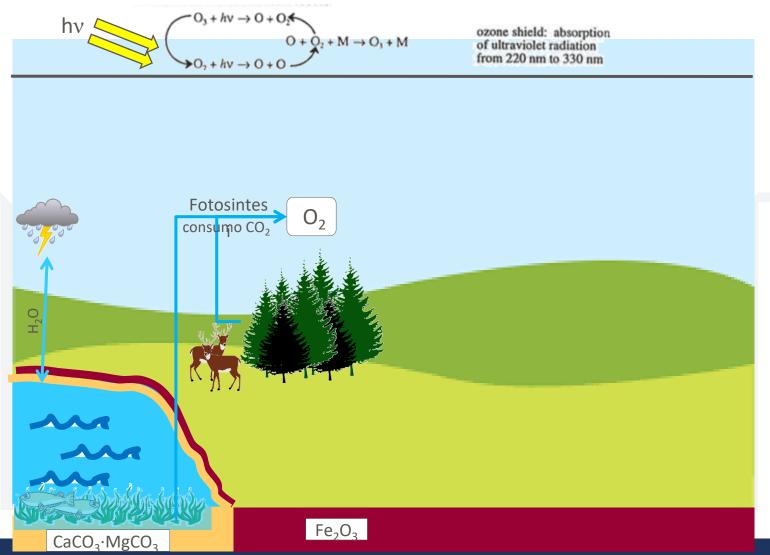

ISPRA: Istituto Superiore per la Protezione e la Ricerca Ambientale

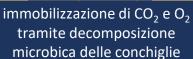
2 ANALYSIS OF KEY TRENDS BY POLLUTANT

2.1 MAI	N POLLUTANTS
2.1.1	Sulphur dioxide (SO _X)
2.1.2	Nitrogen oxides (NOx)
2.1.3	Ammonia (NH ₃)
2.1.4	Non methane volatile organic compounds (NMVOC)
2.1.5	Carbon monoxide (CO)
2.2 PAR	TICULATE MATTER
2.2.1	PM10
2.2.2	PM2.5
2.2.3	Black Carbon (BC)
2.3 Hea	VY METALS (PB, CD, HG)
2.3.1	Lead (Pb)
2.3.2	Cadmium (Cd)
2.3.3	Mercury (Hg)
2.4 PER	SISTENT ORGANIC POLLUTANTS (POPS)
2.4.1	Polycyclic aromatic hydrocarbons (PAH)
2.4.2	Dioxins
2.4.3	Hexachlorobenzene (HCB)
2.4.4	Polychlorinated biphenyl (PCB)

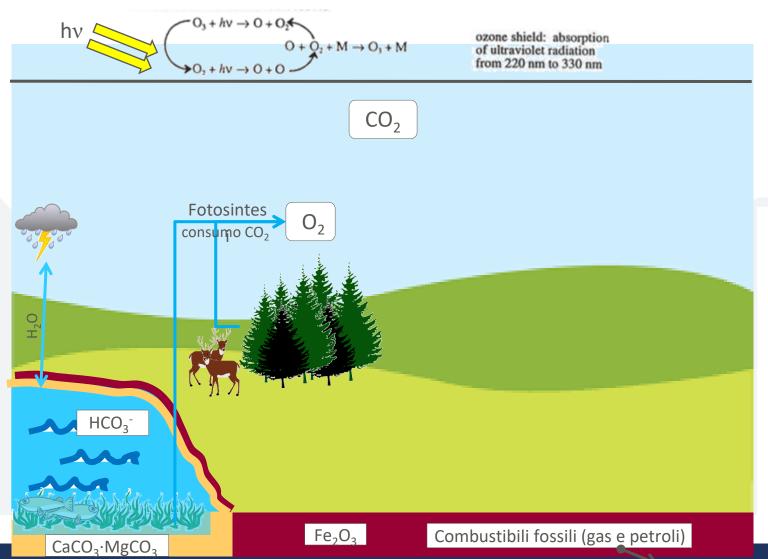

Inventario delle emissioni (2)

