Introduction to Artificial Intelligence

Search

Instructor: Laura Nenzi

University of Trieste, Italy

[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

® Search Problem

® Uninformed Search Methods

® Breadth-First Search
® Depth-First Search
® Uniform-Cost Search

Search Problems

Context

= Agent: goal-based agents with
atomic representation

= Environment: episodic, single agent,
fully observable, deterministic,
static, discrete, and known

Example: Traveling in Romania

"] Oradea

MVaslui

=} Hirsova

Eforie

Search Problems Are Models

Search Problems

= A search problem consists of:

A state space S

Actions: Actions(s)

A successor(/action cost) function: c(s,a,s’) where a(s) = s’

A initial state and a goal test(/state)

= A solution is a path, i.e. a sequence of actions (a plan) which transforms
the start state to a goal state

= An optimal solution has the lowest path cost among all solutions.

Example: Traveling in Romania

= State space: Cities

= Actions
e.g. Actions(Arad)={ToSibiu,ToTimisoara,ToZerind}

= Successor function:

= Roads: Go to adjacent city with cost = distance
e.g. c(Arad, ToSibiu, Sibiu)=140

= Start state:
®» Arad

= Goal state:
= Bucharest

[JHirsova

Eforie

= Solution?

Search Problems

= A search problem consists of:

e [15 I I O
= A successor(/action cost) function u
(with actions, costs) ! /

= Asolution is a path, i.e. a sequence of actions (a
plan) which transforms the start state to a goal state

= Ainitial state and a goal test(/state)

What’s in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(230-1)x(122)x4
= States for pathing?
120
= States for eat-all-dots?
120x(230)

Quiz: Safe Passage

= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?

= (agent position, dot booleans, power pellet booleans, remaining scared time, ghosts
location)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

Tiny state space graph
for a tiny search problem

State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

= |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

~ 7/ N/

l Lot
F' ' ﬂ -4

a

K

H

N N

Ed
£

-

Search Trees

_ This is now / start
"« A”;)»‘O/%‘

u 1'(! _ Possible futures

YN e

= A search tree:
= A “what if” tree of plans and their outcomes

The start state is the root node
Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in the
search tree is an
entire PATH in the
state space
graph.

We construct
them on demand
—and we
construct as little
as possible.

-

Search Tree

S

~

—
d e
—— —_
b c e h r
1 1 _— N 1
a a h r p q f
AN 1 . -~
p q f q c G
" -~
g € G a
a

/

Quiz: State Space Graphs vs. Search Trees
Consider this 4-state graph: How big is its search tree (from S)?

/S\
/\ /\
/\ é\

7\

Important: Lots of repeated structure in the search tree!

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

115

Search Example: Romania

] Oradea

Y Vaslui

MMehadia

Dobreta [

[Hirsova

Eforie

Searching with a Search Tree

Arad

D R D R R

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |mportant ideas:
" Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

Example: Tree Search

@ ——
-
® ® e
I s2p

//\7 s>d>b
s>d=>c
| s

f s>d>e>h

I /\ > -

7 U 7 C

G —t=———

Cc
| ' s>ddedr>fdc
q C§?> a NSNS M SN

Best-first search

Vo —— Eyaluation function

function BEST-FIRST-SEARCH(problem, |) returns a solution node or failure
node <~ NODE(STATE=problem.INITIAL)
frontier < a priority queue ordered by f, with node as an element
reached < a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do
node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do
§ < child STATE
if 5 is not in reached or child PATH-COST < reached|s|.PATH-COST then
reached|s) < child
add child to frontier
return failure

function EXPAND(problem, node) yields nodes
s+ node.STATE
for each action in problem.ACTIONS(s) do
s' < problem.RESULT(s, action)
cost < node.PATH-COST + problem.ACTION-COST(s, action, s)
yield NODE(STATE=s", PARENT=node, ACTION=action, PATH-COST=cost)

Data Structure to store the frontier

= A priority queue first pops the node with the minimum cost
according to some evaluation function, f (used in best-first search)

= A FIFO queue or first-in-first-out queue first pops the node that
was added to the queue first (used in breadth-first search)

= A LIFO gueue or last-in-first-out queue (also known as a stack) pops
first the most recently added node (used in depth-first search)

Search Algorithm Properties

Search Algorithm Properties

Cartoon of search tree:

b is the branching factor 1 node
u IS e pran |
, , 8 b nodes
* mis the maximum depth
. . b2 nodes
* solutions at various depths _
m t|ers<
Number of nodes in entire tree?
" 1+b+b2+...b"=0(bm)
b™ nodes

Time complexity?

Space complexity?

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Measuring problem-solving performance

Completeness: Is the algorithm guaranteed to find a solution when there is one, and to
Completeness correctly report failure when there is not?

Cost optimality: Does it find a solution with the lowest path cost of all solutions?

Time complexity: How long does it take to find a solution? This can be measured in
Time complexity seconds, or more abstractly by the number of states and actions
considered.

Space complexity: How much memory is needed to perform the search?

