
Capitolo 4

Cinematica dei Rigidi

In questo capitolo, presentiamo una descrizione geometrica del moto di un rigido come caso parti-
colare della più generale cinematica di un modello continuo deformabile.

4.1 Cenni di Cinematica dei Modelli Continui

Un modello continuo, solido o fluido, può essere modellizzato dalla chiusura B0 di un insieme aperto
dello spazio affine euclideo tridimensionale E3 (con un bordo regolare a tratti) che può cambiare
forma e posizione in E3. Quindi, può essere descritto nel modo seguente.

Definizione 4.1.1. Diremo piazzamento o configurazione (o deformazione in Scienza delle Co-
struzioni) del modello, un’applicazione Φ : B0 → E3 che soddisfi le seguenti proprietà:

P0

P = Φ(P0)

B0

Φ(B0)

Φ

s⃗(P0)

Notazioni:
B0, configurazione di riferimento
Φ(B0), piazzamento del continuo
P0, punto materiale
P = Φ(P0), punto spaziale
s⃗(P0) = P − P0, spostamento di P0

{P0, s⃗(P0)}P0∈B0
, spostamento del continuo

1. sia iniettiva, affinchè rispetti l’impenetrabilità dei corpi;

2. sia regolare, affinchè rispetti la continuità della materia;

3. abbia Jacobiano strettamente positivo, affinchè conservi l’orientazione dei volumi.

Tali condizioni assicurano l’esistenza dell’applicazione inversa

Φ−1 : Φ(B0) → B0

con le stesse proprietà di Φ.
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58 CAPITOLO 4. CINEMATICA DEI RIGIDI

Definizione 4.1.2. Chiameremo moto del continuo o flusso (dipendente dal tempo) una famiglia
ad un parametro di piazzamenti del sistema

Φ : I × B0 → E3, (t, P0) $→ P = Φ(t, P0) ,

dove I = [t0, t1] è l’intervallo degli istanti di tempo, che supporremo contenga l’istante t = 0.
Richiederemo che l’applicazione parziale ottenuta

1. fissando il tempo t, Φt : B0 → E3,Φt(P0) := Φ(t, P0) sia un piazzamento del modello all’istante
t. Le immagini Bt0 = Φt0(B0), Bt = Φt(B0), Bt1 = Φt1(B0), saranno chiamate, rispettiva-
mente, configurazione iniziale, attuale, finale del continuo. Per semplicità di descrizione,
prenderemo la configurazione iniziale coincidente con quella di riferimento. Dunque,

(4.1.1) Φt0(B0) ≡ B0 ⇒ Φt0 = 1B0
.

Inoltre, richiederemo che l’applicazione parziale ottenuta

2. fissando il punto P0, ΦP0
: I → E3,ΦP0

(t) := Φ(t, P0) sia di classe C2 a tratti. Essa rappresen-
ta il moto della particella P0 nell’intervallo I. La traiettoria ∪t∈IΦP0

(t) del punto materiale
P0 è detta linea di corrente (in inglese pathline) di P0.

L’applicazione s⃗(t, P0) := P (t)− P0 sarà detta spostamento di P0 all’istante t.
Il vettore

(4.1.2) v⃗m(t, P0) =
dΦP0

dt
(t) =

∂

∂t
Φ(t, P0)

sarà detto velocità materiale (o lagrangiana) del punto materiale P0, mentre lo stesso vettore
espresso in funzione del punto spaziale P

(4.1.3) v⃗s(t, P ) := v⃗m
(

t, P0 = Φ−1
t (P )

)

sarà detto velocità spaziale (o euleriana) e, al variare di P definisce il campo della velocità spaziale
dei punti del continuo ad un istante t. Il vettore v⃗m(t, P0) è tangente alla linea di corrente di P0 nel
punto P (t) all’istante t, quindi si può pensare come un vettore applicato in P (t). Invece, le curve
tangenti al campo di velocità spaziale v⃗s(t, P ), ad un istante fissato t, sono dette linee di flusso
(in inglese streamlines). Si può dimostrare che le linee di flusso coincidono con quelle di corrente
se il moto è stazionario, cioè se il campo di velocità spaziale è indipendente dal tempo. A questo
proposito si veda [Levi–Civita, Compendio di Meccanica Razionale, parte II, pag. 241.]

Tuttavia, non vale il viceversa, come vedremo nel caso del moto rotatorio non uniforme.
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4.2. MOTI RIGIDI 59

P0

P ′ = Φ(t′,P0)

P = Φ(t,P0)

B0

Φt (B0)Φt

Linea di corrente

Φt′ (B0)

Φt′

−→vm (t, P0) =
−→vs (t, P )

−→vm (t′, P0) =
−→vs (t′, P ′)

4.2 Moti rigidi

Definizione 4.2.1. Chiameremo moto rigido un flusso che preserva le distanze tra ogni coppia di
punti del modello,

(4.2.1) d
(

Φt(P0),Φt(Q0)
)

= d(P0, Q0) ∀t ∈ I , ∀P0, Q0 ∈ B0 ,

dove la distanza (euclidea) tra due punti qualsiasi P , Q ∈ E3, è definita tramite il prodotto scalare
in E3

(4.2.2) d(P,Q) = |P −Q| =
√

(P −Q) · (P −Q) .

Quindi, la (4.2.1) si scrive

(4.2.3) |Φt(P0)− Φt(Q0)| = |P0 −Q0| ∀t ∈ I , ∀P0, Q0 ∈ B0 .

Lemma 2. Sia (V, ·) uno spazio vettoriale dotato di un prodotto scalare e F : V → V un operatore
che soddisfa le proprietà.

i) F (⃗0) = 0⃗

ii) |F (u⃗)− F (v⃗)| = |u⃗− v⃗| ∀u⃗, v⃗ ∈ V .

Allora, F è lineare ed ortogonale.

Dimostrazione. Se nella ii) scelgo v⃗ = 0⃗, grazie alla i) segue che

(4.2.4) |F (u⃗)| = |u⃗| ∀u⃗ ∈ V ,

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.



60 CAPITOLO 4. CINEMATICA DEI RIGIDI

cioè F preserva i moduli dei vettori. In più, confrontando ambo i lati della ii) scritti tramite il
prodotto scalare

|F (u⃗)−F (v⃗)|2 =
(

F (u⃗)−F (v⃗)
)

·
(

F (u⃗)−F (v⃗)
)

= |F (u⃗)|2−2F (u⃗)·F (v⃗)+|F (v⃗)|2
(4.2.4)
= |u⃗|2−2F (u⃗)·F (v⃗)+|v⃗|2

|u⃗− v⃗|2 = (u⃗ − v⃗) · (u⃗− v⃗) = |u⃗|2 − 2u⃗ · v⃗ + |v⃗|2 ,

risulta, più in generale

(4.2.5) F (u⃗) · F (v⃗) = u⃗ · v⃗ ∀u⃗ , v⃗ ∈ E3 ,

cioè F preserva anche il prodotto scalare. Utilizzando la (4.2.4) e la (4.2.5) è facile dimostrare che
lo scalare

|F (λu⃗ + µv⃗)− λF (u⃗)− µF (v⃗)|2 = |F (λu⃗ + µv⃗)|2 + λ2|F (u⃗)|2 + µ2|F (v⃗)|2+

− 2λF (λu⃗+ µv⃗) · F (u⃗)− 2µF (λu⃗ + µv⃗) · F (v⃗) + 2λµF (u⃗) · F (v⃗) =

= |λu⃗+ µv⃗|2 + λ2|u⃗|2 + µ2|v⃗|2 − 2λ(λu⃗+ µv⃗) · u⃗− 2µ(λu⃗+ µv⃗) · v⃗ + 2λµu⃗ · v⃗

è nullo. Segue immediatamente la linearità dell’operatore F e dalla (4.2.5) la sua ortogonalità.

N.B. Da ora in poi, accanto ai punti materiali del rigido B0, considereremo anche i punti del
suo insieme complementare, immaginando il rigido esteso a tutto lo spazio E3, che si chiamerà lo
spazio solidale al rigido. Quindi, da ora in poi

B0 ≡ E3

in modo che
Φ−1

t : E3 → E3 .