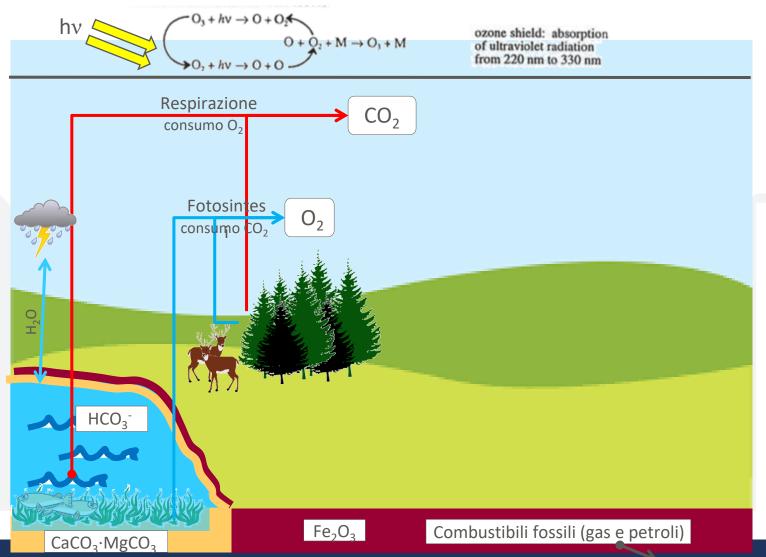
ISPRA: Istituto Superiore per la Protezione e la Ricerca Ambientale


SO₂



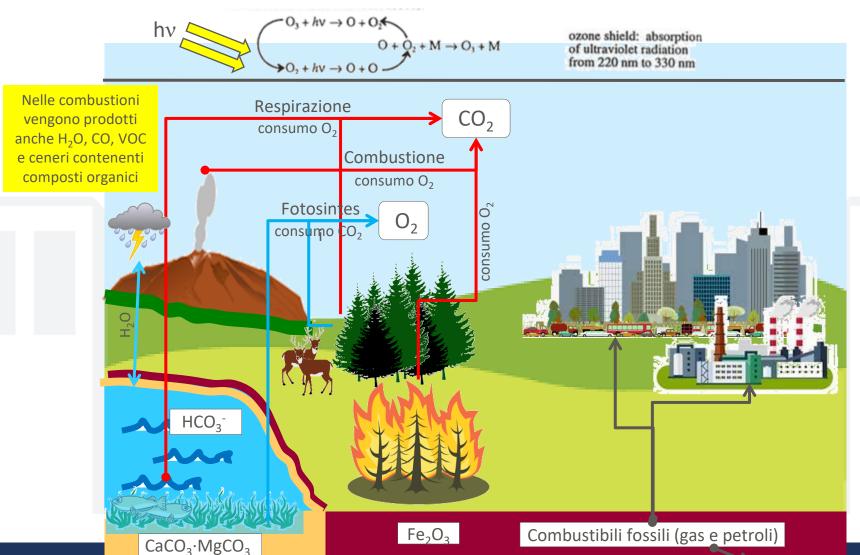
 NH_3


In assenza di contributo antropico:



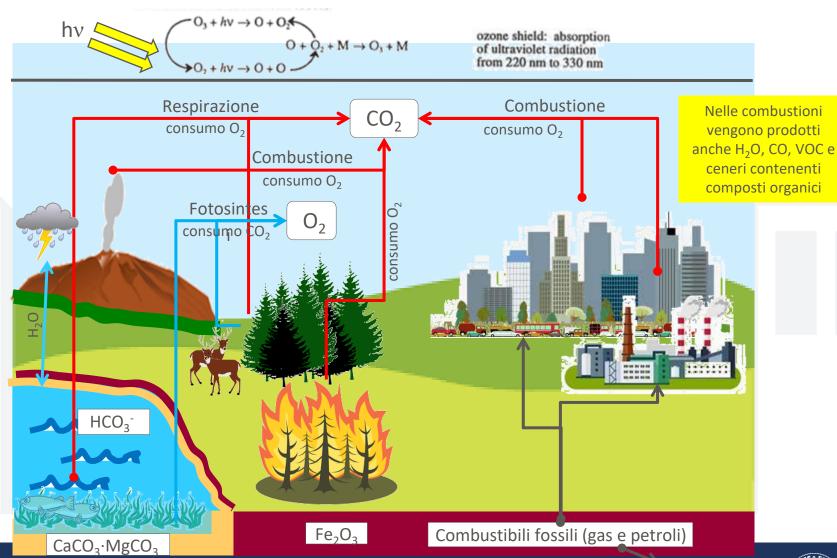
In assenza di contributo antropico:

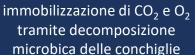
In assenza di contributo antropico:


In assenza di contributo antropico:

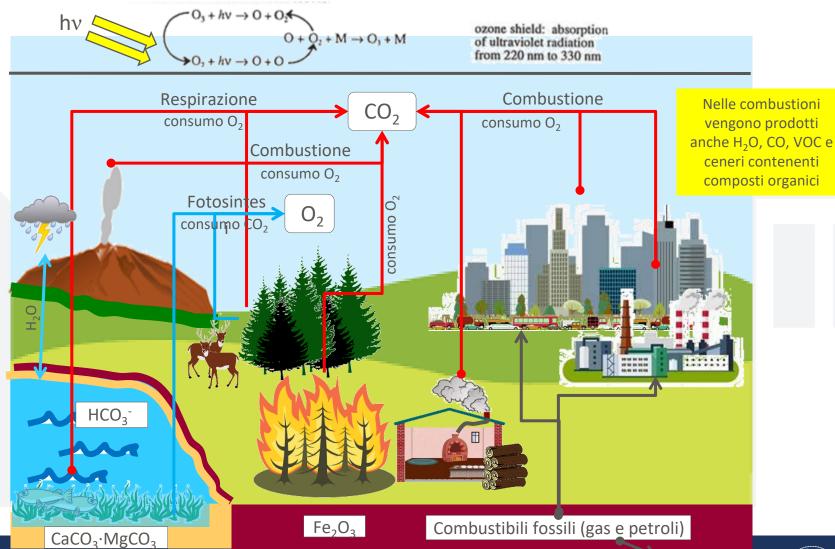
immobilizzazione di CO₂ e O₂ tramite decomposizione microbica delle conchiglie

immobilizzazione di O₂ tramite erosione chimica (ossidazione) di minerali ridotti

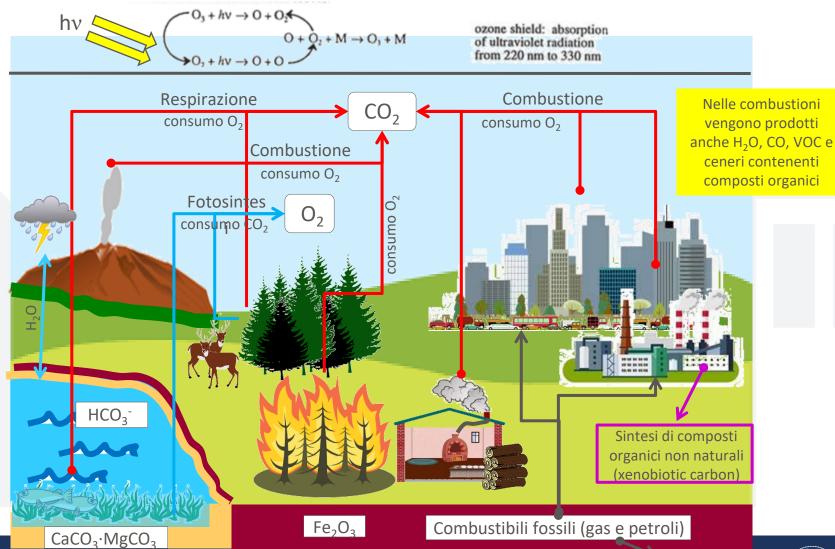

In PRESENZA di contributo antropico:



immobilizzazione di CO₂ e O₂ tramite decomposizione microbica delle conchiglie

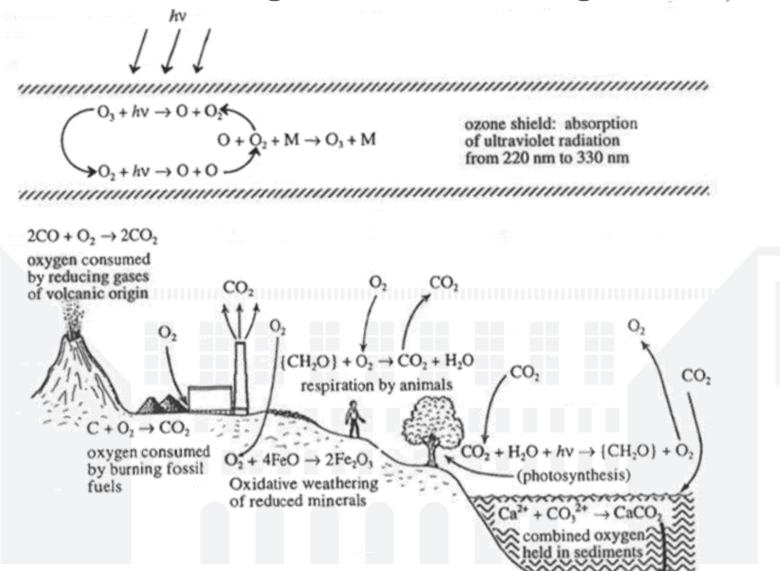

immobilizzazione di O₂ tramite erosione chimica (ossidazione) di minerali ridotti

