Quicksort

Chapter 7 of Cormen's book

Giulia Bernardini giulia.bernardini@units.it

Algorithmic Design a.y. 2022/2023

Quicksort

QUICKSORT(A, p, r)

```
1 if p < r

2 q = PARTITION(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)
```

Quicksort is a divide-and-conquer algorithm. Al the work is done in the divide step.

Basic Quicksort

```
Partition(A, p, r)
  x = A[r] (x is the pivot)
2 \quad i = p - 1
3 for j = p to r - 1
       if A[j] \leq x
            i = i + 1
            exchange A[i] with A[j]
   exchange A[i + 1] with A[r]
   return i+1
```

Partition is an in-place procedure. https://visualgo.net/en/sorting

Quiz Time

Please go to www.wooclap.com, use the code BERNARDINI3 and answer the question (it is anonymous unless you decide to use your name). You do not need to create an account!

Interactive presentations for memorable classes

Wooclap, the tool to interact, capture attention and measure understanding.

Try Wooclap for free

Randomized Quicksort

```
RANDOMIZED-PARTITION (A, p, r)

1 i = \text{RANDOM}(p, r)
```

- 2 exchange A[r] with A[i]
- 3 **return** PARTITION(A, p, r)

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:

RANDOMIZED-QUICKSORT (A, p, r)

```
1 if p < r
2 q = \text{RANDOMIZED-PARTITION}(A, p, r)
3 RANDOMIZED-QUICKSORT(A, p, q - 1)
```

RANDOMIZED-QUICKSORT (A, q + 1, r)

Counting and Radix Sort

Chapters from 8.1 to 8.3 of Cormen's book

Giulia Bernardini giulia.bernardini@units.it

Algorithmic Design a.y. 2022/2023

Lower Bounds on Sorting

Comparison model: the only operations are comparisons. The running time of an algorithm is the number of comparisons it does.

We prove that any sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Lower Bounds on Sorting

Decision Tree Algorithm

Internal node Binary decision

Leaf Answer found

Root-to-leaf path Single execution

Length of the Running time of one root-to-leaf path execution

Height of the tree Worst-case running time

Quiz Time

Please go to www.wooclap.com, use the code BERNARDINI3 and answer the question (it is anonymous unless you decide to use your name). You do not need to create an account!

Interactive presentations for memorable classes

Wooclap, the tool to interact, capture attention and measure understanding.

Try Wooclap for free

Lower Bounds on Sorting

Theorem: Given n elements, sorting them requires $\Omega(n \log n)$ time (comparisons) in the worst case.

Proof:

- The decision tree is binary
- Its height is at least log(number of leaves)
- The number of leaves is at least the number of permutations of n elements

Counting Sort

```
COUNTING-SORT(A, B, k)
    let C[0...k] be a new array
   for i = 0 to k
        C[i] = 0
    for j = 1 to A. length
        C[A[j]] = C[A[j]] + 1
   // C[i] now contains the number of elements equal to i.
    for i = 1 to k
        C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
    for j = A.length downto 1
10
11
        B[C[A[j]]] = A[j]
        C[A[j]] = C[A[j]] - 1
12
```

Efficient to sort n integers between 0 and k, with k = O(n).

Radix Sort

```
RADIX-SORT(A, d)
```

- 1 for i = 1 to d
- 2 use a stable sort to sort array A on digit i