Proposizione 4.2.1. Ogni piazzamento Φt : E3 → E3 di un moto rigido è un’isometria affine
propria (o diretta), cioè, ∀t ∈ I, esiste un’unica trasformazione lineare Φ̂t : E3 → E3, associata a
Φt, che preserva la struttura affine

(4.2.6) Φt(P0)− Φt(Q0) = Φ̂t(P0 −Q0) ∀t ∈ I ∀P0 , Q0 ∈ B0 ,

che è ortogonale rispetto al prodotto scalare ed è unimodulare, cioè det(Φ̂t) = 1. Inoltre, lo
spostamento rigido relativo a qualunque sotto-intervallo [t0, t] ⊂ I, soddisfa la proprietà

(4.2.7) s⃗(t, P0) = (Φt(Q0)− P0) + Φ̂t(P0 −Q0) ∀Q0 ∈ E3

Dimostrazione. Fissiamo ad arbitrio un punto O0 ∈ E3, che chiameremo centro di riduzione e, per
ogni vettore v⃗ di E3, consideriamo il punto corrispondente P0 := O0+v⃗ e l’applicazione Φ̂t : E3 → E3

così definita
Φ̂t(v⃗) = Φ̂t(P0 −O0) := Φt(P0)− Φt(O0) ,

dove Φt : E3 → E3 sono i piazzamenti del moto rigido considerato. L’applicazione Φ̂t gode delle
proprietà:

i) Φ̂t(⃗0) = Φt(O0)− Φt(O0) = 0⃗

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.



4.2. MOTI RIGIDI 61

ii) per ogni Q0 ∈ E3, sia w⃗ = Q0 −O0. Allora,

|Φ̂t(v⃗)− Φ̂t(w⃗)| = |
(

Φt(P0)−✘✘✘✘Φt(O0)
)

−
(

Φt(Q0)−✘✘✘✘Φt(O0)
)

| =

= |Φt(P0)− Φt(Q0)|
(4.2.3)
= |P0 −Q0| = |(P0 −O0) + (O0 −Q0)| = |v⃗ − w⃗|

Pertanto, per il Lemma 2, l’applicazione Φ̂t è lineare ed ortogonale, quindi il suo determinante può
essere ±1. Inoltre, poichè lo Jacobiano di un piazzamento Φt è positivo per l’ipotesi 3 della defini-
zione 4.1.1, per la (2.2.5) esso coincide con il il determinante di Φ̂t; allora, segue che il determinante
di Φ̂t è sempre pari a 1. Resta da verificare che la Φ̂t non dipende dalla scelta del centro di riduzione
O0. Infatti, se scegliamo un altro punto O′

0 = O0+ u⃗, detto R0 := O′
0+ v⃗ = O0+(u⃗+ v⃗), si ottiene,

∀v⃗ ∈ E3,

Φ̂′
t(v⃗) = Φ̂′

t(R0 −O′
0) := Φt(R0)− Φt(O

′
0) = Φt

(

O0 + (u⃗ + v⃗)
)

− Φt(O0 + u⃗) =

= Φt(O0 + v⃗) +✟✟✟Φ̂t(u⃗)−
(

Φt(O0) +✟✟✟Φ̂t(u⃗)
)

= Φt(P0)− Φt(O0) .

Dunque, Φ̂′
t ≡ Φ̂t.

Infine, lo spostamento rigido risulta

s⃗(t, P0) = Φt(P0)− P0 = (Φt(P0)− Φt(Q0))− (P0 − Φt(Q0)) = Φ̂t(P0 −Q0)− (P0 − Φt(Q0))

N.B. La (4.2.6) formalizza la seguente descrizione del moto rigido:

i) si sceglie ad arbitrio una particella del rigido, ad esempio Q0;

ii) noto il moto di Q0, ΦQ0
(t), il moto delle altre particelle, ad es. P0, è determinato dall’azione

dell’operatore lineare Φ̂t (dipendente solo dal tempo e non da Q0) sul vettore (P0 − Q0),
posizione delle particella P0 rispetto a Q0 nella configurazione di riferimento.

Dalla (4.2.1) si può ricavare immediatamente una caratterizzazione equivalente del moto rigido
in termini del campo di velocità spaziale.

Proposizione 4.2.2. Un moto è rigido se e solo se il suo campo delle velocità spaziali è equipro-
iettivo, cioè sono uguali i vettori componenti delle velocità di due punti lungo la congiungente i due
punti.

(4.2.8) v⃗P · (P −Q) = v⃗Q · (P −Q) ∀t ∈ I

P

Q

−→ v P

−→v
Q

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.



62 CAPITOLO 4. CINEMATICA DEI RIGIDI

Dimostrazione. Poiché il moto è rigido vale la (4.2.3), equivalente a

|Φt(P0)− Φt(Q0)|
2 =

(

ΦP0
(t)− ΦQ0

(t)
)

·
(

ΦP0
(t)− ΦQ0

(t)
)

= indipendente dal tempo

Derivando rispetto al tempo t si ottiene

2
(dΦP0

dt
(t)−

dΦQ0

dt
(t)

)

·
(

ΦP0
(t)− ΦQ0

(t)
)

= 0 ,

cioè
(

v⃗m(t, P0)− v⃗m(t, Q0)
)

·
(

P (t)−Q(t)
)

= 0 ,

ovvero

(4.2.9) v⃗s(t, P ) · (P (t)−Q(t)) = v⃗s(t, Q) · (P (t)−Q(t)) ,

tenuto conto della (4.1.3).
Viceversa, integrando rispetto al tempo la (4.2.9) si ottiene la (4.2.1).

4.2.1 Esempi di Moto rigido

Presentiamo alcuni esempi già familiari di moto rigido, caratterizzandoli tramite i loro insiemi
invarianti, cioè l’insieme dei punti del modello o dello spazio solidale che viene trasformato in sè
stesso dal flusso.

Moto traslatorio

Definizione 4.2.2. Diremo traslatorio un moto rigido che preserva tutte le direzioni, cioè un moto
che trasforma assi in assi paralleli. Esso sarà indicato con τ .

P0

Q0

P (t)

Q (t)

s⃗(t, P0)

s⃗(t, Q0)

P (t′)

Q (t′)

s⃗(t′, P0)

s⃗(t′, Q0)

B0 ≡ B(t0)

B(t)

B(t′)
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4.2. MOTI RIGIDI 63

Consideriamo il quadrilatero di vertici P0, P (t), Q(t), Q0. Per l’ipotesi di moto rigido i lati P0Q0

e P (t)Q(t) sono di uguale lunghezza e per l’ipotesi di moto traslatorio sono anche paralleli. Allora,
il quadrilatero suddetto è un parallelogramma e quindi gli spostamenti al tempo t sono

s⃗(t, P0) = s⃗(t, Q0) = s⃗(t) ∀P0, Q0 ∈ B0 ,

cioè tutti i punti del rigido hanno il medesimo spostamento all’istante t. Dunque, il moto del rigido
è descritto da

(4.2.10) τ : I × B0 → E3, (t, P0) $→ P (t) = P0 + s⃗(t)

e i suoi piazzamenti al tempo t si possono scrivere

τt = τs⃗(t) ,

per evidenziare il fatto che sono caratterizzati da un unico spostamento s⃗(t). Si noti che il
piazzamento inverso è dato da τ−s⃗(t).

Derivando la (4.2.10), si ottiene il campo delle velocità del moto traslatorio

(4.2.11) Ṗ (t) =##̇P0 + ˙⃗s(t) ,

cioè

(4.2.12) v⃗m(t, P0) = v⃗s(t, P ) = ˙⃗s(t) = u⃗(t) ∀P0 ∈ B0 , ∀P ∈ Bt .

Esso è un campo uniforme, istante per istante, quindi le sue linee di flusso sono rette parallele.
Inoltre, integrando la (4.2.12) rispetto al tempo, si dimostra che vale anche il viceversa: se un corpo
ha un campo di velocità uniforme in un sotto-intervallo [t, t′] ⊆ I, allora il suo moto è traslatorio
in tale sotto-intervallo.

N.B. Dalla Eq. (4.2.10) segue

τt(P0)− τt(Q0) = P0 −Q0 ∀P0, Q0 ∈ B0 ,

che confrontata con la (4.2.6) implica che la famiglia degli operatori lineari associata al flusso è

(4.2.13) τ̂t ≡ 13 , ∀t ∈ I .

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.
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☼

☼

☼

☼

☼

B(t0)

B(t)B(t′)

B(t1)

Esempio. Una cabina sulla ruota pa-
noramica trasla, se trascuriamo le oscil-
lazioni intorno alle cerniere cilindriche.
Mentre le sue linee di corrente sono da-
te da circonferenze, le sue linee di flusso
sono rette parallele.

N.B. Il moto traslatorio è, in generale, curvilineo. Infatti, ciò che caratterizza il moto traslatorio
è l’invarianza dell’orientazione del corpo nello spazio. Pertanto, il moto traslatorio può essere
descritto, in modo equivalente, come il moto durante il quale ogni terna solidale al rigido preserva
l’orientazione dei suoi assi.

Il moto rettilineo è il caso particolare del moto traslatorio che corrisponde a

(4.2.14) s⃗(t) = s(t) e⃗ ∀t ∈ I ,

dove e⃗ è un versore indipendente dal tempo. In questo caso, il campo delle velocità (4.2.12) si riduce
a

(4.2.15) v⃗m(t, P0) = v⃗s(t, P ) = ˙⃗s(t) = ṡ(t) e⃗ ∀P0 ∈ B0 , ∀P ∈ Bt .

