
The C Language

A. Carini – Digital System Architectures

C language

• One of the most popular programming languages ever developed.
• It was created by a group including Dennis Ritchie and Brian Kernighan at Bell Laboratories between

1969 and 1973 to rewrite the UNIX operating system from its original assembly language.
• C, with C++, C#, Objective C, is the most widely used language in existence.
• Its popularity stems from

• Availability on a tremendous variety of platforms.
• Relative ease of use
• Moderate level of abstraction providing higher productivity than assembly language
• Suitability for generating high performance programs
• Ability to interact directly with the hardware

• C allows the programmer to directly access addresses in memory
• Formally introduced in 1978 by Kernighan and Ritchie’s classic book, The C Programming Language.
• In 1989, the American National Standards Institute (ANSI) expanded and standardized the language,

which became known as ANSI C, Standard C, or C89.
• International Organization for Standardization (ISO) and the International Electrotechnical Commission

(IEC) updated the standard in 1999, 2011, 2017 to what is called C99, C11, C17 (C18), respectively.

A. Carini – Digital System Architectures

Welcome to C

• A C program is a text file that describes operations for the computer to perform.
• The text file is compiled, converted into a machine-readable format, and run or executed on a

computer.
• C programs are generally contained in one or more text files that end in “.c”.

A. Carini – Digital System Architectures

C Program Dissection

• A C program is organized into one or more functions.
• Every program must include the main function, which is where the program starts executing.
• Most programs use other functions defined elsewhere in the C code and/or in a library.
• The overall sections of the hello.c program are the header, the main function, and the body.
• Header: #include <stdio.h>

• The header includes the library functions needed by the program.
• The program uses the printf function, which is part of the standard I/O library, stdio.h.

• Main function: int main(void)
• All C programs must include exactly one main function.
• Execution of the program occurs by running the code inside main, called the body of main.
• The body of a function contains a sequence of statements.
• Each statement ends with a semicolon.
• Int denotes that the main function returns an integer that indicates whether the program ran

successfully.
• Body: printf("Hello world!\n");

• The body contains one statement, a call to the printf function. \n is a newline character

A. Carini – Digital System Architectures

Running a C Program

• C programs can be run on many different machines.
• The program is first compiled on the desired machine using the C compiler.
• We show how to compile and run a C program using gcc, which is freely available for download.
• It runs directly on Linux machines and is accessible under the Cygwin (https://www.cygwin.com/)

environment or on WSL – Windows for Linux (https://learn.microsoft.com/it-it/windows/wsl/install)
on Windows.

1. Create the text file, for example hello.c.
2. In a terminal window, change to the directory that contains the file hello.c and type

gcc hello.c
at the command prompt.

3. The compiler creates an executable file. By default, the executable is a.exe on Windows and a.out on
Linux.

4. At a command prompt, type ./a.exe (or ./a.out on Linux) and press return.
5. “Hello world!” will appear on the screen.

A. Carini – Digital System Architectures

https://learn.microsoft.com/it-it/windows/wsl/install

Compilation

• A compiler is a piece of software that reads a program in a high-level language and converts it into a
file of machine code called an executable.

• The overall operation of the compiler is to
(1) preprocess the file by including referenced libraries and expanding macro definitions,
(2) ignore all unnecessary information such as comments,
(3) translate the high-level code into machine language, and
(4) compile all the instructions into a single binary executable that can be read and executed by

the computer.
• Each machine language is specific to a given processor, so a program must be compiled specifically for

the system on which it will run.

A. Carini – Digital System Architectures

Comments

• C programs use two types of comments:
• Single-line comments begin with // and terminate at the end of the line;
• multiple-line comments begin with /* and end with */.

A. Carini – Digital System Architectures

#define

• Constants are named using the #define directive and then used by name throughout the program.
These globally defined constants are also called macros.

• The # indicates that this line in the program will be handled by the pre-processor.
• Before compilation, the preprocessor replaces each MAXGUESSES in the program with 5.
• By convention, #define lines are located at the top of the file and identifiers are written in all capital

letters.

