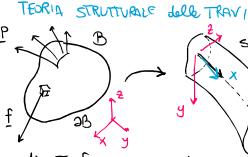
Elementi Finiti nella Meccanica Strutturale

Travi e strutture inflesse

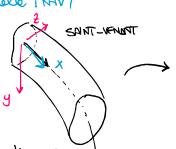
Marco Rossi



dio [+f=0

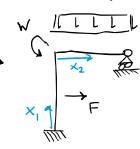
SOURS CRUCKS 3D GENERALE

FIRCET GENERALE



Jw [+f=0 SOUBO ENSTICO 31 MO CON GEOMETRIA

" of: TROVE" RISULTATI CHIPNE PER W'RIDHOWR' DIMENSIONALE



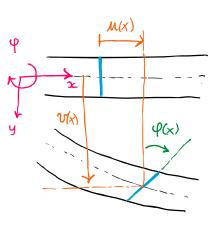
EJv"=q(x)

MODELLO STRUTTURALE HOLDSIMENSIONALE

MODELLO (1) STRUTTURE

IPOTESI L' NAVIER

SEZIONI AUDIANO, TRASLANDE RIMWIGHTO PIANE



DA SAINT VENUNT SI AICAVANO

LE CHROTTERISTICHE LILL HODELLOIN ->

M(x) V(x): SIBSTAMENTO

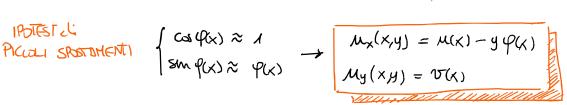
DELL' ASSE MEDIO

M(x): RETATIONE SUPE SCHUNE

 $\mathcal{M}_{\times}(x,y)$ SPOSTAMENTI LO GENERIUS PLATO My(x,y)(X,Y) DELLA SEPLONE LO SPOSTAHENTO JUL GENERIUS PUNTO JULIO SEZIUIF :

$$\begin{cases} u_x = u_x(x,y) = u(x) - y \text{ sen } \varphi(x) \\ u_y = u_y(x,y) = v(x) - y(1 - \cos\varphi(x)) \end{cases}$$

LO SPOSTOMICATO GENERILLO SI PUÒ SCRIVERE CONF FURING MEGLI SPOSTMENTI & ROTALIONI LOW RSE MEDIO (FURHAMI L' X)



DEFORMAZIONI

$$\mathcal{E}_{x}(x,y) = \frac{\partial u_{x}}{\partial x} = \frac{\partial u(x)}{\partial x} - y \frac{\partial y(x)}{\partial x}$$
, $\mathcal{E}_{y}(x,y) = \frac{\partial u_{y}}{\partial y} = \frac{\partial v(x)}{\partial y} = 0$

$$\chi^{x\lambda}(x\lambda) = \frac{3\lambda}{3\pi^{x}} + \frac{3x}{3\pi^{3}} = -\lambda(x) + \frac{3x}{3\pi}(x)$$

 $\gamma_{xy} = -\psi(x) + \frac{dv}{dx}(x)$

$$E_{x} = \frac{du(x)}{dx} - y \frac{dy(x)}{dx}$$
IN UNA TRAVE SNELLA, LE SEZIONI RIMBURGUO PATOGONAZI

ALCI ASSE 6000 TRAVE

9 wy

$$\varphi(x) = \frac{dv}{dx}(x)$$

 $\varphi(x)$

y senq

IPOTES 2:
$$\Rightarrow \varphi(x) = \frac{d\nabla x}{dx} \Rightarrow \chi_{xy} = \varphi - \frac{d\nabla}{dx} = 0$$

LO SCOPRIMENTO É NULLO, ma del SAINT-VENINTE DE MITO LA REWHONE

NELUA TRAVE DI

EULERS-BERNOULU LA RIGIDETTA AL TAGLID 2'INFINITA

GA, > 00, NELLE TRAVI SNELLE SI TASSCURA LA

OFFORMBILITÀ AL TAGLO

IN GENERALE

$$\mathcal{E}(x) = \frac{du}{dx} - y \frac{dy}{dx}, \quad \mathcal{E}_{y}(x) = -\varphi(x) + \frac{dv}{dx}(x)$$

$$\mathcal{T}(x) - \mathcal{X}(x)$$

$$\mathcal{E}_{x}(x) = \frac{du}{dx} - y \frac{dy}{dx}, \quad \mathcal{E}_{y}(x) = -\varphi(x) + \frac{dv}{dx}(x)$$

$$\mathcal{E}_{x}(x) = \frac{du}{dx} - y \frac{dy}{dx}, \quad \mathcal{E}_{y}(x) = -\varphi(x) + \frac{dv}{dx}(x)$$

$$\mathcal{E}_{x}(x) = \frac{du}{dx} - y \frac{dy}{dx}, \quad \mathcal{E}_{y}(x) = -\varphi(x) + \frac{dv}{dx}(x)$$

$$\mathcal{E}_{x}(x) = \frac{du}{dx} - y \frac{dy}{dx}, \quad \mathcal{E}_{y}(x) = -\varphi(x) + \frac{dv}{dx}(x)$$

$$\mathcal{E}_{x}(x) = \frac{du}{dx} - y \frac{dy}{dx}, \quad \mathcal{E}_{y}(x) = -\varphi(x) + \frac{dv}{dx}(x)$$

$$\mathcal{E}_{x}(x) = \frac{du}{dx} - y \frac{dy}{dx}, \quad \mathcal{E}_{y}(x) = -\varphi(x) + \frac{dv}{dx}(x)$$

DEFORMATIONS

LONGITUDINALE ASSE MEDIO

(NULW PER MODELLO EB)

RUNDI

$$\begin{cases} \mathcal{E}_{x}(x) = \mathcal{N}(x) + \mathcal{N}(x) \\ \gamma_{xy}(x) = t(x) \end{cases} \longrightarrow$$

ORA STRUTTATIO IL PLV PER DEFINIRE IL

LEGATE TRA QUANTITO CINGUITICUE E STATICHE

LAVORO INTERNO!