Infine, se ṡ(t) non dipende dal tempo, il moto si dice traslatorio rettilineo ed uniforme. Viceversa,
integrando la (4.2.15), segue che essa caratterizza i moti traslatori rettilinei, eventualmente uniformi
se ṡ(t) non dipende dal tempo. Per i i moti traslatori rettilinei, anche non uniformi, le linee di
corrente sono rette parallele, che coincidono con le linee di flusso.

Moto rotatorio

Chiameremo rotatorio attorno ad un asse fisso il moto rigido che tiene fissi 2 punti del modello e
quindi, per l’ipotesi di rigidità del moto, anche tutti i punti della retta passante per i 2 punti in
oggetto. Tale retta è detta asse di rotazione del modello e sarà denotata anche con (O, k⃗), essendo
O un qualunque punto dell’asse.

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.
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−→
k

ϕ

R

O

N.B. Un rigido libero di ruotare intorno a un asse fisso ha 1 grado di libertà. Infatti, dal
metodo del bilancio segue che i gradi di vincolo apparenti, cioè il numero delle equazioni vincolari
che fissano 2 punti è v = 3 · 2 = 6. Tuttavia, a causa dei vincoli di rigidità, il numero di quelle
efficaci si riduce a r = 5. Come coordinata libera possiamo prendere l’angolo ϕ compreso tra due
semipiani del fascio passante per l’asse di rotazione, il primo semipiano fisso e il secondo solidale al
rigido. In altre parole, la rotazione all’istante t è individuata univocamente dalla tripla (O, k⃗,ϕ(t)).

k⃗

ϕH P0

P

O
Ogni punto P del modello fuori dall’asse r ha come traiettoria una circonferenza giacente sul

piano per P e ortogonale a r, centrata nel punto H d’intersezione di tale piano con l’asse r. Infatti,
presi due punti A e B appartenenti a r, per il vincolo di rigidità, P si muove sull’intersezione delle
due sfere di centro A (rs. B) e raggio AP (rs. BP ), quindi lungo la circonferenza suddetta. Quindi,
le linee di corrente nel moto rotatorio sono tutte circonferenze giacenti su piani ortogonali all’asse
di rotazione e con centro appartenente a tale asse, che degenerano nel centro quando il raggio si
annulla. Quindi, tutti i punti della retta passante per A e per B sono fissi.

Il vettore posizione di P rispetto a un punto O sull’asse di rotazione, in un sistema di coordinate

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.
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cilindriche (0; e⃗ρ, e⃗ϕ, k⃗) è

P −O = (P −H) + (H −O) = ρ e⃗ρ(t) + zk⃗ .

Derivando rispetto al tempo si ottiene la velocità di P data da

v⃗P (ρ,ϕ) = ρ(P ) ˙⃗eρ = ρ(P )ϕ̇e⃗ϕ

H
P (ρ,ϕ,z)

−→e ρ

−→e ϕ

π

Riassumiamo alcune proprietà del campo di velocità del moto rotatorio.
Proprietà del campo di velocità del moto rotatorio

1. l’asse di rotazione è il luogo di tutti e soli i punti del rigido a velocità nulla;

2. la velocità di un punto P fuori dall’asse giace nel piano ortogonale all’asse passante per P e
ha modulo proporzionale alla distanza di P dall’asse (diagramma triangolare);

3. i punti che stanno su una parallela all’asse hanno il medesimo vettore velocità;

4. le linee di flusso sono circonferenze giacenti su piani ortogonali all’asse di rotazione e con centro
sull’asse. Quindi coincidono con le linee di corrente, anche se il moto non è stazionario.

La suddetta proprietà 4. prova che la stazionarietà del moto non è una condizione necessaria affinchè
le linee di corrente coincidano con quelle di flusso.

È immediato verificare che, introducendo il vettore

(4.2.16) ω⃗ := ϕ̇k⃗ ,

la velocità di un generico punto P si può scrivere

(4.2.17) v⃗P = ω⃗ × (P −O) = ϕ̇k⃗ × (ρ e⃗ρ + zk⃗) = ρϕ̇(k⃗ × e⃗ρ) = ρ(P )ϕ̇e⃗ϕ O ∈ r .

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.
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Il vettore ω⃗ è detto velocità angolare del moto rotatorio.

H

O

H

P0

O

P0

P (t)
ϕ

ρt

rr
B0 E3

Determiniamo, ora, il moto rotatorio e la famiglia ρ̂t degli operatori lineari associati ai piazza-
menti ρt. A tale scopo, riscriviamo la (4.2.6) scegliendo il punto Q0 ≡ O0

(4.2.18) ρt : B0 → E3, P0 $→ P (t) = ρt(P0) = ρt(O0) + ρ̂t(P0 −O0) = O0 +Rt(P0 −O0) ,

dove abbiamo tenuto conto che O0 è un punto fisso, cioè O(t) ≡ O0 = O, e dove abbiamo denotato
con Rt = ρ̂t : E3 → E3 l’operatore lineare associato alle rotazioni ρt intorno a r. Determiniamo la
rappresentazione matriciale di Rt su una base di E3.

O0

−→
E3

P0
X⃗

−→
E2

−→
E1

ρt

−→e3(0) = R0

(−→
E3

)

≡ −→e3(t)

−→e1(t)

−→e2(t)

P (t)

ϕ(t)

x⃗

−→e2(0) = R0

(−→
E2

)

−→e1(0) = R0

(−→
E1

)

B0 E3

O(t) ≡ O0

Per semplicità di notazione, poniamo t0 = 0 in modo che, per la (4.1.1), si abbia

(4.2.19) R0 = 1E3

e scegliamo una terna (O; E⃗1, E⃗2, E⃗3) adattata al problema, cioè con l’origine nel punto fisso O ∈ r
e il versore E⃗3 ≡ k⃗. Denotiamo con e⃗i(t) := Rt(E⃗i), i = 1, 2, 3, i trasformati al tempo t dei versori
della base e osserviamo che dalla (4.2.19) segue

(4.2.20) e⃗i(0) = R0(E⃗i) = E⃗i i = 1, 2, 3 .

Il vincolo che fissa l’asse (O, k⃗) implica che il versore e⃗3(t) non dipende dal tempo, quindi e⃗3(t) =
Rt(E⃗3) ≡ e⃗3(0) ≡ E⃗3 ≡ k⃗, per ogni t. Dunque, E⃗3 è un autovettore dell’operatore Rt con autovalore
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pari a 1, ∀t ∈ I. Introducendo i vettori posizione, rispettivamente, del punto materiale e del punto
spaziale

X⃗ := P0 −O0 = X1E⃗1 +X2E⃗2 +X3E⃗3
(4.2.20)
= X1e⃗1(0) +X2e⃗2(0) +X3e⃗3(0) ,(4.2.21)

x⃗ := P (t)−O(t) = x1(t)e⃗1(0) + x2(t)e⃗2(0) + x3(t)e⃗3(0) ,(4.2.22)

la (4.2.18) si può riscrivere

(4.2.23) x⃗ = RtX⃗

e, in forma matriciale, come

[e⃗1(0), e⃗2(0), e⃗3(0)]

⎡

⎣

x1

x2

x3

⎤

⎦ = [e⃗1(0), e⃗2(0), e⃗3(0)][Rt]
B0

⎡

⎣

X1

X2

X3

⎤

⎦ ,

dove [Rt]B0 denota la matrice rappresentativa dell’operatoreRt sulla base B0 =
(

e⃗1(0), e⃗2(0), e⃗3(0)
)

.
Una descrizione equivalente del moto si può ottenere seguendo l’evoluzione della base solidale

Bt =
(

e⃗1(t), e⃗2(t), e⃗3(t)
)

. Su tale base, il vettore posizione di un punto spaziale si scrive

x⃗ = Rt(X1E⃗1+X2E⃗2+X3E⃗3) = X1Rt(E⃗1)+X2Rt(E⃗2)+X3Rt(E⃗3) = X1e⃗1(t)+X2e⃗2(t)+X3e⃗3(t) ,

quindi la (4.2.23) si può rappresentare come

(4.2.24) [e⃗1(t), e⃗2(t), e⃗3(t)]

⎡

⎣

X1

X2

X3

⎤

⎦ = [e⃗1(0), e⃗2(0), e⃗3(0)][Rt]
B0

⎡

⎣

X1

X2

X3

⎤

⎦ ,

che equivale a

(4.2.25) [e⃗1(t), e⃗2(t), e⃗3(t)] = [e⃗1(0), e⃗2(0), e⃗3(0)] [Rt]
B0 .