• Number constants in C by default are decimal but can also be hexadecimal (prefix "0x") or octal (prefix
"0"). Binary constants are not defined in C99 but are supported by some compilers (prefix "0b")

A. Carini – Digital System Architectures

#define

A. Carini – Digital System Architectures

#include

• Modularity encourages us to split programs across separate files and functions.
• Variable declarations, defined values, and function definitions located in a header file can be used by

another file by adding the #include preprocessor directive.
• Standard libraries that provide commonly used functions are accessed in this way. E.g.,

• The “ .h ” postfix of the include file indicates it is a header file.
• While #include directives can be placed anywhere in the file, they are conventionally located at the

top of a C file.
• Programmer-created header files can also be included by using quotation marks (" ") around the file

name instead of brackets (< >).

• At compile time, files specified in brackets are searched for in system directories.
• Files specified in quotes are searched for in the same local directory where the C file is found (or in the

specified path relative to the current directory).

A. Carini – Digital System Architectures

Variables

• Variables in C programs have a type, name, value, and memory location.
• A variable declaration states the type and name of the variable.
• For example, a variable of type char, which is a 1-byte type,

• Variable names are case sensitive, may not be any of C’s reserved words, start with a number, and
include special characters such as \, *, ?, or -. Underscores (_) are allowed.

• C views memory as a group of consecutive bytes, where each byte of memory is assigned a unique
number indicating its address.

• A variable occupies one or more bytes of memory, and the address of multiple-byte variables is
indicated by the lowest numbered byte.

• The type of a variable indicates whether to interpret the byte(s) as an integer, floating point number,
or other type.

A. Carini – Digital System Architectures

Primitive Data Types

A. Carini – Digital System Architectures

But in Linux
64 bits

Primitive Data Types

A. Carini – Digital System Architectures

• Char should always be 1 byte (but in some non-conforming machine it has also 16 bit, e.g. TI C54).
• It is an integer type, that can be used for operations.
• Characters are associated with integers.

• Sizes of data types are machine dependent, but it is always guaranteed that
sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤ sizeof(long long)

Example data types

A. Carini – Digital System Architectures

• Shows the declaration of variables of different types.
• x requires one byte of data, y requires two, and z requires four.
• The program decides where these bytes are stored in memory, but each type always requires the

same amount of data.

Global and Local Variables

A. Carini – Digital System Architectures

• Global and local variables differ in where they are declared and where they are visible.
• A global variable is declared outside of all functions, typically at the top of a program, and can be

accessed by all functions.
• Global variables should be used sparingly because they violate the principle of modularity.

• A local variable is declared inside a function and can only be used by that function.
• Two functions can have local variables with the same names without interfering with each

other.
• Local variables are declared at the beginning of a function.
• They cease to exist when the function ends and are recreated when the function is called again.
• They do not retain their value from one invocation of a function to the next.

Global Variables

A. Carini – Digital System Architectures

Local Variables

A. Carini – Digital System Architectures

Initializing Variables

A. Carini – Digital System Architectures

• A variable needs to be initialized – assigned a value – before it is read.
• When a variable is declared, the correct number of bytes is reserved for that variable in memory.
• However, the memory at those locations retains whatever value it had last time it was used,

essentially a random value.
• Global and local variables can be initialized either when they are declared or within the body of the

program.

Operators

A. Carini – Digital System Architectures

• The most common type of statement in a C program is an expression, such as

• An expression involves operators (such as + or *) acting on one or more operands, such as variables or
constants.

• C supports the operators shown in next slides, listed by category and in order of decreasing
precedence.

• For example, multiplicative operators take precedence over additive operators.
• Within the same category, operators are evaluated in the order that they appear in the program.
• Unary operators, also called monadic operators, have a single operand; binary operators have two

operands; ternary operators have three.

Operators

A. Carini – Digital System Architectures

Operators

A. Carini – Digital System Architectures

Operators

A. Carini – Digital System Architectures

Ternary operator

A. Carini – Digital System Architectures

• C considers a variable to be TRUE if it is nonzero and FALSE if it is zero.
• Logical and ternary operators, as well as control-flow statements such as if and while, depend on the

truth of a variable.
• Relational and logical operators produce a result that is 1 when TRUE or 0 when FALSE.

Operator examples

A. Carini – Digital System Architectures

• *= or += are
compound assignments

• x += 10; is equivalent to
x = x + 10;

Function calls

A. Carini – Digital System Architectures

• Large programs are divided into functions with well-defined inputs, outputs, and behavior.

• The function declaration begins with the return type, int, followed by the name, sum3, and the inputs
enclosed within parentheses(int a, int b, int c).