In PRESENZA di contributo antropico:





In PRESENZA di contributo antropico:


In PRESENZA di contributo antropico:

immobilizzazione di O₂ tramite erosione chimica (ossidazione) di minerali ridotti

Ciclo biogeochimico dell'ossigeno

Ciclo biogeochimico del carbonio

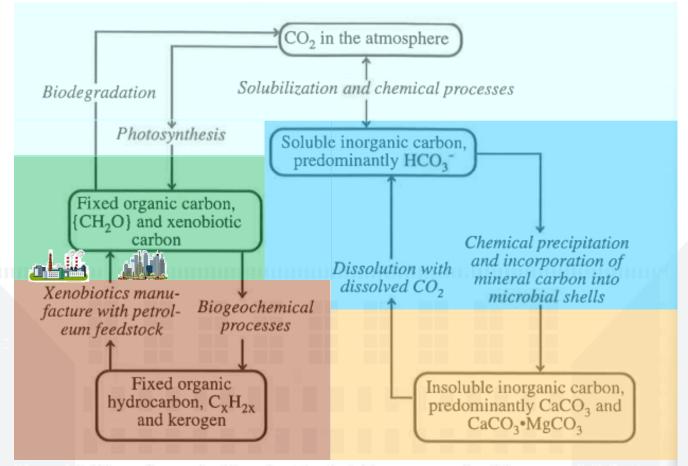


Figure 1.5. The carbon cycle. Mineral carbon is held in a reservoir of limestone, $CaCO_3$, from which it may be leached into a mineral solution as dissolved hydrogen carbonate ion, HCO_3 , formed when dissolved $CO_2(aq)$ reacts with $CaCO_3$. In the atmosphere carbon is present as carbon dioxide, CO_2 . Atmospheric carbon dioxide is fixed as organic matter by photosynthesis, and organic carbon is released as CO_2 by microbial decay of organic matter.

Ossidanti in atmosfera

Molti composti chimici sono emessi in atmosfera, ma <u>processi di rimozione chimica prevengono</u> <u>accumuli eccessivi</u> di queste sostanze.

Le specie inorganiche possono essere rimossi dall'atmosfera attraverso <u>deposizioni secche o umide</u>.

Per le sostanze organiche è più facile la <u>rimozione se sono ossidate</u> in sostanze più solubili e meno volatili.

Le tre più importanti specie ossidanti in atmosfera sono:

- Il radicale ossidrile HO*
- ➢ Il radicale nitrato NO₃
- L'ozono
 O₃

Il radicale idroperossido può in alcuni casi essere un'altra specie ossidante importante HOO*

Tra queste specie la più importante è il radicale ossidrile HO

Radicale ossidrile

Il radicale ossidrile, pur non reagendo con N_2 , O_2 , CO_2 o H_2O presenti nell'atmosfera, è considerata una specie <u>estremamente reattiva</u> in grado di ossidare la maggior parte dei composti chimici presenti in troposfera, esso è conosciuto come "detergente dell'atmosfera".

Classe	Tempo di mezza			
di	vita (approx.) in	Composti in ordine crescente di reattività		
reattività	atmosfera			
I	> 10 d	metano		
II	24 h – 10 d	CO, acetilene, etano		
		benzene, propano, <i>n</i> -butano,		
		isopentano, metiletilchetone, 2-		
III	2.4-24 h	metilpentano, toluene, n-propilbenzene,		
		isopropilbenzene, etilene, n-esano, 3-		
		metilpentano, etilbenzene		
	15 min – 2.4 h	p-xilene, p-etiltoluene, o-etiltoluene, o-		
IV		xil., metilisobutilchetone, m-etiltotoluene,		
IV		m-xil., 1,2,3-trimetilbenzene, propilene,		
		cis-2-butene, a-pinene, 1,3-butadiene		
V	4 15 min	2-metil-2-butene, 2,4-dimetil-2-butene,		
V	< 15 min	d-limonene		