$$d_{VT} = \int \underline{\underline{G}} \cdot \underline{\underline{\varepsilon}} = \int \underline{G}_{X} \underline{\varepsilon}_{X} + \underline{T}_{xy} \gamma_{xy} = \int \int \underline{G}_{X} (\underline{\eta}(x) + \underline{\eta} \chi(x)) + \underline{T}_{xy} \underline{t}(x) d\underline{A} dx$$

$$= \int \underline{\underline{G}}_{X} \underline{\underline{G}}_{X} + \chi(x) \int \underline{G}_{X} \underline{\underline{G}}_{X} + \underline{t}(x) \int \underline{T}_{xy} dx = \int \underline{\underline{\eta}}_{X} (x) \underline{N}(x) + \chi(x) \underline{N}(x) + \underline{t}(x) \underline{A} dx$$

$$= \int \underline{\underline{G}}_{X} \underline{\underline{G}}_{X} + \chi(x) \int \underline{G}_{X} \underline{\underline{G}}_{X} + \underline{t}(x) \int \underline{T}_{xy} dx = \int \underline{\underline{\eta}}_{X} (x) \underline{N}(x) + \chi(x) \underline{N}(x) + \underline{t}(x) \underline{A} dx$$

$$= \int \underline{\underline{G}}_{X} \underline{\underline{G}}_{X} + \chi(x) \int \underline{G}_{X} \underline{\underline{G}}_{X} + \underline{t}(x) \int \underline{T}_{xy} dx = \int \underline{\underline{\eta}}_{X} (x) \underline{N}(x) + \chi(x) \underline{\underline{M}}_{X} + \underline{\underline{M}}_{X} \underline{\underline{G}}_{X} + \underline{\underline{M}}_{X} \underline{\underline{G}}_{X} + \underline{\underline{M}}_{X} \underline{\underline{G}}_{X} + \underline{\underline{M}}_{X} \underline{\underline{M}}_{X} \underline{\underline{G}}_{X} + \underline{\underline{M}}_{X} \underline{\underline{\underline{M}}_{X}} + \underline{\underline{M}}_{X} \underline{\underline{\underline{M}}} \underline{\underline{\underline{M}}}_{X} \underline{\underline{\underline{M}}} + \underline{\underline{M}}_{X} \underline{\underline{\underline{M}}} \underline{\underline{\underline{M}}}_{X} \underline{\underline{\underline{M}}} + \underline{\underline{\underline{M}}}_{X} \underline{\underline{\underline{M}}} \underline{\underline{\underline{M}}}_{X} \underline{\underline{\underline{M}}} \underline{\underline{\underline{$$

LAVORO ESTERIO:

$$f = \{f_x, f_y\}$$
 e' FORTS OI VOLUME $[f] = \frac{F}{L^3}$

$$lve = \int_{V} u_{x}f_{x} + u_{y}f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{x} + v(x) f_{y} = \int_{V} (u(x) - y \varphi(x)) f_{y}$$

=
$$\int_{0}^{e} \int u(x) \int_{0}^{f} f_{x} dA - \psi(x) \int_{0}^{f} f_{y} + v(x) \int_{0}^{f} f_{y} = \int_{0}^{e} u(x) p(x) + \psi(x) m(x) + v(x) \psi(x)$$

CRILO ASSIDLE MOMENTO (AKTIO)

PER UNITA DI DISTRIBUTO TRISVENSULE

LUNGUEZZA REL UNITA DILUNGUI.

QUINDI IL PLU PER LE TRAVI 2

$$\int_{0}^{R} m(x) N(x) + \chi(x) M(x) + t(x) T(x) = \int_{0}^{R} m(x) p(x) + V(x) q(x) + \psi(x) m(x)$$

MODELLO CINEMATICO:

CON GRUENZA:

$$M_{x}(x,y) = M(x) - y \varphi(x)$$

$$M_{y}(x,y) = V(x)$$

$$\chi(x) = \chi(x) + y \chi(x)$$

$$\chi(x) = \chi(x)$$

FOULUBRIO INDEFINITO + EQUIVALENZA STATICA

PICAVIANO L'EQUILIBRIO della TRAVE del SOUSO ENOTINO DELLA SAINT- VENUNT

IPSTESI SAINT-VENANT

PEL FORE I WAT WARETTONETTE SI CONSIDERA ANGLE TX2

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\mathcal{G} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\nabla_{xy} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & O & O
\end{bmatrix}$$

$$\nabla_{xy} = \begin{bmatrix}
\nabla_{x} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} & \nabla_{xy} \\
\nabla_{xy} & \nabla$$

EQ. INJEFINITE EQUILIBRIO

SI PUSADA TROUBRE BUCKE QUELLE DELLA RATURIONE BISP, OLE 2

DERIVAD LOOU ECOLUI LIBRID

ALLA TRASLIZIONE

 $\begin{cases}
\int \left(\frac{\partial \nabla x}{\partial x} + \frac{\partial \nabla x}{\partial y} + \frac{\partial \nabla x}{\partial z} + f_{x}\right) = 0 & (1)
\end{cases}$ $\int \left(\frac{\partial \nabla x}{\partial x} + \frac{\partial \nabla x}{\partial y} + \frac{\partial \nabla x}{\partial z} + f_{x}\right) = 0 & (2)$ $\int \left(\frac{\partial \nabla x}{\partial x} + \frac{\partial \nabla x}{\partial y} + \frac{\partial \nabla x}{\partial z} + f_{x}\right) = 0 & (2)$

$$\int_{A} \left(\frac{\pi xy}{5x} + fy \right) = 0 \quad (2)$$

$$\int_{A} \left(\frac{\partial x}{\partial x} y + \frac{\partial T}{\partial y} y + \frac{\partial T}{\partial z} y + f_{x} \cdot y \right) = 0$$
 (3)

$$\frac{N(x)}{2}$$

Fixual. (1)
$$\frac{\partial}{\partial x} \int_{A}^{N(x)} \int_{A}^{N(x)} + \int_{A}^{N(x)} \left(\frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z}\right) + \int_{A}^{P(x)} \int_{A}^{N(x)} \frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z} = \int_{A}^{N(x)} \left(\frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z}\right) + \int_{A}^{N(x)} \int_{A}^{N(x)} \frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z} = \int_{A}^{N(x)} \left(\frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z}\right) + \int_{A}^{N(x)} \int_{A}^{N(x)} \frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z} = \int_{A}^{N(x)} \left(\frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z}\right) + \int_{A}^{N(x)} \frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z} = \int_{A}^{N(x)} \left(\frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z}\right) + \int_{A}^{N(x)} \frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z} = \int_{A}^{N(x)} \left(\frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z}\right) + \int_{A}^{N(x)} \frac{\partial T_{xy}}{\partial z} + \int_{A}^{N(x)} \frac{\partial T_{xy}}{\partial$$

$$\frac{dN}{dN}(x) = -p(x)$$

$$\frac{dN(x) = -p(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_1 + T_{xy} m_3 = 0$$

$$\frac{dN(x) = -p(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

$$\frac{dN(x)}{dx} = \int_{\mathbb{R}} T_{xy} m_2 + T_{xy} m_3 = 0$$

EQUAL. (2)
$$\int_{A} \frac{\Im x_{y}}{\Im x} + \int_{A} f_{y} = \frac{\Im}{\Im x} \int_{A} T_{xy} + \int_{A} f_{y} = 0$$