• Curly braces {} enclose the body of the function, which may contain zero or more statements.
• The return statement indicates the value returned to the caller, i.e., the output of the function.
• A function can only return a single value.

• After this call to sum3, y holds the value 42.

Function calls

A. Carini – Digital System Architectures

• Although a function may have inputs and outputs, neither is required.

• The keyword void before the function name indicates that nothing is returned.
• void between the parentheses indicates that the function has no input arguments.

Function prototype

A. Carini – Digital System Architectures

• A function must be declared in the code before it is called.
• This may be done by placing the called function earlier in the file, with main placed at the end of the C

file after all the functions it calls.
• Alternatively, a function prototype can be placed in the program before the function is defined.

• The function prototype is the first line of the function, declaring the return type, function name,
and function inputs.

• It is good style to place prototypes for all of a program’s functions near the beginning of the C
file or in a header file.

Function prototype

A. Carini – Digital System Architectures

Control flow statements

A. Carini – Digital System Architectures

• C provides control-flow statements for conditionals and loops.
• Conditionals execute a statement only if a condition is met: if, if/else, and switch/case
• A loop repeatedly executes a statement as long as a condition is met: while, do/while, and for loops

If and if/them statements

A. Carini – Digital System Architectures

• An if statement executes the statement immediately following it when the expression in parentheses
is TRUE (i.e., nonzero).

• The general format is:

• Curly braces, {}, are used to group one or more statements into a compound statement or block.

• if/else statements execute one of two statements depending on a condition:

switch/case statements

A. Carini – Digital System Architectures

• switch/case statements execute one of several statements depending on the value of an expression:

• If the keyword break is omitted, execution begins at the point where the condition is TRUE and then
falls through to execute the remaining cases below it.

• A switch/case statement is equivalent to a series of
nested if/else statements:

while Loops

A. Carini – Digital System Architectures

• while loops repeatedly execute a statement until a condition is not met

do/while Loops

A. Carini – Digital System Architectures

• do/while loops are like while loops but the condition is checked only after the statement is executed
once:

The condition is followed by a semi-colon.

for Loops

A. Carini – Digital System Architectures

• for loops, like while and do/while, repeatedly execute a statement until a condition is not satisfied.
• However, for loops add support for a loop variable, which typically keeps track of the number of loop

executions.
• The general format of the for loop is

• The initialization code executes only once, before the for loop begins.
• The condition is tested at the beginning of each iteration of the loop. If not TRUE, the loop exits.
• The loop operation executes at the end of each iteration.

for Loops

A. Carini – Digital System Architectures

• A for loop could be expressed equivalently, but less conveniently, as

More data types: pointers

A. Carini – Digital System Architectures

• A pointer is the address of a variable.

More data types: pointers

A. Carini – Digital System Architectures

• In a variable declaration, a star (*) before a variable name indicates that the variable is a pointer to the
declared type.

• In using a pointer variable, the * operator dereferences a pointer, returning the value stored at the
indicated memory address contained in the pointer.

• The & operator is pronounced “address of,” and it produces the memory address of the variable being
referenced.

• Dereferencing a pointer to a non-existent memory location or an address outside of the range
accessible by the program will usually cause a program to crash.

• The crash is often called a segmentation fault.

More data types: pointers

A. Carini – Digital System Architectures

• Pointers are particularly useful when a function needs to modify a variable, instead of just returning a
value.

• Functions can’t modify their inputs directly, but we can make the input a pointer to the variable.
• This is called passing an input variable by reference instead of by value.

• A pointer to address 0 is called a null pointer and indicates that the pointer is not actually pointing to
meaningful data. It is written as NULL in a program (with NULL defined in <stddef.h>).

More data types: pointers

A. Carini – Digital System Architectures

More data types: arrays

A. Carini – Digital System Architectures

• An array is a group of similar variables stored in consecutive addresses in memory.
• The elements are numbered from 0 to N−1, where N is the length of the array.

• In C, the array variable, in this case scores, is a pointer to the 1st element.
• It is the programmer’s responsibility not to access elements beyond the end of the array.

More data types: arrays

A. Carini – Digital System Architectures

• The elements of an array can be initialized either at declaration using curly braces {},

• or individually in the body of the code,

• In the first case, if there are fewer initializers than the number specified, the missing elements will be
zero.