Da tale equazione segue che le colonne della matrice [Rt]B0 sono le componenti dei vettori e⃗i(t)
sulla base fissa, cioè dei trasformati della base dall’operatore di rotazione di un angolo ϕ intorno
all’asse r. Poichè risulta

e⃗1(t) = cosϕ e⃗1(0) + sinϕ e⃗2(0) , e⃗2(t) = − sinϕ e⃗1(0) + cosϕ e⃗2(0) , e⃗3(t) = e⃗3(0) ,

la rappresentazione di Rt sulla base e⃗i(0) si scrive

(4.2.26) [Rt]
B0 =

⎡

⎣

cosϕ(t) − sinϕ(t) 0
sinϕ(t) cosϕ(t) 0

0 0 1

⎤

⎦ ϕ(0) = 0 .

Per evidenziare il fatto che l’operatore di rotazione è caratterizzato da una direzione k⃗ e da un
angolo di rotazione ϕ intorno a tale direzione, spesso si scrive

Rt = R(ϕ(t),k⃗) .
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Esercizio 4.2.1. Verificare che la matrice [Rt]B0 è ortogonale ed unimodulare. Inoltre, dimostrare
che l’operatore inverso di R(ϕ,k⃗)è dato da R(−ϕ,k⃗).

Dalla (4.2.23) segue facilmente che il campo degli spostamenti è dato da

s⃗(t, P0) = P (t)− P0 = x⃗− X⃗ = RtX⃗ − X⃗ = (Rt − 1)X⃗ = (Rt − 1)(P0 −O0) O0 ∈ r .

Da ora in poi, posto e(t) := [e⃗1(t), e⃗2(t), e⃗3(t)], per scrivere la (4.2.25) useremo la forma più compatta

(4.2.27) e(t) = e(0)[Rt]
B0 .

Ora, calcoliamo il campo delle velocità del moto rotatorio derivando rispetto al tempo la (4.2.23).
La velocità in forma lagrangiana risulta

˙⃗x = Ṙ(ϕ(t))X⃗ ,

dove si è tenuto conto che il vettore X⃗, relativo alla configurazione di riferimento, è indipendente
dal tempo. Dalla (4.2.23) segue che X⃗ = R−1x⃗(t), quindi la velocità in forma euleriana risulta

˙⃗x = ṘR−1x⃗(t) =
dR

dϕ
˙ϕ(t)R−1x⃗(t)

Calcoliamo esplicitamente la matrice ϕ̇[dRdϕR
−1]. Poichè

[

dR

dϕ

]

=

⎡

⎣

− sinϕ − cosϕ 0
cosϕ − sinϕ 0
0 0 0

⎤

⎦

e [R] è una matrice ortogonale, si ottiene

(4.2.28)

ϕ̇[
dR

dϕ
R−1] = ϕ̇

⎡

⎣

✭✭✭✭✭✭− sinϕ cosϕ+✭✭✭✭✭cosϕ sinϕ − sin2 ϕ− cos2 ϕ 0
sin2 ϕ+ cos2 ϕ ✭✭✭✭✭cosϕ sinϕ−✭✭✭✭✭sinϕ cosϕ 0

0 0 0

⎤

⎦ = ϕ̇

⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦

Pertanto, posto [A]B0 = ϕ̇

⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦ , dalla (4.2.22) segue che

(4.2.29) ˙⃗x = Ax⃗ = ϕ̇(t)(−x2 e⃗1(0) + x1e⃗2(0)) = ϕ̇e⃗3(0)× x⃗(t) = ω⃗ × x⃗ ,

che coincide con la (4.2.17).

Moto elicoidale

Chiameremo elicoidale il moto che preserva l’insieme dei punti di un asse r solidale al modello (i
punti dell’asse possono spostarsi solo lungo l’asse). Tale asse è detto asse del moto. Ad esempio,
il moto di un proiettile di peso trascurabile (l = 6), quello di un rigido vincolato ad un asse fisso
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Figura 4.2.1: Vite

da un collare cilindrico, come nella Sez.3.4 (l = 2), il moto di avvitamento di una vite dentro una
madrevite fissa (l = 1).

È chiaro che la composizione ρt ◦ τt (allo stesso istante t) del piazzamento di un moto traslatorio
rettilineo lungo l’asse r, τt : B0 → E3 composto con un piazzamento rotatorio, ρt : E3 → E3, intorno
allo stesso asse è un piazzamento elicoidale. Scriviamone il flusso. Scelto il versore E⃗3 parallelo a r
e il punto O0 ∈ r, il componente traslatorio si scrive

P ′(t) = τt(P0) = P0 + s(t)E⃗3 , s(0) = 0

e quello rotatorio come

P (t) = ρt(P
′) = O′(t) +Rt (P

′ −O′) ,

dove il punto

O′(t) = τt(O0) = O0 + s(t)E⃗3 ,

essendo il traslato di un punto dell’asse, appartiene all’asse del moto per ogni t ∈ I.
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−→
E3

−→
E3

Rt

(−→
E3

)

≡
−→
E3

−→
E2

−→
E2

−→
E2

−→
E1

−→
E1

−→
E1

O0 O0 O0

O′(t) O(t)−→
E2

−→
E1

−→
E2

−→
E1

Rt

(−→
E2

)

Rt

(−→
E1

)

B0 E3 E3

ϕ

τt ρt

P0

P ′
P ′

X⃗

P (t)

Allora, il piazzamento composto ρt ◦ τt : B0 → E3 , sarà

(4.2.30) P (t) = O0 + s(t)E⃗3 +Rt

(

P0 +✟✟✟
s(t)E⃗3 − (O0 +✟✟✟

s(t)E⃗3)
)

= O0 + s(t)E⃗3 +Rt (P0 −O0) ,

e il campo degli spostamenti

s⃗(t, P0) = P (t)− P0 = O0 + s(t)E⃗3 +Rt(P0 −O0)− P0 = s(t)E⃗3 + (Rt − 1)(P0 −O0) O0 ∈ r

Le linee di corrente, in questo caso, sono curve che si avvolgono su cilindri con assi coincidenti tutti
con l’asse del moto.

N.B. Lo stesso moto elicoidale (4.2.30) si può scomporre nello stesso moto rotatorio seguito
dallo stesso moto traslatorio. Infatti

P0
ρt$→ ρt(P0) = ρt(O0) +Rt (P0 −O0) = O0 +Rt(P0 −O0)

τt$→ O0 + s(t)E⃗3 +Rt(P0 −O0) .

In altri termini, una rotazione attorno ad un asse fisso commuta con una traslazione lungo lo stesso
asse.

Finora, abbiamo visto come la composizione di un moto traslatorio lungo un asse, composto
con un moto rotatorio, intorno allo stesso asse, produce un moto elicoidale. Viceversa, si può di
mostrare che un qualunque moto elicoidale si può scomporre in un moto traslatorio composto con
uno rotatorio. La dimostrazione è lasciata come esercizio.

Esercizio 4.2.2. Dimostrare che ogni piazzamento elicoidale con asse r si può scomporre, in modo
unico, in un piazzamento traslatorio lungo r composto con uno rotatorio intorno ad r, o viceversa.

Derivando rispetto al tempo la (4.2.30), si ottiene il campo di velocità materiale

(4.2.31) Ṗ (t) = ṡ(t)e⃗3(0) + Ṙt(P0 −O0) ,

e quello spaziale, in base alle (4.2.12), (4.2.31) e (4.2.30),

v⃗P = u(t)e⃗3(0) + ṘtR
T
t (P (t)−O(t)) ,
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dove O(t) = s(t)e⃗3(0) +O0 è un punto appartenente al’asse del moto, quindi solidale al rigido.
Pertanto, per la (4.2.29)) si ha:

v⃗P = u(t)e⃗3(0) + ω⃗ ×
(

P (t)−O(t)
)

= v⃗O + ω⃗ ×
(

P −O
)

O ∈ r ,

dove ricordiamo che ω⃗ = ϕ̇e⃗3(0).

e⃗3(0)

P (t)

v⃗P⊥

v⃗P∥

v⃗∥

ω⃗(t)

O(t)

v⃗P

Proprietà del campo di velocità del moto elicoidale

1. Non esistono punti a velocità nulla.

2. I punti dell’asse r, detto asse del moto, sono tutti e soli i punti aventi velocità parallela ad ω⃗
e minima (in modulo).

3. Il componente della velocità parallelo all’asse è uniforme per tutti i punti del rigido.

4. Tutti i punti equidistanti dall’asse hanno la stessa velocità in modulo: per tali punti il vettore
velocità è tangente alla superficie del cilindro circolare retto passante per tali punti e avente
come asse, l’asse del moto.

5. Le linee di flusso sono eliche circolari intorno all’asse del moto di passo uguale a v⃗P (t) · e⃗3(0),
ma non coincidono necessariamente con le linee di corrente. Questo succede, per esempio, se
v⃗O e ω⃗ sono costanti.
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Moto polare

Chiameremo polare un moto rigido che mantiene fisso un punto O del modello. Tale vincolo è
triplo, quindi lascia al modello 3 gradi di libertà (in assenza di ulteriori vincoli). Il moto polare
sarà denotato con σ, o con σO quando vorremo mettere in evidenza il punto fisso.