$$\frac{\partial T_{xy}}{\partial x} + \int_{A} f_{y} = \frac{\Im}{\Im x} \int_{A} T_{xy} + \int_{A} f_{y} = 0$$

$$\frac{\partial T_{xy}}{\partial x} + \int_{A} f_{y} = \frac{\Im}{\Im x} \int_{A} T_{xy} + \int_{A} f_{y} = 0$$

$$\frac{\partial T_{xy}}{\partial x} + \int_{A} f_{y} = \frac{\Im}{\Im x} \int_{A} T_{xy} + \int_{A} f_{y} = 0$$

$$\frac{\partial T_{xy}}{\partial x} + \int_{A} f_{y} = \frac{\Im}{\Im x} \int_{A} T_{xy} + \int_{A} f_{y} = 0$$

$$\frac{\partial T_{xy}}{\partial x} + \int_{A} f_{y} = \frac{\Im}{\Im x} \int_{A} T_{xy} + \int_{A} f_{y} = 0$$

$$\frac{\partial T_{xy}}{\partial x} + \int_{A} f_{y} = \frac{\Im}{\Im x} \int_{A} T_{xy} + \int_{A} f_{y} = 0$$

$$\frac{d(x)}{dx} = -q(x)$$

$$\frac{d(x)}{dx} = -q(x)$$

$$\frac{d(x)}{dx} = -q(x)$$

$$\frac{d(x)}{dx} = -q(x)$$

$$=0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial y} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + \frac{\partial x}{\partial z} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y = 0$$

$$\frac{\partial x}{\partial x} \cdot y + f_{x} \cdot y$$

$$\int_{A}^{\infty} \int_{A}^{\infty} \int_{A$$

ABBILITIO PILCOVOTO LE EXCAZIONI DI COPULIBRIO LA CONCIO DI TRAVE A PORTIRE DE SOLID JI SAINT-VALINT!

MANCA IL LEGAME COSTITUTIVO

CON LE IPTESI STATICHE E GNENATICHE SI HA

$$\sigma_{xy} = \sigma(x) = E \left(\eta(x) + y \chi(x) \right)$$

 $\tau_{xy} = \tau_{xy}(x) = Gt(x)$

ORA SI POSSONO UNIRE EQ. LE LEGATE COSTITUTION ON EQUIVALENTA STATICA

$$N(x) = \int \int (x) dA = \int E_{\eta}(x) + \int y E_{\chi}(x) =$$

$$= E_{\eta}(x) \int A + E_{\chi}(x) \int y dA = E_{\eta}(x)$$

$$N(x) = E_{\eta}(x) \int A + E_{\chi}(x) \int y dA = E_{\eta}(x)$$

$$N(x) = E_{\eta}(x) \int A + E_{\chi}(x) \int y dA = E_{\eta}(x)$$

$$N(x) = E_{\eta}(x) \int A + E_{\chi}(x) \int y dA = E_{\eta}(x)$$

INDITRE
$$y(x) = \frac{du}{dx} \rightarrow \left[du = \frac{N}{EA} dx \right]$$

$$M(x) = \int_{A} \nabla_{x} \cdot y \, dA = \int_{A} E_{N}(x) \cdot y + \int_{A} E_{N}(x) \int_{A}^{2} y \, dA + E_{N}(x) \int_{A}^{2} y \, dA = E_{N}(x) \int_{A}^{2} y \, dA =$$

$$\chi(x) = \frac{d\varphi(x)}{dx}$$
 we $d\varphi = -\frac{M(x)}{EJ}dx$ RETAZIONE INFINITESIMA DELLA SCHIONE

NFL HODELLOJ: EVLEPO - BERNOULLI
$$\varphi(x) = \frac{dx}{dx} \qquad \text{ROTAZ. dollo}$$
ROTAZIONE PARI ALIA
ROTAZIONE doll'ASSE
$$\chi(x) = - V(x)$$

$$T = \frac{T}{J} \frac{S^*}{b} \rightarrow \frac{\text{Restern}}{\text{At Boxes}}$$

~ Tx2 e Ty2 NW sow PIU INDIPENDENTY EN ENTRAW NEL LAWS DI DETOKNATIONE

CLAPENEN (LANDED WINCHO INFINITESTO)

$$\frac{1}{2} \int_{V} dv = \frac{1}{2} \int_{V} c \cdot c c \cdot c = \frac{1}{$$

$$\frac{1}{2} T dv = \frac{1}{2} \int_{V} G \cdot \xi = \frac{1}{2} \int_{V} G \cdot C = \frac{1}{2} \int_{V} G \cdot C = \frac{1}{2} \int_{A} \frac{1$$

MODELLOO GIB 8=0 T FINITO GA, + 00

TRAVE DI EULERO - BERNOULLI (TRAVE SNELLI)

- V (x) = φ(x) → SLOPRIHENTO → NO CEFORTABILITA
 NULLO
 AL TAGLIO
- · RETHAUNE JODG SETIONE IDEATION DODG RETURNE JODG PRISE (XCX) & CURVOTERA JUDE / ASSE)
- · SUPPONGO L' TRASCURARE M(X) PER SEMPLICITÀ
- · SUPPORTS I CONSIDERARE STU PURTE FLESSIONALE (M(X) PRODUCE DEF. ASSIALI, DISACCIOPI ATO)

MODELLO CINEMATICO

CONGRUENAA:

$$\begin{cases} \mathcal{U}_{x}(x,y) = -y \mathcal{V}'(x) & \begin{cases} \mathcal{E}(x) = -y \mathcal{V}'(x) \\ \mathcal{U}_{y}(x,y) = \mathcal{V}(x) \end{cases} & \begin{cases} \mathcal{E}(x) = -y \mathcal{V}'(x) \\ \mathcal{Y}(x) \equiv 0 \end{cases}$$

LEGENTE COSTITUTION EQUIVALENTA STATION

$$\sigma''(x) = -\frac{H(x)}{EJ}$$

EQUILIBRIO .

$$\begin{cases} \frac{dT}{dx} = -q(x) & \frac{d^2M}{dx^2} = \frac{dT}{dx} \\ \frac{dM}{dx} = T(x) & \frac{d^2M}{dx^2} = -q(x) \end{cases}$$

EQUAZIONE JULIE LINEA ELASTICA JOL 4 CPOINE

$$\frac{d^2}{dx^2} \left[-EJ \frac{d^2 U(x)}{dx^2} (x) \right] = -q(x) \rightarrow \left[EJ U''(x) \right] = q(x) , x \in [0, \ell] \xrightarrow{EQUATIONE} 0.7F. 4° obsine$$