• Each element of an array is accessed using brackets [].

More data types: arrays

A. Carini – Digital System Architectures

• When an array is declared, the length must be constant so that the compiler can allocate the proper
amount of memory.

• However, when the array is passed to a function as an input argument, the length need not be defined
because the function only needs to know the address of the beginning of the array.

More data types: arrays

A. Carini – Digital System Architectures

• An array argument is equivalent to a pointer to the beginning of the array. Thus, getMean could also
have been declared as

• Although functionally equivalent, datatype[] is the preferred method for passing arrays as input
arguments because it more clearly indicates that the argument is an array.

More data types: arrays

A. Carini – Digital System Architectures

• A function is limited to a single output, i.e., return variable. However, by receiving an array as an input
argument, a function can essentially output more than a single value by changing the array itself.

Number of elements of an array

A. Carini – Digital System Architectures

• In the function where the array is declared, the number of elements in the array can be found from:

sizeof(array) / sizeof(arrayElement)

• E.g.,
int a[10];

sizeof(a)/sizeof(int) is 10;

• This is useful to determine the number of elements when the array size is deduced by the initialization

int a[]= {1, 2, 100, …, 5, 2};

• Note however that in a function with a parameter array[], sizeof(array) is just the size of
the pointer to the array, because arrays are passed by reference and the number of elements is
unknown.

Arrays and Pointers

A. Carini – Digital System Architectures

• In C, there is a strong relationship between pointers and arrays.
• Any operation that can be achieved by array subscripting can also be done with pointers.
• The declaration

int a[10];

• defines an array of size 10, that is, a block of 10 consecutive objects named a[0], a[1], ...,a[9]

• If pa is a pointer to an integer, declared as
int *pa;

• then the assignment
pa = &a[0];

• sets pa to point to element zero of a; that is, pa contains the address of a[0].
x = *pa;

• will copy the contents of a[0] into x.

Arrays and Pointers

A. Carini – Digital System Architectures

• If pa points to a particular element of an array, then by definition pa+1 points to the next element,
pa+i points i elements after pa, and pa-i points i elements before. Thus, if pa points to a[0],

• *(pa+1)

• refers to the contents of a[1], pa+i is the address of a[i], and *(pa+i)is the contents of a[i].

• These remarks are true regardless of the type or size of the variables in the array a.
• The meaning of ``adding 1 to a pointer” is that pa+1 points to the next object, and pa+i points to

the i-th object beyond pa.

Arrays and Pointers

A. Carini – Digital System Architectures

• After the assignment
pa = &a[0];

• pa and a have identical values.
• Since the name of an array is a synonym for the location of the initial element, the assignment

pa=&a[0] can also be written as
pa = a;

• In evaluating a[i], C converts it to *(a+i) immediately; the two forms are equivalent.
• Moreover, pa[i] is identical to *(pa+i).

• There is one difference between an array name and a pointer that must be kept in mind:
• A pointer is a variable, so pa=a and pa++ are legal.
• But an array name is not a variable; constructions like a=pa and a++ are illegal.

• Note that the expression *p++ is parsed as *(p++), and not as (*p)++.

Arrays and Pointers

A. Carini – Digital System Architectures

• When an array name is passed to a function, what is passed is the location of the initial element.
• Within the called function, this argument is a local variable, and so an array name parameter is a

pointer, that is, a variable containing an address.

/* strlen: return length of string s */

int strlen(char *s)

{

int n;

for (n = 0; *s != '\0', s++)

n++;

return n;

}

• As formal parameters in a function definition,
char s[] and char *s

• are equivalent.

More data types: arrays

A. Carini – Digital System Architectures

• Arrays may have multiple dimensions.

• Multi-dimensional arrays used as input arguments to a function must define all but the first
dimension.

More data types: arrays

A. Carini – Digital System Architectures

More data types: arrays

A. Carini – Digital System Architectures

• Note that because an array is represented by a pointer to the initial element, C cannot copy or
compare arrays using the = or == operators.

• Instead, you must use a loop to copy or compare each element one at a time.

More data types: characters

A. Carini – Digital System Architectures

• A character (char) is an 8-bit variable.
• It can be viewed either as a two’s complement number between −128 and 127 or as an ASCII code for

a letter, digit, or symbol.
• ASCII characters can be specified as a numeric value (in decimal, hexadecimal, etc.) or as a printable

character enclosed in single quotes.
• The letter A has the ASCII code 0x41, B=0x42, etc. Thus, 'A' + 3 is 0x44, or 'D'.