☼

O

4.3 Angoli di Eulero

Introduciamo un sistema di coordinate adatto a descrivere un qualsiasi moto polare. Useremo la
seguente terminologia di origine astronomica avvisando, comunque, che le convenzioni usate nella
Meccanica Razionale non sono le stesse usate, ad esempio, in Meccanica Applicata.

σt

ϕ

θ

ψ

O

−→
E 1

−→
E 2

−→
E 3

O

−→n

−→e1(t)

−→e2(t)
−→e3(t)

−→e3(0)

−→e2(0)

−→e1(0)

Piano equatorialePiano meridiano

Scelte due terne con la stessa origine nel punto fisso O, una fissa Σ = (O, e⃗1(0), e⃗2(0), e⃗3(0)) e
una mobile Σ(t) = (O, e⃗1(t), e⃗2(t), e⃗3(t)), chiameremo

• Piano dell’eclittica: passante per gli assi (O, e⃗1(0)), (O, e⃗2(0)) della terna fissa.

• Piano equatoriale: passante per gli assi (O, e⃗1(t)), (O, e⃗2(t)) della terna mobile.

• Piano meridiano: passante per gli assi (O, e⃗3(0)), (O, e⃗3(t)).

• Asse dei nodi (O, n⃗(t)), dove n⃗(t) è il versore definito da

n⃗(t) :=
e⃗3(0)× e⃗3(t)

|e⃗3(0)× e⃗3(t)|
=

e⃗3(0)× e⃗3(t)

| sin θ|
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Poiché n⃗(t) è ortogonale sia a e⃗3(0), sia a e⃗3(t), esso risulta parallelo alla retta d’intersezione
del piano equatoriale con il piano dell’eclittica.

• Angolo di precessione ϕ: angolo tra i versori e⃗1(0) e n⃗(t), 0 ≤ ϕ < 2π.

• Angolo di nutazione θ: angolo tra i versori e⃗3(0) e e⃗3(t), 0 < θ < π. La limitazione sulla
coordinata angolare θ è dovuta al fatto che, quando l’angolo tra i versori e⃗3(0) e e⃗3(t) diventa
ottuso, il versore n⃗(t) cambia verso, quindi la coordinata angolare rimane sempre limitata tra
0 ≤ θ < π.

• Angolo di rotazione propria ψ: angolo tra i versori n⃗(t) e e⃗1(t), 0 ≤ ψ < 2π.

N.B. Se θ = 0, il piano equatoriale coincide con il piano dell’eclittica e la linea dei nodi non è
definita. In questo caso, quindi, non è definito l’angolo di precessione nè quello di rotazione propria,
ma è definita solo la loro somma ϕ+ ψ.

N.B. Gli angoli di Eulero (ϕ, θ) corrispondono alle coordinate sferiche dei punti dell’asse e⃗3(t).
Precisamente, l’angolo di precessione è pari all’angolo di longitudine sommato a π/2, mentre l’angolo
di nutazione coincide con la colatitudine.

Teorema 4.3.1 (Eulero, 1707-1783). In ogni moto polare il piazzamento del rigido ad ogni istante
t ∈ I si scompone, in un unico modo, in 3 piazzamenti rotatori intorno a 3 assi passanti per O.

PO

O0 O(t) ≡ O0

P (t)

−→ X

−→x

σt

−→e1(t) = σt
(−→
E1

)

−→e2(t) = σt
(−→
E2

)

−→e3(t) = σt
(−→
E3

)
−→e3(0)

−→e2(0)

−→e1(0)

−→
E3

−→
E2

−→
E1

B0 Bt

Dimostrazione. Sia σt : B0 → E3, il piazzamento del modello al tempo t. Dall’ipotesi di punto fisso
segue che:

(4.3.1) σt(O0) = O ≡ O0 ∀t ∈ I
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Allora, per la (4.2.6), il piazzamento si scrive

(4.3.2) σt : B0 → E3, P0 $→ P (t) = σt(O0) + σ̂t(P0 −O0) = O +Rt(P0 −O) ,

dove abbiamo indicato con Rt : E3 → E3 l’operatore lineare σ̂t associato al piazzamento del moto
polare al tempo t. Vogliamo ora dimostrare che Rt è la composizione di 3 rotazioni elementari
dipendenti dai cosiddetti angoli di Eulero, scelti come coordinate lagrangiane del rigido. A tale
scopo, considereremo la base “fissa” B0 = (E⃗1, E⃗2, E⃗3) = (e⃗1(0), e⃗2(0), e⃗3(0)), una base solidale al
rigido Bt = (e⃗1(t), e⃗2(t), e⃗3(t)) e costruiremo la matrice di piazzamento della base mobile rispetto
a quella fissa

(4.3.3) e(t) = e(0)[Rt]
B0 ,

equivalente a

(4.3.4) e(0) = e(t)
(

[Rt]
B0

)−1
= e(t)

(

[Rt]
B0

)T

Ora dimostriamo che la terna fissa e⃗(0) si può sovrapporre, in un unico modo, ad un’assegnata
terna mobile e⃗(t) mediante 3 rotazioni: la prima dell’angolo di precessione ϕ intorno all’asse e⃗3(0),
la seconda dell’angolo di nutazione θ intorno all’asse dei nodi n⃗(t), la terza dell’angolo di rotazione
propria ψ intorno all’asse di figura e⃗3(t).

1. PRECESSIONE

O

piano dell’eclittica

ϕ

ϕ

−→
e′1 = −→n

−→e1(0)

−→e2(0)

−→
e′2

−→e3(0) ≡
−→
e′3

La base trasformata e′ si ottiene dalla base di partenza e(0) tramite la trasformazione

(4.3.5) e ′ = e(0)[R(ϕ,e⃗3(0))] .
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Se si esprimono le componenti dei vettori trasformati B ′ = (e⃗ ′
1 , e⃗

′
2 , e⃗

′
3 ) sulla base B0 =

(

e⃗1(0), e⃗2(0), e⃗3(0)
)

,
la matrice [R(ϕ,e⃗3(0))]

B0 coincide con la (4.2.26) che riscriviamo per comodità

(4.3.6) [R(

ϕ,e⃗3(0)
)]B0 =

⎡

⎣

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤

⎦ .

2. NUTAZIONE

ϕ

ϕ
θ

θ

−→e1 ′ ≡
−→n ≡ −→e1 ′′

−→e2

−→e2 ′

−→e2 ′′

−→e3 ′′
−→e3 ≡ −→e3 ′

Piano meridiano

La terna trasformata e′′ si ottiene dalla terna e′ tramite la trasformazione

(4.3.7) e′′ = e′[R(θ,n⃗)] .

Se si esprimono le componenti dei vettori trasformati B′′ = (e⃗1 ′′, e⃗2 ′′, e⃗3 ′′) sulla base B′ =
(e⃗1 ′, e⃗2 ′, e⃗3 ′), poichè

e⃗1
′′ = e⃗1

′ , e⃗2
′′ = cos θ e⃗2

′ + sin θ e⃗3
′ , e⃗3

′′ = − sin θ e⃗2
′ + cos θ e⃗3

′ ,

la matrice [R(θ,n⃗)]
B

′

risulta

(4.3.8) [R(θ,n⃗)]
B

′

=

⎡

⎣

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤

⎦
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3. ROTAZIONE PROPRIA

ϕ

ϕ
θ

θ

ψ

ψ

−→e1 ′ ≡
−→n ≡ −→e1 ′′

−→e2

−→e2 ′

−→e2 ′′

−→e3 ′′ ≡
−→e3(t)

−→e3 ≡ −→e3 ′

−→e1(t)

−→e2(t) piano equatoriale

Infine, la base mobile e(t) si ottiene dalla base e′′ mediante la trasformazione

(4.3.9) e(t) = e′′[R(ψ,e⃗3(t))] .

Se si esprimono le componenti dei vettori trasformati
(

e⃗1(t), e⃗2(t), e⃗3(t)
)

sulla base B′′ = (e⃗1 ′′, e⃗2 ′′, e⃗3 ′′),
risulta che la matrice [R(ψ,e⃗3(t))]

B
′′

coincide con la (4.2.26) a meno dello scambio dell’angolo ϕ con
l’angolo ψ. Dunque,

(4.3.10) [R(ψ,e⃗3(t))]
B

′′

=

⎡

⎣

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤

⎦ ,

Ora, è facile concludere che la matrice [Rt] di trasformazione tra la base fissa e⃗(0) e la base mobile
e⃗(t) si ottiene moltiplicando fra loro le matrici (4.3.5), (4.3.7), (4.3.9). Infatti, concatenando le
precedenti trasformazioni si ottiene

(4.3.11) e(t) = e′′[R(ψ,e⃗3(t))] = e′[R(θ,n⃗)][R(ψ,e⃗3(t))] = e(0)[R(ϕ,e⃗3(0))][R(θ,n⃗)][R(ψ,e⃗3(t))] .