EQUATIONS I. EQUILIBRID PER TRIVE EVISTICIE CHOCENER EJU (X) = 9(X) SECOND IL HOBELLO DI EULERO-BERNOULLI

BISSENA CONSIDERARE ANCHE LC CONDIZION & CONTORNO

- · V(x), y(x)=V(x) → c. CONTORNO ESSENZIALI
- M(x) = -EJv''(x), T(x) = -EJv''(x) $\rightarrow C.$ CONTORIO NATURALI $V'''(0) = v_0'''$ $v_0''(L) = v_0'''$

$$\begin{cases}
V(0) = V_{0} \\
V'(0) = V_{0}'
\end{cases}$$

$$V'(L) = V_{L} \\
V'(L) = V_{L}'
\end{cases}$$

$$V'(L) = V_{L}'$$

$$V''(L) = V_{L}''$$

$$V''(L) = V_{L}''$$

BISSENA FISSARE ALCUNE DI QUESTE

FORM DEBULE

$$\left\{ \begin{array}{l} \text{EJ} v'(x) - q(x) = 0, \ x \in [0, \ell] \\ v(x), v'(x), v''(x), v''(x), x = 0 \ v = \ell \end{array} \right. \rightarrow \begin{array}{l} \text{RICANO IN FORTH DCBDLE CON IL METURD} \\ \text{del RESIDUM PESATO} \end{array}$$

$$\int_{0}^{1} w \left[EJv'' - q \right] dx = EJ\int_{0}^{1} wv'' - \int_{0}^{1} wq =$$

$$= EJ\int_{0}^{1} (wv''')' - w'v'' - \int_{0}^{1} wq =$$

$$= EJ\int_{0}^{1} (wv''')' - (v'v'')' + w''v'' - \int_{0}^{1} wq =$$

$$= \int_{0}^{1} EJv''w'' + \left[EJv'''w' \right]_{0}^{1} - \left[EJv''w' \right]_{0}^{1} - \left[Vw' \right]_{0}^{1} - \left$$

FORTA BILINEARS FORTA LINEARS, CON CARICHI

DISTRIBUTTI E CONTRIBUTI AL BORDO

$$[Tw]_{o}^{2} = T(l)w(l) - T(o)w(o)$$

$$= GRAZIE ALLE CONDIZIONI$$

$$AL CONDAD SI PESSOD$$

$$= M(l)w(l) - M(o)w(o)$$

$$= GRAZIE ALLE CONDIZIONI$$

$$= AL CONDAD SI PESSOD$$

$$= SSARE I VALDAI$$

SE SI ASSOCIA A D' L'IDEA L'SPUSTOMENTO VIRTUALE, QUESTITERATINI SOND IL LAVORD VIRTURIE DELLE FORZE CONCENTRATE AL BORDO

EQUIDBRIO TONE

CULTO BERNOLLI

$$\omega \in H_0^2 = \left\{g: [0, l] \to \mathbb{R}, g \in L_2, g \in L_2, g(\overline{x}) = 0, & v(\overline{x}) = \sqrt{5}, \\
L_2 = \left\{f: [0, l] \to \mathbb{R}, \int_0^l |f|^2 < + \infty\right\}$$

C. CONTORN

$$V(0) = 0 \qquad |V(l) = S \\
V'(0) = \psi \qquad |-E] v''(l) = W$$

$$V[w] = \int_0^l qw + T(l)w(l) - T(0)w(0) - H(l)w'(l) + H(0)w'(0)$$

$$= V_2 w(l) + V_1 w(0) + H_2 w'(l) + H_4 w'(0) = w'w'(l)$$
INCOCNITE

$$M_2 = W \qquad |V(l)| + V_1 w(0) + W_2 w'(0) + W_3 w'(0)$$

$$= V_3 w(l) + V_1 w(0) + W_2 w'(0) + W_3 w'(0)$$

$$= V_3 w(l) + V_1 w(0) + W_2 w'(0) + W_3 w'(0)$$

$$= V_3 w(l) + V_1 w(0) + W_2 w'(0) + W_3 w'(0)$$

$$= V_3 w(l) + V_1 w(0) + W_2 w'(0) + W_3 w'(0)$$

$$= V_3 w(l) + V_1 w(0) + W_2 w'(0) + W_3 w'(0)$$

$$= V_3 w(l) + V_1 w(0) + W_2 w'(0) + W_3 w'(0)$$

$$= V_3 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_3 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_4 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_4 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_4 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_5 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_5 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_5 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_5 w(l) + V_1 w(0) + W_2 w'(0)$$

$$= V_5 w(l) + V_1 w(0)$$

$$= V_5 w(l) + V_1 w(0)$$

$$= V_5 w(l) + V_1 w(0)$$

$$= V_7 w(l) + V_1 w(0)$$

$$= V_8 w(l)$$

LAVORED du

CARICHI ESTEINI

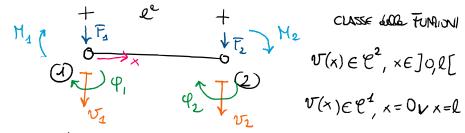
ENERGIA ENSTICA

VARIATIONALE SUL

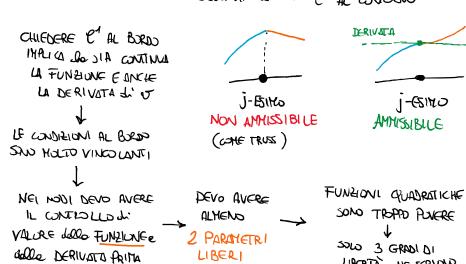
MINIMO LOQUI ENERGIA

POTEMALAGE TUTALE

DIVIDIATIO LA STRUTTURA IN CLETTENTI LA KOLLINDIE UNO:



DEMTRO L'EF DEVE ESISTÈRE U'(X) -> ALMENO 62 MEL DYINIO AL BORD AMETID De 41 SIA DISCOTTINITÀ -> 81 AL COTTURN

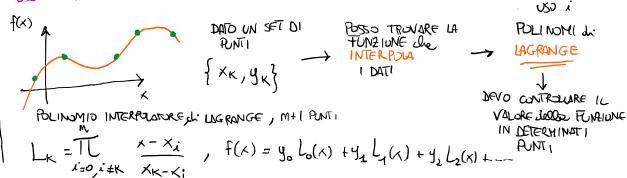


PER NOOU

LIBERTED, HE SERVOW

ALMERO 4 OGNI EF

OSSERVAZIONE: C'ÈUN LEGAME CON I POLINOMI INTER POLITORI



$$M=1 \rightarrow (0,M_1), (L,M_2) \qquad L_0 = \frac{x-L}{D-1} = 1-\frac{x}{2}, \quad L_1 = \frac{x-O}{1-D} = \frac{x}{2} \qquad f(x)=M_1\left(1-\frac{x}{2}\right)+M_2\frac{x}{2}$$