More data types: characters

A. Carini – Digital System Architectures

Windows text files use \r\n to represent end-of-line while UNIX-based systems use \n,
which can cause nasty bugs when moving text files between systems.

More data types: strings

A. Carini – Digital System Architectures

• A string is an array of characters used to store a piece of text of bounded but variable length.
• Each character is a byte representing the ASCII code for that letter, number, or symbol.
• The size of the array determines the maximum length of the string, but the actual length of the string

could be shorter.
• In C, the length of the string is determined by looking for the null terminator at the end of the string.

More data types: strings

A. Carini – Digital System Architectures

• an alternate declaration of the string greeting:

• Unlike primitive variables, a string cannot be set equal to another string using the equals operator, =.
• Each element of the character array must be copied from the source string to the target string.

More data types: structures

A. Carini – Digital System Architectures

• In C, structures are used to store a collection of data of various types.
• The general format of a structure declaration is

• where struct is a keyword indicating that it is a structure, name is the structure tag name, and
element1 and element2 are members of the structure.

More data types: structures

A. Carini – Digital System Architectures

• Just like built-in C types, you can create arrays of structures and pointers to structures.

• It is common to use pointers to structures.
• C provides the member access operator -> to dereference a pointer to a structure and access a

member of the structure.

More data types: structures

A. Carini – Digital System Architectures

The table lists the precedence and associativity
of C operators. Operators are listed top to
bottom, in descending precedence.

Taken from https://en.cppreference.com/w/c/language/operator_precedence

Precedence Operator Description Associativity

1

++ -- Suffix/postfix increment and decrement Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2

++ -- Prefix increment and decrement[note 1] Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Cast

* Indirection (dereference)

& Address-of

sizeof Size-of[note 2]

_Alignof Alignment requirement(C11)

3 * / % Multiplication, division, and remainder Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

6
< <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively

7 == != For relational = and ≠ respectively

8 & Bitwise AND

9 ^ Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 || Logical OR

13 ?: Ternary conditional[note 3] Right-to-left

14

= Simple assignment

+= -= Assignment by sum and difference

*= /= %= Assignment by product, quotient, and remainder

<<= >>= Assignment by bitwise left shift and right shift

&= ^= |= Assignment by bitwise AND, XOR, and OR

15 , Comma Left-to-right

https://en.cppreference.com/w/c/language/operator_precedence#cite_note-1
https://en.cppreference.com/w/c/language/operator_precedence#cite_note-2
https://en.cppreference.com/w/c/language/operator_precedence#cite_note-3

More data types: structures

A. Carini – Digital System Architectures

• Structures can be passed as function inputs or outputs by value or by reference.
• Passing by value requires the compiler to copy the entire structure into memory for the function.
• Passing by reference involves passing a pointer to the structure, which is more efficient.

More data types: typedef

A. Carini – Digital System Architectures

• C also allows you to define your own names for data types using the typedef statement.

Dynamic memory allocation

A. Carini – Digital System Architectures

• In all the examples thus far, variables have been declared statically: their size is known at compile time.
• This can be problematic for arrays and strings of variable size because the array must be declared large

enough to accommodate the largest size the program will ever see.
• An alternative is to dynamically allocate memory at run time when the actual size is known.
• The malloc function from stdlib.h allocates a block of memory of a specified size and returns a pointer

to it. If not enough memory is available, it returns a NULL pointer instead.

• The free function de-allocates the memory so that it could later be used for other purposes.
• Failing to de-allocate dynamically allocated data is called a memory leak and should be avoided.

Dynamic memory allocation

A. Carini – Digital System Architectures

Example Linked lists

A. Carini – Digital System Architectures

• A linked list is a common data structure used to store a variable number of elements.
• Each element in the list is a structure containing one or more data fields and a link to the next

element.
• The first element in the list is called the head.

• The code in the following slides describes a linked list for storing computer user accounts to
accommodate a variable number of users.

• Each user has a user name, a password, a unique user identification number (UID), and a field
indicating whether they have administrator privileges.

• Each element of the list is of type userL, containing all of this user information along with a link to the
next element in the list.

• A pointer to the head of the list is stored in a global variable called users, and is initially set to NULL to
indicate that there are no users.