Pertanto, la matrice di piazzamento [Rt] del moto polare nella (4.3.3) è data da
(4.3.12)

[Rt]
B0 =

⎡

⎣

cosϕ cosψ − sinϕ cos θ sinψ − cosϕ sinψ − sinϕ cos θ cosψ sinϕ sin θ
sinϕ cosψ + cosϕ cos θ sinψ − sinϕ sinψ + cosϕ cos θ cosψ − cosϕ sin θ

sin θ sinψ sin θ cosψ cos θ

⎤

⎦
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Esercizio 4.3.1. Dimostrare che la matrice [Rt] è ortogonale ed unimodulare, cioè

[Rt][Rt]
T = 1E3

(4.3.13)
det[Rt] = 1(4.3.14)

Suggerimento: [Rt] è uguale al prodotto di matrici ortogonali e unimodulari.
N.B. Si può dimostrare (uno dei tanti Teoremi di Eulero) che l’operatore Rt rappresenta esso

stesso una singola rotazione di un angolo

α = arccos
traccia(Rt)− 1

2
,

attorno a un asse per O e parallelo ai vettori che appartengono all’autospazio (unidimensionale)
di Rt con autovalore 1. Tale proprietà spiega la scelta della notazione Rt anche per l’operatore
lineare associato al moto polare. Comunque, essendo tale asse dipendente dal tempo, il moto
rappresentato da Rt non è un moto rotatorio e, per questo motivo, l’asse suddetto si dice asse
d’istantanea rotazione per O.

4.4 Moto rigido generale

Analizziamo il moto rigido più generale, che risulterà una composizione dei moti rigidi elementari
analizzati nelle precedenti sezioni.

Teorema 4.4.1. Il più generale moto rigido Φ si può scomporre, in infiniti modi, in un moto
traslatorio τ e in un moto polare σ. Precisamente, scelto un punto O(t) solidale al rigido, Φ si può
rappresentare come

(4.4.1) P (t) = Φ(t, P0) = (σO ◦ τs⃗)(t, P0) = O(t) +Rt(P0 −O0) ,

dove lo spostamento s⃗ = O(t)−O0 è lo spostamento del punto O0 := Φ−1
t (O), Rt è la parte lineare

del moto polare e risulta indipendente da O. Ad un istante t fissato, al variare della scelta di O gli
assi d’istantanea rotazione dei diversi componenti polari σO sono tutti paralleli.

O0

O(t)

Φ(t, P0)

P (t)

P0

B0

Bt
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O0

O(t)

⃗s(t, O0)

B0

τs⃗(O0)

O0

O(t)

σO(t)

τ ⃗s(O0)

B0

Bt

Dimostrazione. Dato un moto rigido Φ(t), scegliamo ad arbitrio un centro di riduzione O(t) solidale
al rigido e poniamo

O0 = Φ−1
t (O) , s⃗(t, O0) = O(t) −O0

Consideriamo il moto traslatorio

(4.4.2) τs⃗(t, P0) = P0 + s⃗(t, O0) ∀P0 ∈ B0

e il moto
σO = Φ ◦ τ−1

s⃗ = Φ ◦ τ−s⃗

Mostriamo che il punto O(t) è un un punto fisso per σ0, il quale, dunque, è un moto polare. Infatti,

σ0(O(t)) = Φ ◦ τ−1
s⃗ (O(t)) = Φ

(

O(t) − s⃗(t, O0)
)

= Φ(t, O0) = O(t) .

Dunque, il moto composto si può scrivere come

Φ(t, P0) = σO
(

τ(P0)
)

= σO
(

P0 + s⃗(t, O0)
)

= σO
(

P0 +O(t)−O0)
(4.2.6)
=

= σO
(

O(t)
)

+ σ̂O(P0 −O0) = O(t) +Rt

(

P0 − Φ−1
t (O)

)

,
(4.4.3)

dove Rt = σ̂O è l’operatore lineare del moto polare attorno al punto O(t). A priori, Rt potrebbe
dipendere dal centro di riduzione O(t). Ciò non succede perchè Rt è la parte lineare dell’applicazione
affine Φt, quindi per la Prop. 4.2.1 può dipendere solo dal tempo.

N.B. Equivalentemente, il moto assegnato Φ si può scomporre in un moto polare intorno al
punto O0 = Φ−1

t (O), seguito dal moto traslatorio τs⃗ (4.12.1), cioè

Φ = τs⃗ ◦ σO0
.

Infatti, il moto σO0
= τ−1

s⃗ ◦ Φ ammette il punto fisso O0, poichè

σO0
(O0) = σO0

(Φ−1(O)) = (τ−1
s⃗ ◦ Φ)(Φ−1(O)) = τ−s⃗(O) = O0 .

Quindi, il moto Φ si può rappresentare come

Φ(t, P0) = τs⃗(σO0
(P0)) = τs⃗

(

O0 +R′
t(P0 −O0)

)

= τs⃗
(

O0) + τ̂s⃗R
′
t(P0 −O0)

= O0 + s⃗(t, O0) +R′
t(P0 −O0) = O(t) +R′

t(P0 −O0)
(4.4.4)
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Confrontando la (4.4.1) con la (4.4.4), poiché esse valgono ∀P0, Q0 ∈ E3, si può concludere che

(4.4.5) Rt = R′
t ,

cioè le parti lineari dei due moti polari σO e σO0
coincidono. Quindi, ad un istante t fissato, l’asse

istantaneo del moto polare intorno ad O risulta parallelo a quello del moto polare intorno ad O0.
N.B. Il Teorema 4.4.1 equivale a dire che il più generale moto rigido si può descrivere come il

moto di una qualsiasi terna solidale al rigido
(

O(t); e⃗1(t), e⃗2(t), e⃗3(t)
)

. Tale moto si può scomporre
nel moto traslatorio τ di una terna intermedia con origine nel punto O(t) seguito dal moto polare
σ intorno ad O(t) della terna solidale rispetto alla terna intermedia. Di solito, il moto della terna
intermedia si dice moto di trascinamento, mentre quello della terna solidale rispetto a quella inter-
media si dice moto relativo. Vedremo nella Sez. 4.6 un’applicazione importante del suddetto punto
di vista.

4.4.1 Teorema di Poisson

In questa sezione dimostreremo il teorema di Poisson che descrive il campo di velocità del più
generale moto rigido.

P0

O0 O0

O(t)

P (t)

−→
X

−→ x
(t
)

Φt

−→xO

−→x P −→e1(t)

−→e2(t)

−→e3(t)−→e3(0)

−→e2(0)

−→e1(0)

−→
E3

−→
E2

−→
E1

B0 E3

Teorema 4.4.2 (Poisson, 1781-1840). Dati due punti generici P e O di un rigido o dello spazio
ad esso solidale, esiste ed è unico un vettore ω⃗(t) ∈ E3, detto velocità angolare del rigido, tale che

(4.4.6)
d

dt
(P −O) = ω⃗ × (P −O)

Dimostrazione. Derivando la (4.4.1) rispetto al tempo, si ottiene il campo di velocità materiale

(4.4.7) Ṗ = Ȯ + Ṙt(P0 −O0) ,
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mentre quello spaziale, sulla base della (4.4.1), risulta

(4.4.8) Ṗ = Ȯ + ṘtR
T
t (P (t)−O(t)) ,

dove O(t) è un punto solidale al rigido.
Consideriamo l’operatore A : I × E3 → E3, definito da

(4.4.9) A(t) := ṘRT (il pedice t di Rt è sottointeso per non appesantire la notazione) ,

detto operatore di spin (o di Cartan) di R. Dimostriamo che è antisimmetrico rispetto al prodotto
scalare di E3, cioè

(4.4.10) Au⃗ · v⃗ + u⃗ · Av⃗ = 0 ∀u⃗, v⃗ ∈ E3 ⇔ A+AT = 0 .

Tale proprietà è una semplice conseguenza del fatto che R è ortogonale. Infatti, derivando rispetto
al tempo l’Eq. (4.3.13) si ha

(4.4.11) ṘRT +RṘT = 0

Il primo termine della (4.4.11) è proprio l’operatore A, mentre il secondo termine coincide con il
suo trasposto, poichè

AT = (ṘRT )T = (RT )T (Ṙ)T = RṘT

Pertanto la (4.4.8) si può scrivere

(4.4.12)
d

dt
(P −O) = A(P −O) .

Per concludere la dimostrazione del teorema, utilizzeremo il seguente

Lemma 4.4.1. Dato un generico operatore antisimmetrico A : E3 → E3, esiste ed è unico un
vettore ω⃗ ∈ E3, tale che

(4.4.13) ω⃗ × y⃗ = Ay⃗ ∀y⃗ ∈ E3 .