CALCOLO LOLLA FUNDONI J. FORTA

BEVO ENERGE 2 gold
$$\rightarrow (v_i, v_i) \rightarrow 4$$
 gold Rel DOWI \rightarrow SERVE UNA MODELLARIONE REL LODO \rightarrow CUBICA

$$V(x) = \alpha + bx + Cx^2 + dx^3$$

a, b, c, & PAROMETRI J. ATTZ-GALERKIN

Preside AI gal:
$$\begin{cases}
V_1 = V(0) = \alpha \\
V_2 = V(0) = b
\end{cases}$$

$$V_2 = V(0) = b + 2cl + 3dl^2$$

$$V_3 = V(0) = b + 2cl + 3dl^2$$

$$V_4 = V(0) = b + 2cl + 3dl^2$$

$$V_5 = V(0) = b + 2cl + 3dl^2$$

$$V_6 = V_1 \\
V_7 = V(0) = b + 2cl + 3dl^2$$

$$V_8 = V_1 \\
V_9 = V_1 \\
V_1 = V_1 \\
V_1 = V_2$$

$$V_1 = V_2 \\
V_2 = V_1 \\
V_3 = V_4$$

$$V_4 = V_1 \\
V_1 = V_2$$

$$V_1 = V_2 \\
V_2 = V_1$$

$$V_3 = V_4$$

$$V_4 = V_1 \\
V_1 = V_2$$

$$V_1 = V_2$$

$$V_1 = V_2$$

$$V_1 = V_2$$

$$V_2 = V_1 \\
V_3 = V_4$$

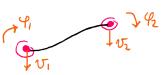
$$V_4 = V_1 \\
V_1 = V_2$$

ISLANDO I GRADI J.: LIBERTO LODE STRUTURA

$$\mathcal{J}(x) = V_{\underline{1}} \left(\underbrace{1 - \frac{3x^2}{\ell^2} + \frac{2x^3}{\ell^3}}_{N_1(x)} \right) + \varphi_{\underline{1}} \left(\underbrace{x - \frac{2x^2}{\ell} + \frac{x^3}{\ell^2}}_{N_2(x)} \right) + V_{\underline{2}} \left(\underbrace{\frac{3x^2}{\ell^2} - \frac{2x^3}{\ell^3}}_{N_3(x)} \right) + \varphi_{\underline{2}} \left(-\frac{x}{\ell} + \frac{x^3}{\ell^2} \right)$$

FUNCION I. FURTA HERMITIANE

 $\nabla(x) = N_1(x) \nabla_1 + N_2(x) \psi_1 + N_3(x) \nabla_2 + N_4(x) \psi_2$



$$N_{4}(x) = \lambda - 3\left(\frac{x}{\varrho}\right)^{2} + 2\left(\frac{x}{\varrho}\right)^{3} \tag{v.}$$

$$N_2(x) = x - \frac{2x^2}{\ell} + \frac{x^3}{\ell^2}$$
 (φ_1

$$N_3(x) = 3\left(\frac{x}{\ell}\right)^2 - 2\left(\frac{x}{\ell}\right)^3$$

$$N_4(x) = -\frac{x^2}{\ell} + \frac{x^3}{0^2}$$

Valcono SETIERE LE STESSE PROPRIETÀ PER LE FUNZIONI LI FORM $N_{\lambda}(x_{j}) = \delta x_{j}^{*} \longrightarrow \text{ORD RED GAL SUD SPOSE RESTATIONI},$ NOW HAS SENSO SOMBREI ...

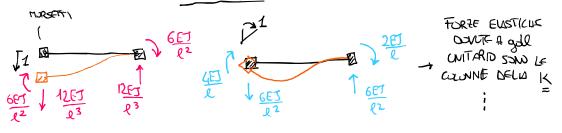
OSS. $N_{x}(x)$ PAPRESENTA LA SOLUTIONE DELLA TRIVE INCOSPRATA CON

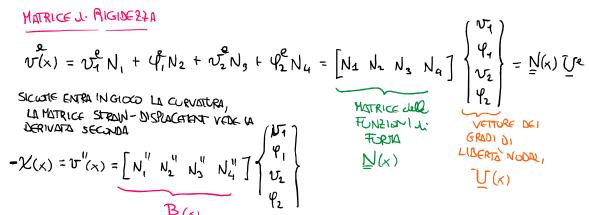
(EDIHENDO UNITARIO RICLATIVO ADLA "COMPANENTE i-ESITO"

+ L +

EJU'=O $\rightarrow U(x) = \Pi + Bx + Cx^2 + Dx^3 \rightarrow cubica!$ V(0) = 1 V(1) = 0 RER APRICARE LC $V(x) = V_1 N_1 + V_1 N_2 + V_2 N_3 + Q_1 N_4$ PEO QUI $V_1 = 1$, $V_2 = V_2 = V_1 = 0$ $\Rightarrow V(x) = N_1(x)$

N.B.: DA QUESTO ESCHOLO SI INTUISCE IL FORTE LEGINE TRA METUDO AGLI SPOSTAMENTI E HETODO AGLI ELEMENTI FINITI





USIANO METUDO LO RESIDIO PESATO

SUL SINGULO ELEMENTO FINITO

$$\int_{0}^{e} E^{2} \nabla w^{-1} - \int_{0}^{e} \varphi^{2}(x) w - \sqrt{2} w(0) - H^{2}_{1} w(0) - V_{2}^{e} w(1) - H^{2}_{2} w(1) = 0,$$

$$\nabla w \in H^{2}_{2}$$

(LA STESSA DI PRMA, VISTA GLOBALHENTE)

METODO L: STESSE FUNHONI L: GRERKIN FERDA PER VE W

$$V(x) = \underline{N} U^{e} \rightarrow V_{e}(x) = \underline{B}(x) U_{e}$$

$$W_{e}(x) = \underline{N} W^{e} \rightarrow W_{e}^{(1)}(x) = \underline{B}(x) W_{e}$$

Quimb.

$$\int_{\mathbb{R}} \overline{M} \, \overline{B}_{\perp} E J \, \overline{B} \, \overline{\Pi} \, - \int_{\mathbb{R}} d \, \overline{M}_{\perp} \, \overline{M}_{\perp} - \overline{M}_{\perp} \, \overline{E}_{=0} \, A \, \overline{M} \qquad \qquad \underbrace{E}_{=0} \, \underbrace{A_{1}}_{N_{1}} \, \underbrace{A_{2}}_{N_{2}} \, \underbrace{A_{2}}_{N_{2$$

$$\underbrace{\forall}_{\mathsf{T}} \left\{ \left(\int_{0}^{\mathsf{T}} \underline{\underline{\beta}}^{\mathsf{T}} \underline{\mathsf{FJ}} \underline{\underline{\beta}} \right) \underline{\mathsf{U}} - \int_{0}^{\mathsf{T}} \underline{q} \underline{\underline{\mathsf{N}}}^{\mathsf{T}} - \underline{\underline{\mathsf{F}}} \right\} = 0, \; \forall \; \mathsf{W}$$

$$\left(\int_{\mathbb{R}} \mathbf{E} \mathbf{E} \mathbf{d} \mathbf{x}\right) \mathbf{U} - \left(\int_{\mathbb{R}} \mathbf{e} \mathbf{N}^{\mathsf{T}} - \mathbf{\tilde{E}}\right) = C$$

$$B = \begin{bmatrix} 12x - 6 \\ l^3 - l^2 \end{bmatrix} \xrightarrow{6x} - \frac{C_1}{l} = \begin{bmatrix} 6x - \frac{C_1}{l} \\ l^2 - l^3 \end{bmatrix} \xrightarrow{6x} \begin{bmatrix} 6x - 2 \\ l^2 \end{bmatrix} \xrightarrow{RE \times CALWO} doller K$$