• The program defines functions to insert, delete, and find a user and to count the number of users.

Example Linked lists

A. Carini – Digital System Architectures

Example Linked lists

A. Carini – Digital System Architectures

Example Linked lists

A. Carini – Digital System Architectures

Standard libraries

A. Carini – Digital System Architectures

• Programmers commonly use a variety of standard functions, such as printing and trigonometric
operations.

• To save each programmer from having to write these functions from scratch, C provides libraries of
frequently used functions.

• Each library has a header file and an associated object file, which is a partially compiled C file.
• The header file holds variable declarations, defined types, and function prototypes.
• The object file contains the functions themselves and is linked at compile-time to create the

executable.
• Because the library function calls are already compiled into an object file, compile time is reduced.

Standard libraries

A. Carini – Digital System Architectures

Printf

A. Carini – Digital System Architectures

• The print formatted statement printf displays text to the console.
• Its required input argument is a string enclosed in quotes " ".
• The string contains text and optional commands to print variables.
• Variables to be printed are listed after the string and are printed using format codes.

Printf

A. Carini – Digital System Architectures

Printf

A. Carini – Digital System Architectures

• Floating point formats (floats and doubles) default to printing six digits after the decimal point.
• To change the precision, replace %f with %w.df, where w is the minimum width of the number, and d

is the number of decimal places to print.
• Note that the decimal point is included in the width count.

Printf

A. Carini – Digital System Architectures

• Because % and \ are used in print formatting, to print these characters:

scanf

A. Carini – Digital System Architectures

• The scanf function reads text typed on the keyboard. It uses format codes in the same way as printf.
• When the scanf function is encountered, the program waits until the user types a value.
• The arguments to scanf are a string (indicating one or more format codes) and pointers to the

variables where the results should be stored.

File manipulation

A. Carini – Digital System Architectures

• Many programs need to read and write files, either to manipulate data already stored in a file or to log
large amounts of information.

• In C, the file must first be opened with the fopen function.
• It can then be read or written with fscanf or fprintf in a way analogous to reading and writing to the

console.
• Finally, it should be closed with the fclose command.
• The fopen function takes as arguments the file name and a print mode.

• It returns a file pointer of type FILE*.
• If fopen is unable to open the file, it returns NULL.
• The modes are:

• "w": Write to a file. If the file exists, it is overwritten.
• "r": Read from a file.
• "a": Append to the end of an existing file. If the file doesn’t exist, it is created.

File manipulation

A. Carini – Digital System Architectures

File manipulation

A. Carini – Digital System Architectures

Other Handy stdio Functions

A. Carini – Digital System Architectures

• The sprintf function prints characters into a string, and sscanf reads variables from a string.
• The fgetc function reads a single character from a file, while fgets reads a complete line into a

string.
• fscanf is rather limited in its ability to read and parse complex files, so it is often easier to fgets

one line at a time and then digest that line using sscanf or with a loop that inspects characters one
at a time using fgetc.

Other Handy stdio Functions

A. Carini – Digital System Architectures

Reading and writing binary files is pretty much the same as any other file, the only difference is how you
open it:

unsigned char buffer[10];

FILE *ptr;

ptr = fopen("test.bin","rb"); // r for read, b for binary

fread(buffer,sizeof(buffer),1,ptr); // read 10 bytes to our buffer

Writing to a file is pretty much the same, with the exception that you're using fwrite() instead of fread():

FILE *write_ptr;

write_ptr = fopen("test.bin","wb"); // w for write, b for binary

fwrite(buffer,sizeof(buffer),1,write_ptr); // write 10 bytes from our buffer

stdlib

A. Carini – Digital System Architectures

• The standard library stdlib.h provides general purpose functions including random number generation
(rand and srand), dynamic memory allocation (malloc and free), exiting the program early (exit), and
number format conversions.

• To use these functions, add the following line at the top of the C file:

rand and srand

A. Carini – Digital System Architectures

• rand returns a pseudo-random integer.
• Pseudo-random numbers have the statistics of random numbers but follow a deterministic pattern

starting with an initial value called the seed.
• To convert the number to a particular range, use the modulo operator (%)

rand and srand

A. Carini – Digital System Architectures

• The values generated by the previous program will be the same each time the program runs.
• We can create a different sequence of random numbers at each run by changing the seed.
• This is done by calling the srand function, which takes the seed as its input argument.

