Quicksort Chapter 7 of Cormen's book Giulia Bernardini *giulia.bernardini@units.it*

> Algorithmic Design a.y. 2022/2023

Quicksort

 $QUICKSORT(A, p, r)$

if $p < r$ $\mathbf 1$ $q = \text{PARTITION}(A, p, r)$ $\overline{2}$ $QUICKSORT(A, p, q-1)$ 3 $QUICKSORT(A,q+1,r)$ $\overline{4}$

Quicksort is a divide-and-conquer algorithm. Al the work is done in the divide step.

Basic Quicksort

Partition is an in-place procedure. <https://visualgo.net/en/sorting>

Please go to **www.wooclap.com,** use the code **BERNARDINI3** and answer the question (it is anonymous unless you decide to use your name). You do not need to create an account!

Randomized Quicksort

RANDOMIZED-PARTITION (A, p, r)

- 1 $i =$ RANDOM (p, r)
- exchange $A[r]$ with $A[i]$ $\overline{2}$
- **return** PARTITION (A, p, r) $3¹$

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:

RANDOMIZED-QUICKSORT (A, p, r)

- if $p < r$ $\mathbf 1$
- $\overline{2}$ $q =$ RANDOMIZED-PARTITION (A, p, r)
- $\overline{3}$ RANDOMIZED-QUICKSORT $(A, p, q-1)$
- RANDOMIZED-QUICKSORT $(A, q + 1, r)$ $\overline{4}$

Counting and Radix Sort Chapters from 8.1 to 8.3 of Cormen's book

> Giulia Bernardini *giulia.bernardini@units.it*

> > Algorithmic Design a.y. 2022/2023

Lower Bounds on Sorting

Comparison model: the only operations are comparisons. The running time of an algorithm is the number of comparisons it does.

We prove that any sorting algorithm requires Ω(*n* log *n*)comparisons in the worst case.

Lower Bounds on Sorting

Decision Tree

Internal node

Leaf

Root-to-leaf path

Length of the root-to-leaf path

Height of the tree

Algorithm

Binary decision

Answer found

Single execution

Running time of one execution

Worst-case running time

Please go to **www.wooclap.com,** use the code **BERNARDINI3** and answer the question (it is anonymous unless you decide to use your name). You do not need to create an account!

Lower Bounds on Sorting

Theorem: Given n elements, sorting them requires $\Omega(n \log n)$ time (comparisons) in the worst case.

Proof:

- **•** The decision tree is binary
- **•** Its height is at least log(number of leaves)
- **•** The number of leaves is at least the number of permutations of *n*elements

Counting Sort

COUNTING-SORT (A, B, k)

- let $C[0..k]$ be a new array $\mathbf 1$
- for $i = 0$ to k $\overline{2}$
- $C[i] = 0$ 3

5

- for $j = 1$ to A.length $\overline{4}$
	- $C[A[j]] = C[A[j]] + 1$
- 6 \mathcal{U} C[i] now contains the number of elements equal to i.
- for $i = 1$ to k $\overline{\mathcal{L}}$
- $C[i] = C[i] + C[i-1]$ 8
- // $C[i]$ now contains the number of elements less than or equal to i. 9
- for $j = A.length$ downto 1 10
- $B[C[A[j]]] = A[j]$ 11
- $C[A[j]] = C[A[j]] 1$ 12

Efficient to sort *n* integers between 0 and *k*, with $k = O(n)$.

Radix Sort

$RADIX-SORT(A, d)$

- for $i = 1$ to d $\mathbf{1}$
- use a stable sort to sort array A on digit i $\overline{2}$