MATRICE J. RIGIDELLA

SUL SINGUID ELEMENTO FINITO

$$\int_{0}^{2} \left[\frac{1}{2} \left[\frac{1} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{$$

I CARICHI NODALI DIRENDINO LODGE FIRTA LLE CARICO DISTRIBUITO

$$T^{2} = \int_{0}^{1} q(x) \begin{cases} N_{1}(x) \\ N_{2}(x) \\ N_{3}(x) \end{cases} + \begin{cases} V_{1} \\ W_{1} \\ V_{2} \\ W_{2} \end{cases}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{2}$$

$$V_{4}$$

$$V_{5}$$

$$V_{6}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{6}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{5}$$

$$V_{6}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{5}$$

$$V_{6}$$

$$V_{7}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{6}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{6}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{7}$$

$$V_{8}$$

$$V_{9}$$

$$V_{$$

ESEMPLO: q(x)= 90, CARICO DISTRIBUITO COSTANTE

$$\left(\int_{0}^{R} \left[\int_{0}^{R} \int_{0}^{R} dx \right] \right) = 0$$

$$\left(\int_{0}^{R} \left[\int_{0}^{R} \int_{0}^{R} dx \right] \right) = 0$$

$$\left(\int_{0}^{R} \left[\int_{0}^{R} \int_{0}^{R} dx \right] \right) = 0$$

$$\left(\int_{0}^{R} \left[\int_{0}^{R} \int_{0}^{R} dx \right] \right) = 0$$

$$\left(\int_{0}^{R} \int_{0}^{R} \int_{0}^{R} dx \right) = 0$$

$$\left(\int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} dx \right) = 0$$

$$\left(\int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} dx \right) = 0$$

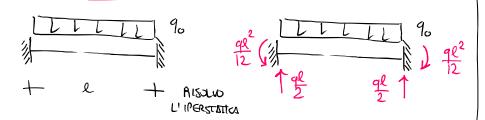
$$\left(\int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} dx \right) = 0$$

$$\left(\int_{0}^{R} \int_{0}^{R} \int_{0}^{R} \int_{0}^{R} dx \right) = 0$$

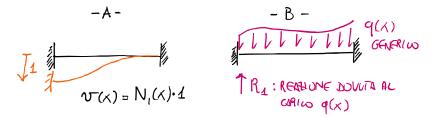
$$\left(\int_{0}^{R} \int_{0}^{R} \int_{0}$$

HECONICO - CARIO LADAZE EDQUIVARATE DALPUNIO DI MATA
ENERGETIVO AL CARIO DISTRIBUIO

N.B.: PICCOUND L'ANALOGIA FOTTA CON LA TRANE DOPPHO INCOSTRO,
IL SISTETA DI CARICO MODALE ERVIVALENTE È UGUALE E CONTRARIO
AL SISTETA DI REAZIONI ERVIUBRANTI IL CARICO DISTRIBUITO



SI OMOSTRA CONIL TEORETA JL BETTI



$$d_{BR} = \int_{0}^{Q} U(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

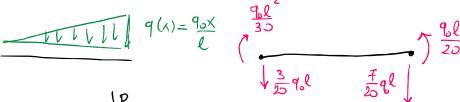
$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

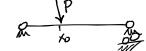
$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

$$d_{BR} = \int_{0}^{Q} V(x) q(x) + 1 \cdot R_{1}$$

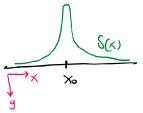
CARIW LINEARE



CARILLO CONCENTRATO



METUD 1) DELTA L'DIRAC



$$S(x) + c. \left\{ S(x) = 0, x \in \mathbb{R} \setminus \{x_0\} \right\}$$

$$S(x) = \infty, x = x_0$$

E INTEGRABILE
$$\int_{-\infty}^{+\infty} \delta(x) dx = \underline{1}$$

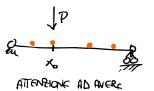
POSSIMO VEDERE CAPLLO CONCENTATO COME

UN CAPILLO DISTRIBUTTO q(x) = P(x)

METOD 2) SI DISCRETA PLA IN MODIAL IL PLATO X.

INFATT SULVOIL

DEGLI EF SONO
AMESI DEL CARICUL
CONCENTRATI



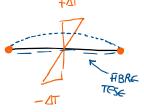
EF DI LUNGUEZZO

1! AJASVIO CACAT

CARICHI TERMICI

BESCHE INSERIRE NELLA FOSTURATIONE JORI ET LA POSSIBILITÀ DI AMERE DISTORSIONI TERRICIE

DEVOUS ENTROPE IN QUALLE
HOS NEI CURICUI ESTERNI



 $\chi = \chi_E + \chi_T$ CURVATURA

CURVATURA

FERSICA

TERSICA

$$\mathcal{L}_{\chi}$$
 \mathcal{L}_{χ} \mathcal{L}_{χ}

$$|\chi^T| = \frac{\alpha \Delta T}{\frac{A}{2}} = \frac{2\alpha \Delta T}{A}$$

$$\chi^{T} = -\frac{2 \times \Delta T}{4}$$

$$\chi^{Tot}(x) = \chi_{E}(x) + \chi_{T}(x)$$

QUESTA VOLE

 $\chi_{E}(x) = \frac{M}{EJ}$

ABBIANO SEMPRE

LANGERS CON QUELLO

ELASTICA FINGE!!