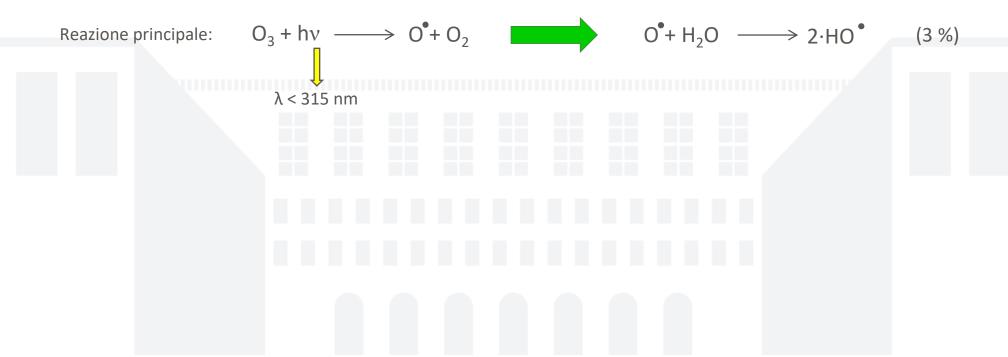
Radicale ossidrile

Il radicale ossidrile, pur non reagendo con N_2 , O_2 , CO_2 o H_2O presenti nell'atmosfera, è considerata una specie <u>estremamente reattiva</u> in grado di ossidare la maggior parte dei composti chimici presenti in troposfera, esso è conosciuto come "detergente dell'atmosfera".

Classe	Tempo di mezza			
di	vita (approx.) in	Composti in ordine crescente di reattività		
reattività	atmosfera			Tempo di vita
I	> 10 d	metano	>	piuttosto lungo
II	24 h – 10 d	CO, acetilene, etano		nella troposfera
····		benzene, propano, <i>n</i> -butano,		
111		isopentano, metiletilchetone, 2-		
	2.4-24 h	metilpentano, toluene, <i>n</i> -propilbenzene,		
		isopropilbenzene, etilene, n-esano, 3-		
		metilpentano, etilbenzene		
IV		p-xilene, p-etiltoluene, o-etiltoluene, o-		
	15 min – 2.4 h	xil., metilisobutilchetone, <i>m</i> -etiltotoluene,		
	13 111111 – 2.4 11	m-xil., 1,2,3-trimetilbenzene, propilene,		
		cis-2-butene, ^α l-pinene, 1,3-butadiene		
V	< 15 min	2-metil-2-butene, 2,4-dimetil-2-butene,		
	< 15 min	d-limonene		
]	

Radicale ossidrile

Il radicale ossidrile, pur non reagendo con N_2 , O_2 , CO_2 o H_2O presenti nell'atmosfera, è considerata una specie <u>estremamente reattiva</u> in grado di ossidare la maggior parte dei composti chimici presenti in troposfera, esso è conosciuto come "detergente dell'atmosfera".

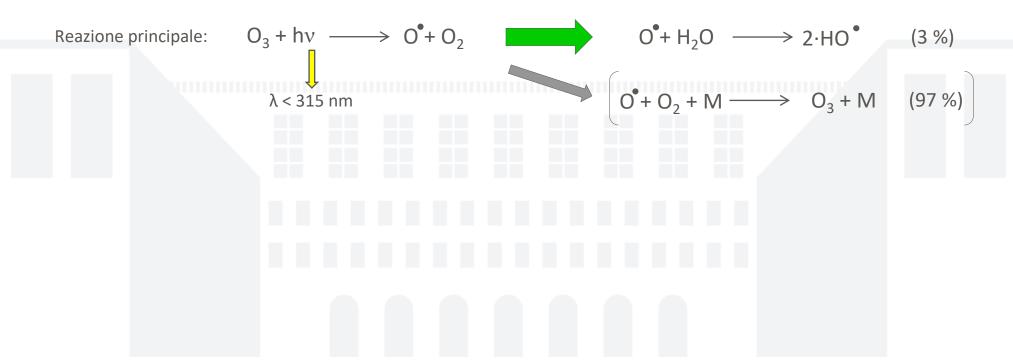

Classe	Tempo di mezza		
di	vita (approx.) in	Composti in ordine crescente di reattività	
reattività	atmosfera		Tempo di vita
I	> 10 d	metano	piuttosto lungo
II	24 h – 10 d	CO, acetilene, etano	nella troposfera
····		benzene, propano, <i>n</i> -butano,	
111		isopentano, metiletilchetone, 2-	
	2.4-24 h	metilpentano, toluene, n-propilbenzene,	
		isopropilbenzene, etilene, n-esano, 3-	
		metilpentano, etilbenzene	
IV	15 min – 2.4 h	p-xilene, p-etiltoluene, o-etiltoluene, o-	
		xil., metilisobutilchetone, m-etiltotoluene,	
		m-xil., 1,2,3-trimetilbenzene, propilene,	
		cis-2-butene, ^α l-pinene, 1,3-butadiene	
V	< 15 min	2-metil-2-butene, 2,4-dimetil-2-butene,	
		d-limonene	
			l

Non reagisce con CFC

Radicale ossidrile (2)

Il radicale ossidrile è <u>estremamente reattivo</u> ed è in grado di ossidare la maggior parte dei composti chimici presenti in troposfera, esso è conosciuto come "detergente dell'atmosfera".