Il vettore ω⃗ dato da

(4.4.14) ω⃗ = −
1

2

3
∑

i,j=1

Aij e⃗i × e⃗j =
1

2

3
∑

i,j=1

e⃗i ×Ajie⃗j =
1

2

3
∑

i=1

e⃗i ×Ae⃗i ,

è detto il vettore assiale associato all’operatore A ed appartiene al KerA, cioè

Aω⃗ = 0⃗ .

Dimostrazione. Scelta una base (e⃗1, e⃗2, e⃗3) e un vettore y⃗ arbitrario la (4.4.13) si scrive esplicita-
mente come

det

⎡

⎣

e⃗1 e⃗2 e⃗3
ω1 ω2 ω3

y1 y2 y3

⎤

⎦ = [e⃗1, e⃗2, e⃗3]

⎡

⎣

0 A12 A13

−A12 0 A23

−A13 −A23 0

⎤

⎦

⎡

⎣

y1
y2
y3

⎤

⎦ .
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Risolvendo tale sistema di equazioni rispetto alle componenti del vettore incognito

(4.4.15) ω⃗ = ω1e⃗1 + ω2e⃗2 + ω3e⃗3

si trova l’unica soluzione

(4.4.16) ω1 = −A23 ,ω2 = A13 ,ω3 = −A12

che, in forma vettoriale, si scrive come nella (4.4.14). È facile verificare che il vettore di componenti
(4.4.16) ∈ KerA.

A questo punto, sostituendo nella (4.4.12) il vettore assiale ω⃗ si ottiene la (4.4.6), concludendo
la dimostrazione del teorema di Poisson.

4.5 Applicazioni del teorema di Poisson

Come applicazioni del teorema di Poisson, ricaveremo le formule per il campo delle velocità e delle
accelerazione di un rigido, la formula di derivazione cinematica per un vettore dipendente dal tempo.

4.5.1 Campo di velocità di un rigido

Consideriamo il più generale moto rigido. Dalla (4.4.6) otteniamo

(4.5.1) v⃗P (t) = v⃗O(t) + ω⃗(t)×
(

P (t)−O(t)
)

∀O,P ∈ R

dove la velocità angolare del rigido si può calcolare come vettore assiale dell’operatore di spin

A(t) = ṘRT .

La (4.5.1) è detta formula dell’atto di moto rigido e permette, noti i due vettori caratteristici (v⃗O, ω⃗)
di calcolare la velocità spaziale di tutti i punti del rigido ad ogni istante t ∈ I. Ricordiamo la forma
del vettore ω⃗ per i moti rigidi già incontrati.

1. Moto traslatorio

Poiché v⃗P − v⃗O = 0⃗ ∀P,O ∈ R, dalla (4.5.1) segue che

ω⃗ = 0⃗ ∀t ∈ I

Del resto, l’operatore lineare di piazzamento nella (4.4.1) è τ̂t = R = 3, quindi Ṙ = 0 ⇒ A =
0.

2. Moto rotatorio.
In questo caso, abbiamo già ricavato dalle (4.2.26), (4.2.28) che

Rt = R(ϕ(t),k⃗) , A = ṘtR
T
t =

⎡

⎣

0 −ϕ̇ 0
ϕ̇ 0 0
0 0 0

⎤

⎦ , ω⃗ = ϕ̇k⃗ ∀t ∈ I ,

dove k⃗, è parallelo all’asse (fisso) di rotazione.
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3. Moto elicoidale.
Anche in questo caso, abbiamo ricavato che

ω⃗ = ϕ̇(t)k⃗ ∀t ∈ I ,

dove k⃗, questa volta, è parallelo all’asse del moto elicoidale.

4. Moto polare.
In questo caso, tenendo conto della (4.3.12), la matrice dell’operatore di spin A(t) risulta
(4.5.2)

[A]B0 := [ṘtR
T
t ]

B0 =

⎡

⎣

0 −(ϕ̇+ ψ̇ cos θ) θ̇ sinϕ− ψ̇ cosϕ sin θ

(ϕ̇+ ψ̇ cos θ) 0 −(θ̇ cosϕ+ ψ̇ sinϕ sin θ)
−(θ̇ sinϕ− ψ̇ cosϕ sin θ) (θ̇ cosϕ+ ψ̇ sinϕ sin θ) 0

⎤

⎦ .

Pertanto, in base alla (4.4.16), il vettore velocità angolare ω⃗, sulla terna fissa, assume la forma

(4.5.3) ω⃗ = (θ̇ cosϕ+ ψ̇ sinϕ sin θ)e⃗1(0) + (θ̇ sinϕ− ψ̇ sin θ cosϕ)e⃗2(0) + (ϕ̇+ ψ̇ cos θ)e⃗3(0) .

Più avanti ci serviranno le componenti di ω⃗ sulla terna mobile. Per calcolarle, basta osservare
che un qualunque vettore u⃗ si può scomporre sia sulla terna fissa, sia sulla terna mobile in
base alla inversa della (4.3.3)

u⃗ = e(0)

⎡

⎣

u1

u2

u3

⎤

⎦ = e(t)[Rt]
T

⎡

⎣

u1

u2

u3

⎤

⎦

Pertanto, la velocità angolare sulla terna mobile si trova post-moltiplicando la colonna delle
componenti di (4.5.3) per la matrice [Rt]T

(4.5.4) ω⃗ = (θ̇ cosψ+ ϕ̇ sinψ sin θ)e⃗1(t) + (−θ̇ sinψ+ ϕ̇ sin θ cosψ)e⃗2(t) + (ψ̇+ ϕ̇ cos θ)e⃗3(t) .

Esercizio 4.5.1. Dimostrare che il campo di velocità di un rigido è sempre equiproiettivo partendo
dalla formula di Poisson (4.5.1).

Struttura del campo di velocità di un rigido

Studieremo in questa sezione la struttura che il più generale campo di velocità di un rigido assume
ad un generico istante fissato t̄ ∈ I.

Teorema 4.5.1 (G. Mozzi, 1730-1813). Il campo di velocità di un rigido R è elicoidale o eventual-
mente degenere in un atto di moto rotatorio o traslatorio. Se ω⃗ ≠ 0⃗, esiste un unico asse parallelo
a ω⃗ e solidale a R, detto asse di Mozzi (o asse istantaneo di moto), i cui punti Ω soddisfano
l’equazione parametrica

(4.5.5) Ω−O =
ω⃗ × v⃗O
|ω⃗|2

+ λω⃗ λ ∈ , O ∈ R .

Rispetto a tale asse il campo di velocità di R si può scomporre come

v⃗P = v⃗P∥ + v⃗P⊥ ,
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dove il componente parallelo all’asse

v⃗P∥ = v⃗Ω ∀Ω ∈ asse di Mozzi

ha una struttura traslatoria (o uniforme), mentre il componente ortogonale all’asse

v⃗P⊥ = ω⃗ × (P − Ω)

ha una struttura rotatoria.

Asse di Mozzi

P (t)

v⃗P⊥

v⃗P∥

v⃗∥

ω⃗(t)

Ω(t)

O(t)

v⃗P

Dimostrazione. Supponiamo di conoscere due vettori caratteristici (v⃗O, ω⃗) e che ω⃗ ≠ 0⃗. La (4.5.1) ci
permette di calcolare la velocità di ogni punto P ∈ R e di scomporla rispettivamente nel componente
parallelo a ω⃗ e in quello ortogonale

(4.5.6) vP∥ = v⃗P · vers(ω⃗) , v⃗P∥ = vP∥vers(ω⃗) , v⃗P⊥ = v⃗P − v⃗P∥

Osserviamo che il campo v⃗P∥ è uniforme poichè

vP∥ = v⃗P · vers(ω⃗) = (v⃗O + ω⃗ × (P −O)) · vers(ω⃗) = v⃗O · vers(ω⃗) = vO∥ ∀P,O ∈ R

Inoltre, il componente ortogonale soddisfa la relazione

(4.5.7) v⃗P⊥ = v⃗O⊥ + ω⃗ × (P −O) ,
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essendo vP∥ = vO∥. La (4.5.7) implica che v⃗P⊥ è invariante per traslazione di P lungo la retta per
P e parallela a ω⃗. Infatti, se P ′ appartiene a tale retta

(P − P ′)× ω⃗ = 0⃗

e allora
v⃗P⊥ − v⃗P ′⊥ = ω⃗ × ((P −O) − (P ′ −O)) = ω⃗ × (P − P ′) = 0⃗ .

Vediamo, ora, se esistono punti Ω dello spazio solidale a R che hanno solo velocità parallela a
ω⃗, cioè soddisfano

(4.5.8) v⃗Ω⊥ = 0⃗ .