2) LA CURVATURA LEGATA ALLA CURVATURA JEOO /4555 MEDIO & LA CURVOTURA TOTALE (QUELA DO ETIETTIVOMENE SI REPLIZZA)

3) CONVIENT PLATIFIC LOOP EPT, SAFENDO DE
$$U(v) = \frac{1}{2} \int_{E}^{E} \chi_{E}^{2}(x)$$

$$T[v] = \frac{1}{2} \int_{0}^{2} EJ \chi_{E(x)} dx - \int_{0}^{2} q(x) v(x) - V_{1} v(0) - V_{2} v(1) - H_{1} v(0) + H_{2} v(1) = 0$$

$$=\frac{1}{2}\int_{0}^{1}\left(\chi^{TeT}-\chi_{T}\right)^{2}-\int_{0}^{1}qv-V_{1}v_{1}-V_{2}v_{2}-M_{1}\psi_{1}-M_{2}\psi_{2}=$$

I PUDELHINARE _, NON C'E' V", QUINDI

QUAND SI FA IL DIFFERENTIALE È UND CUSTANTE E SPARISCE

GRA INTRODUCIONO L'APPROSSIMOZIONE SUL GENERIUS ELEMENTO FINITO

$$\mathbb{T}^{2}(\underline{U}) = \frac{1}{2} \int_{0}^{\ell} \underline{U}^{T} \underline{B}^{T} \underline{E} \underline{B} \underline{U} - \int_{0}^{\ell} \underline{E} \underline{U}^{T} \underline{B}^{T} \chi_{T} - \int_{0}^{\ell} \underline{U}^{T} \underline{M}^{T} \underline{Q} - \underline{U}^{T} \widetilde{E} =$$

$$=\frac{1}{2} \underline{U}^{\mathsf{T}} \left(\int_{0}^{R} \underline{B}^{\mathsf{T}} \mathbf{E} \mathbf{B} \underline{B} \right) \underline{U} - \underline{U}^{\mathsf{T}} \left(\int_{0}^{R} \mathbf{E} \mathbf{I} \chi_{\mathsf{T}} \underline{B}^{\mathsf{T}} + \int_{0}^{R} \underline{N}^{\mathsf{T}} + \widehat{F} \right)$$

MOTRICE DI AIGHETTA "CLUSSICA"

FORZA EQUIVALENTE NCI NODI, DOVUTA

FORZY COZUIVALENTE DIVUTA AI CARICAI ESTERNI

UNA CURVATURA TERMICA EMED IN GLOCO WHE

THAT DOLL SATTEN

$$\overline{T}_{T} = \int_{S}^{Q} EJ 2_{T} \underline{B}^{T} = \int_{S}^{Q} \frac{2\alpha \Delta T}{A} EJ \int_{S}^{Q} \underline{B}^{T}$$

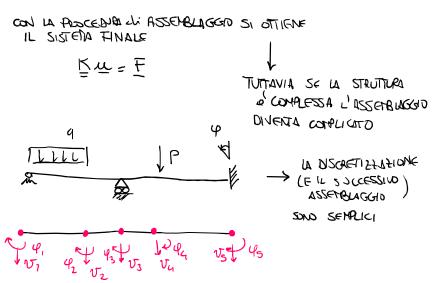
AL WHILD TEDINO!

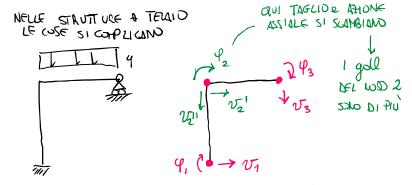
$$\overline{T}_{T} = \frac{2\alpha AT}{2\alpha} EJ \begin{cases} \frac{A2 \times - 6}{2^{3}} - \frac{6}{2} \\ \frac{6 \times 2}{2^{2}} - \frac{4}{2} \\ \frac{6}{2^{2}} - \frac{12 \times 2}{2^{3}} \end{cases} = \frac{2\alpha AT}{2\alpha} EJ \begin{cases} 0 \\ 0 \\ 1 \end{cases}$$

FSULE BIGUE?

$$U = \frac{1}{2} \int_{0}^{2} EA \mathcal{E}_{E}^{2} = \frac{1}{2} \int_{0}^{2} EA \left(e^{TX} - E_{T} \right)^{2} = \frac{1}{2} \int_{0}^{2} EA u^{2} - \int_{0}^{2} EA u^{2} - \int_{0}^{2} EA u^{2} e^{TX} = \frac{1}{2} \int_{0}^{2} EA u^{2} - \int_{0}^{2} EA u^{2} e^{TX} = \frac{1}{2} \int_{0}^{2} EA u^{2} - \int_{0}^{2} EA u^{2} e^{TX} = \frac{1}{2} \int_{0}^{2} EA u^{2} - \int_{0}^{2} EA u^{2} e^{TX} = \frac{1}{2} \int_{0}^{2} EA u^{2} = \frac{1}{2} \int_{$$

DALL' ELEMONTO FINITO DOLO TRAVE





"TRUES (LO SENTE L'ELEMENTO TRUES (LO SENTE DEFORTATION ASSIDLI) E L'EIGHBRO BEAN (de "SENE" LE DEFORTAZION TRUSVERSALI)

ELGMENTO TRAVE ALLA EULEPO-BERNOULLI COMPLETO



$$\begin{cases} EAn'' + p = 0 \\ + c. contribus \end{cases} \begin{cases} EJv'' - q = 0 \\ + c. contribus \end{cases}$$

$$T[M,V] = \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} - \lambda[M,V]$$

$$= \frac{1}{2} \int_{0}^{\infty} ER \, m^{2} + \frac{1}{2} \int_{0}^{\infty} EJ \left(-v^{11}\right)^{2} + \frac{1}{$$

APPROSSIMALIONE COMPI

$$u(x) = \begin{bmatrix} N_1^{\vee}(x) & N_2^{\vee}(x) \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$v(x) = \begin{bmatrix} N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$$

$$u(x) = \begin{bmatrix} N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$$

$$u(x) = \underbrace{N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$$

$$u(x) = \underbrace{N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$$

$$u(x) = \underbrace{N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$$

$$u(x) = \underbrace{N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$$

$$u(x) = \underbrace{N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$$

$$u(x) = \underbrace{N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix} \qquad \underbrace{N_1^{\vee} & N_2^{\vee} & N_3^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix} \qquad \underbrace{N_1^{\vee} & N_2^{\vee} & N_2^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix} \qquad \underbrace{N_1^{\vee} & N_2^{\vee} & N_2^{\vee} & N_4^{\vee} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \\$$

$$\begin{bmatrix} u_{i}v \end{bmatrix} = \frac{1}{2} \int_{3}^{1} (u_{i}) EA(u_{i}) + \frac{1}{2} \int_{3}^{2} v_{i}^{"} EJv_{i}^{"} - \mathcal{L}[u_{i}v]$$

$$u_{i}(x) = N_{1j}^{1}(x) U_{j}^{"}$$

$$v_{i}^{"}(x) = N_{2j}^{"}(x) U_{j}^{"}$$

4 HOTRICE DI RIGIJEZZA FINDE 2 me 6×6, BASTA INSCRIBE I TERMIN NEL MODI CORRETTO

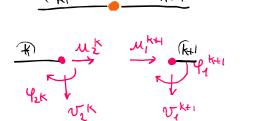
Fr quarto RIGUINDA I

CORI CHI SI FA CALLOS

$$F = F + \int N^{T} \left(\frac{P(x)}{q(x)} \right)$$

ANALOGO

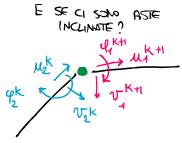
L'ASSEMBLACCIO É ANCORA DELICATO - CI POSSINO ESSERE PROBLEMI NELLE ASTE INCLINATE