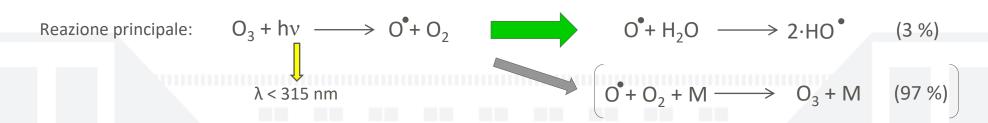
Reazioni di generazione del radicale ossidrile in atmosfera:

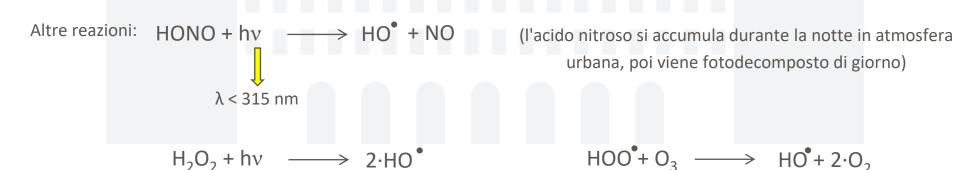


Radicale ossidrile (2)

Il radicale ossidrile è <u>estremamente reattivo</u> ed è in grado di ossidare la maggior parte dei composti chimici presenti in troposfera, esso è conosciuto come "detergente dell'atmosfera".

Reazioni di generazione del radicale ossidrile in atmosfera:





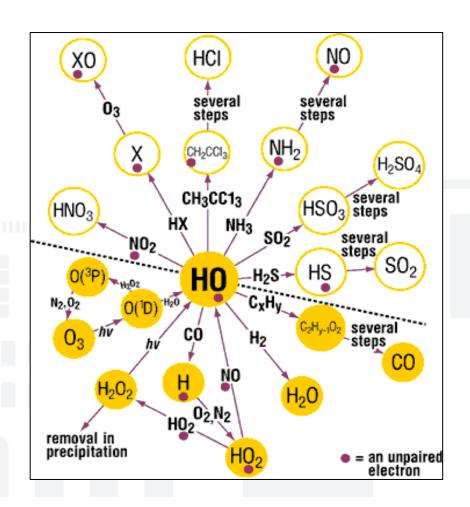
Radicale ossidrile (2)

Il radicale ossidrile è <u>estremamente reattivo</u> ed è in grado di ossidare la maggior parte dei composti chimici presenti in troposfera, esso è conosciuto come "detergente dell'atmosfera".

Reazioni di generazione del radicale ossidrile in atmosfera:

Radicale ossidrile (3)

La concentrazione in troposfera del radicale ossidrile dipende da diversi fattori:


- a causa della sua elevata reattività il suo tempo di vita medio è di meno di un secondo;
- poiché la sua generazione è legata all'attività
 solare, mostra un ciclo giornaliero;
- ad <u>elevate altitudini la sua concentrazione è</u>
 <u>minore</u> perché l'aria è più secca, quindi c'è meno
 H₂O a disposizione;
- in presenza di <u>sorgenti biogeniche importanti</u>
 (grandi foreste) la sua <u>concentrazione è più bassa</u>
 perché reagisce con le specie organiche
 biogeniche presenti nella troposfera.

Radicale ossidrile (3)

La concentrazione in troposfera del radicale ossidrile dipende da diversi fattori:

- a causa della sua elevata reattività il suo tempo di vita medio è di meno di un secondo;
- poiché la sua generazione è legata all'attività
 solare, mostra un ciclo giornaliero;
- ad <u>elevate altitudini la sua concentrazione è</u>
 <u>minore</u> perché l'aria è più secca, quindi c'è meno
 H₂O a disposizione;
- in presenza di <u>sorgenti biogeniche importanti</u>
 (grandi foreste) la sua <u>concentrazione è più bassa</u>
 perché reagisce con le specie organiche
 biogeniche presenti nella troposfera.