• For historical reasons, the time function usually returns the current time in seconds relative to January 1, 1970 00:00
UTC. UTC stands for Coordinated Universal Time, which is the same as Greenwich Mean Time (GMT).

exit

A. Carini – Digital System Architectures

• The exit function terminates a program early.
• It takes a single argument that is returned to the operating system to indicate the reason for

termination.
• 0 indicates normal completion, while nonzero conveys an error condition.

Format Conversion: atoi, atol, atof

A. Carini – Digital System Architectures

• Functions for converting strings to integers, long integers, or doubles: atoi, atol, atof, respectively.

math.h

A. Carini – Digital System Architectures

• The library math.h provides math functions, such as trigonometry functions, square root, and logs.
• To use math functions, use

string.h

A. Carini – Digital System Architectures

• The string library string.h provides commonly used string manipulation functions.

Static Variables

A. Carini – Digital System Architectures

• The keyword static can be applied to both external (global) and internal (local) variables.
• The static declaration, applied to an external variable or function, limits the scope of that object to the

rest of the source file being compiled. External static thus provides a way to hide names to other .c
files.

• Internal static variables are local to a particular function just as automatic variables are, but unlike
automatics, they remain in existence rather than coming and going each time the function is
activated. This means that internal static variables provide private, permanent storage within a single
function.

Compiler and command line options

A. Carini – Digital System Architectures

• Multiple C files are compiled into a single executable by listing all file names on the compile line:

Command Line Arguments

A. Carini – Digital System Architectures

• Like other functions, main can also take input variables.
• However, unlike other functions, these arguments are specified at the command line.

• argc stands for argument count, and it denotes the number of arguments on the command line.
• argv stands for argument vector, and it is an array of the strings found on the command line.

• Note that the executable name is counted as the 1st argument.

Command-line Arguments

A. Carini – Digital System Architectures

• In environments that support C, there is a way to pass command-line arguments or parameters to a
program when it begins executing.

• When main is called, it is called with two arguments.
• The first (conventionally called argc, for argument count) is the number of command-line arguments

the program was invoked with; the second (argv, for argument vector) is a pointer to an array of
character strings that contain the arguments, one per string.

• Multiple levels of pointers are used to manipulate these character strings.

• E.g., the program echo, which echoes its command-line arguments on a single line, separated by
blanks: echo hello, world prints the output hello, world

• By convention, argv[0] is the name by which the program was invoked, so argc is at least 1.
• In the example above, argc is 3, and argv[0], argv[1], and argv[2] are "echo", "hello,"

and "world" respectively.
• The standard requires that argv[argc] be a null pointer.

Command-line Arguments

A. Carini – Digital System Architectures

• The first version of echo treats argv as an array of character pointers:

#include <stdio.h>

/* echo command-line arguments; 1st version */

int main(int argc, char *argv[])

{

int i;

for (i = 1; i < argc; i++)

printf("%s%s", argv[i], (i < argc-1) ? " " : "");

printf("\n");

return 0;

}

Command-line Arguments

A. Carini – Digital System Architectures

• Since argv is a pointer to an array of pointers, we can manipulate the pointer rather than index the
array. This next variant is based on incrementing argv, which is a pointer to pointer to char, while
argc is counted down:

#include <stdio.h>

/* echo command-line arguments; 2nd version */

int main(int argc, char *argv[])

{

while (--argc > 0)

printf("%s%s", *++argv, (argc > 1) ? " " : "");

printf("\n");

return 0;

}

Common mistakes

A. Carini – Digital System Architectures

Common mistakes

A. Carini – Digital System Architectures

Common mistakes

A. Carini – Digital System Architectures

Common mistakes

A. Carini – Digital System Architectures

Common mistakes

A. Carini – Digital System Architectures

Common mistakes

A. Carini – Digital System Architectures

Common mistakes

A. Carini – Digital System Architectures

References

• Sarah Harris and David Harris “Digital Design and Computer Architecture. ARM Edition”, Morgan
Kaufmann, 2015.
• Appendix C

• Ritchie, Dennis M., Brian W. Kernighan, and Michael E. Lesk. The C programming language. Englewood
Cliffs: Prentice Hall, 1988.
• 5.3 Pointers and Arrays (pages 97-100)

A. Carini – Digital System Architectures

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100