ASSEMBLARE SIGNIFILL

(M2 = \mathcal{U}_{1}^{k+1} $\mathcal{U}_{2}^{k} = \mathcal{U}_{3}^{k+1}$ $\mathcal{U}_{4}^{k} - \mathcal{V}_{4}^{k+1}$

LA SOLUZIONE È DEFINIRE JOI GRADI DI LIBERTA
GLUBALI DEFINITI IN UN SISTETA DI RIFERIMENTO
GLUBALE PER TUTTI I MOI

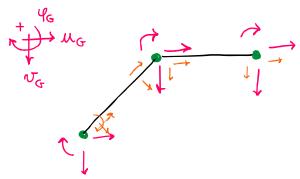


NA GORD UGUAGLIARE I AGAL

SERVE INTRODURSE UNA ROTATIONE LA SIST.

STEM LOCALE JODU EF AL SIST.

GLOBALE



QUINDI: MATRICE IN ROTHHONE $\begin{cases}
u^{L} \\ \eta^{TL}
\end{cases} = \begin{bmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0
\end{bmatrix}
\begin{cases}
u_{G} \\
\varphi_{G}
\end{cases}$

IL LEGISTE TRO LOCALES

GLOBALE SI SCRIVE:

UL = MG COSX - UE SEMOX

OL = MG SEMOX + VE COSX

PL = QG

VETTOLI GO

SINGULO MITO

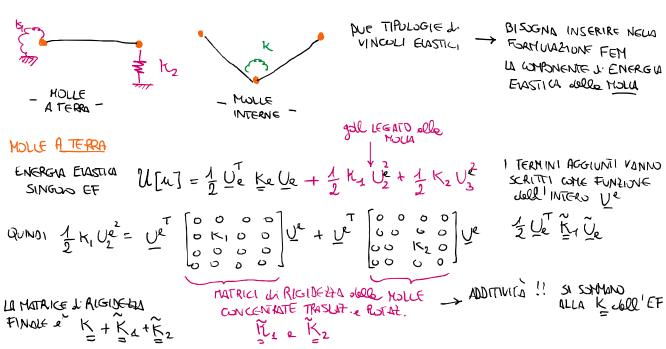
$$T_0 = \begin{bmatrix} \omega_{SX} & -s_{MX} & 0 \\ s_{MX} & \omega_{SX} & 0 \end{bmatrix} \qquad M_1 = T_0 M_0$$

IL VETTOR USE GRADI DI LIBERTA LEDO PLANGATO È

IN GENERALE

KLO ET MIE della FLATULIZIONE

MOLLE ED ELEVENTI AD ELEVENTRATA



$$K = \begin{bmatrix} 12EJ \\ 1^{\frac{3}{3}} & 6EJ \\ 2^{\frac{1}{2}} & -12EJ \\ 2^{\frac{1}{2}} & 4EJ + K_1 & -6EJ \\ 2^{\frac{1}{2}} & 2EJ \\ -12EJ & -6EJ \\ 2^{\frac{3}{2}} & 2EJ \\ 2^{\frac{3}{2}} & 2EJ \\ 2^{\frac{3}{2}} & -6EJ \\ 2^{\frac{3}{2}} & 2EJ \\ 2^{\frac{3}{2}} & 4EJ \\$$

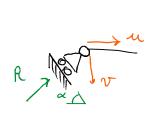
HOLLE INTERNE

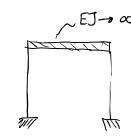
SONO DEL TIPO U= 1 K3 (Ui - Ui)2 ELEMENTI DIVERS

COTTE PROMA, Muse:

- 1) BISSGHA LAWARE SILVA MOTRICE ASSEMBLUTA
- MACHINGER ALL $\underline{Y} = \begin{bmatrix} K_3 K_3 \end{bmatrix} U_1^K$ MACHINGER ALL $\underline{Y} = \begin{bmatrix} K_3 K_3 \end{bmatrix} U_1^K$ The

VINCOLI AGGIUNTIVI DE SISTEM





A WUTE F NECESSARIO IMORRE VINCOLI Al GRADI DI LIBERTA COME ENTROW NEL SISTEM DA AISOLVERE?

MULTI FREBOH CONSTRAINTS

Au = g CONSTRUITION ON YOUR VINCOLI LINEARI TRA i yoll CONSIDERIAD SOCO

3 HOUT PER TENERUE CONTO:

i PENALTY METAD , SI AGGIUNGE UN VINCONO EVASTICO CON RIGUETTA OPERTUNA

EL = 8 -> STO IMENENDO -> CON RIGIDETA EL -> CON

ii) METOD de MOLTIPLICATORI LI LAGRANGE

LO TRASFORD IN HINITO PROBLEMA IN FORTH DEBUE! VINCOUND ARBLEMO . V. MINIMO

min The mind L: LAGRANGIANA

L=T - ½T (Au-8) ← SI FA IL MINTOS & WESTA, CONSIDERANDO ANCHE I MUNI PROMETRIX of USPANGE

≥, Le PLATO DI VISTO FISIW, SOW LF FORZE DOVUTE AT VINCULI

4) METUDO MASTER - SLAVE

AM = g -> A NON & QUADRATA, he DIMENSIONI GENERICUE (TAME RIGHE QUANTE EQUALIBALI)

POSSO RISOLVERE IL SISTEMA → SCRIVERE ALCUNI goll IN FUNCTIONS JOSE ALTRI.

POSSO PORTIZIONARE IL VETTORE M dei goll IN DUE INSTER! NOD! MASTER 9, LE VERE INCOGNITE

DEL PROBLEMI, E MODI SCAVE CHE SONO LEGATI A MODI MOSTER da Au og

MOSTER of - LINEARMENTE INDIPENDENT!

LI EPT A SCRIVE

$$TC[M] = \frac{1}{2}M^{T} \times M - M^{T}E = \frac{1}{2}q^{T}L^{T}K = q - q^{T}L^{T}E \Rightarrow \begin{cases} Risslue & \text{Risslue Resident de} \\ Kq & = \widetilde{E} \end{cases}$$
UNA VOLTA NOTO q is CALCHA $M = Lq$

C'E LEGAME DIRETTO" THE

NULLSPACE J. A:

Tuti gk: y t.c. Ay = 0 L=[91/92-(y linearlette insurmati)