Esprimendo la velocità v⃗Ω⊥ mediante la (4.5.7), con il punto incognito Ω al posto di P , la (4.5.8),
equivale a

v⃗O⊥ + ω⃗ × (Ω− O) = 0⃗ ,

ovvero

(4.5.9) (Ω−O)× ω⃗ = v⃗O⊥ ,

che è un’equazione del tipo (2.1.15), già studiata nel Cap. 2. Si presentano due alternative. Se
v⃗O⊥ = 0⃗, siamo estremamente fortunati: il centro di riduzione O è uno dei punti che stiamo
cercando. Infatti, in questo caso la (4.5.9) diventa omogenea, ammette come soluzioni tutti e soli
i vettori (Ω − O) paralleli ad ω⃗. Quindi, gli altri punti Ω sono quelli della retta parallela a ω⃗ e
passante per O.

Se, invece, v⃗O⊥ ≠ 0⃗, sulla base della (2.1.17), tutte le soluzioni della (4.5.9) sono date dalla
(4.5.5).

Infine, se nella (4.5.7) si sceglie come centro di riduzione un punto Ω dell’asse di Mozzi al posto
di un generico punto O, si vede che

v⃗P⊥ =✟✟v⃗Ω⊥ + ω⃗ × (P − Ω) = ω⃗ × (P − Ω) ,

cioè v⃗P⊥ è rotatorio intorno all’asse di Mozzi.

Dal Teorema precedente segue subito

Teorema 4.5.2 (di classificazione). Scelto un generico punto O ∈ R e definito l’invariante scalare
cinematico come

(4.5.10) I = v⃗O · ω⃗ (non dipende da O) ,

il campo di velocità di un rigido appartiene alle categorie della Tabella 4.5.2

Dimostrazione. Mostriamo che, se ω⃗ ≠ 0⃗ e I = 0, l’atto di moto è rotatorio. A questo scopo, basta
osservare che, in generale, il componente di v⃗P parallelo a ω⃗ si scrive

v⃗P∥ =
I

|ω⃗|
2 ω⃗

ed è il componente traslatorio del campo elicoidale. Dunque, se ω⃗ ≠ 0⃗ esso si annulla se e solo se

I = 0

In tal caso, sopravvive solo il componente rotatorio v⃗P⊥.
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Tabella 4.5.1: atto di moto rigido

I = v⃗O · ω⃗ ω⃗ v⃗O categoria linee di flusso
≠ 0 Elicoidale eliche cilindriche
= 0 ≠ 0⃗ Rotatorio circonferenze
= 0 = 0⃗ ≠ 0⃗ Traslatorio rette parallele
= 0 = 0⃗ = 0⃗ Nullo

N.B. Se ad un istante t̄ il campo di velocità è elicoidale, gode delle proprietà della Sez 4.2.1.

Definizione 4.5.1. Se ad un istante t̄ ∈ I il campo di velocità è rotatorio, l’asse di Mozzi si dice
asse d’istantanea rotazione (AIR) e i suoi punti hanno velocità nulla all’istante t̄.

Il termine istantanea si riferisce al fatto che il campo di velocità ad un istante precedente o
successivo a t̄, non solo può cambiare asse di Mozzi, ma può cambiare anche categoria.

Esempio 4.5.1. Moto polare.

Poichè v⃗O = 0⃗ ∀t ∈ I, I = 0, il campo di velocità è rotatorio e l’asse di Mozzi è asse d’istantanea
rotazione. Quindi passa per O ed è parallelo a ω⃗(t), dunque la sua direzione dipende dal tempo.

Esempio 4.5.2. Moto elicoidale

Nel caso di moto elicoidale (rispettivamente rotatorio) l’asse di Mozzi non dipende dal tempo e
coincide con l’asse del moto (rispettivamente asse di rotazione).

4.5.2 Campo delle accelerazioni di un rigido

Derivando rispetto al tempo la (4.5.1), otteniamo

a⃗P = a⃗O + ˙⃗ω × (P −O) + ω⃗ × (v⃗P − v⃗O) =

= a⃗O + ˙⃗ω × (P −O) + ω⃗ × (ω⃗ × (P −O)) = a⃗O + ˙⃗ω × (P −O)− |ω|2(P −O)⊥ ,
(4.5.11)

dove con (P −O)⊥ abbiamo denotato il componente del vettore (P −O) ortogonale a ω⃗, come nella
(2.1.14). Si osservi che il termine ˙⃗ω× (P −O) è un componente dell’accelerazione, appartenente al
piano ortogonale al vettore P −O.

Esempio 4.5.3. Moto rotatorio
Se scegliamo O sull’asse di rotazione la (4.5.11) si riduce a

(4.5.12) a⃗P = ˙⃗ω × (P −O)− |ω|2(P −O)⊥ .

Si osservi che il termine ˙⃗ω × (P − O) è un componente dell’accelerazione, ortogonale al piano
passante per l’asse di rotazione e per il punto P e si annulla se |ω⃗| è costante nel tempo. Inoltre,
il termine −ω2(P −O)⊥ rappresenta il componente assipeto dell’accelerazione, cioè il componente
diretto da P all’asse di rotazione e ad esso ortogonale.
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4.6 Cinematica Relativa

Sappiamo per esperienza quotidiana, che il moto dei corpi è un concetto relativo a un osservatore
o riferimento spazio-temporale:

(O, e⃗1, e⃗2, e⃗3) + orologio

e⃗1

e⃗2

e⃗3

O

In particolare, vedremo che la derivata rispetto al tempo di un vettore non è uguale per osservatori
che si muovono uno rispetto all’altro di moto arbitrario. Quindi, i vettori velocità ed accelera-
zione dipendono dall’osservatore, come vedremo in seguito. Nel seguito, con abuso di linguaggio,
identificheremo ogni osservatore con la terna rigida alla quale è solidale.

4.6.1 Formula di derivazione cinematica

Consideriamo un vettore dipendente dal tempo e osserviamo che il suo vettore derivato rispetto al
tempo dipende dal riferimento scelto. Ad esempio, se consideriamo un vettore solidale a un rigido
R, questo avrà derivato nullo rispetto a una terna solidale a R o, come si usa dire, nel corpo, mentre
avrà derivato non nullo rispetto a una terna fissa o, come si dice, nello spazio. Vediamo quale è
in generale la relazione fra i due vettori derivati. A tale scopo, nella (4.4.6) prendiamo il punto
P coincidente, di volta in volta, con l’estremo dei vettori

(

O(t), e⃗1(t)
)

,
(

O(t), e⃗2(t)
)

,
(

O(t), e⃗3(t)
)

,
cioè con gli estremi dei versori della terna (

(

O(t), e⃗(t)
)

solidale a R. Allora, si ottiene

(4.6.1) ˙⃗ek(t) = ω⃗ × e⃗k(t) k = 1, 2, 3 ,

dove, per semplicità di notazione, abbiamo denotato con il puntino la d
dt |spazio. Dunque, la derivata

temporale di un versore è sempre ortogonale al versore stesso. Poi, consideriamo un generico vettore
u⃗(t) ∈ E3 e scomponiamolo sia sulla base fissa (E⃗1, E⃗2, E⃗3), sia sulla base mobile (e⃗1(t), e⃗2(t), e⃗3(t))

u⃗(t) = U1E⃗1 + U2E⃗2 + U3E⃗3 = u1e⃗1(t) + u2e⃗2(t) + u3e⃗3(t)

Il vettore derivato rispetto al tempo, nello spazio è

du⃗
dt |spazio = U̇1E⃗1 + U̇2E⃗2 + U̇3E⃗3

= u̇1e⃗1(t) + u̇2e⃗2(t) + u̇3e⃗3(t) + u1
˙⃗e1(t) + u2

˙⃗e2(t) + u3
˙⃗e3(t)

(4.6.1)
= (u̇1e⃗1(t) + u̇2e⃗2(t) + u̇3e⃗3(t)) + u1 ω⃗ × e⃗1(t) + u2 ω⃗ × e⃗2(t) + u3 ω⃗ × e⃗3(t)

= (u̇1e⃗1(t) + u̇2e⃗2(t) + u̇3e⃗3(t)) + ω⃗ × u⃗

Pertanto, segue che
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Proposizione 4.6.1. Sia u⃗(t) un generico vettore di E3 dipendente dal tempo e consideriamo due
terne rigide in moto una rispetto all’altra. Per convenzione, chiameremo una la terna nello spazio,
l’altra la terna nel corpo. Allora, i vettori derivati di u⃗(t) soddisfano la relazione

(4.6.2)
du⃗

dt |spazio
=

du⃗

dt |corpo
+ ω⃗ × u⃗ ,

dove ω⃗ è la velocità angolare della terna nel corpo rispetto a quella nello spazio.

Osserviamo che i vettori derivati, assoluto e relativo, di un vettore variabile nel tempo coincidono
se e solo se:

• ω = 0⃗, cioè il moto di una terna rispetto all’altra è traslatorio;

• oppure u⃗ ∥ ω⃗ ∀t, cioè il vettore da derivare è sempre diretto come l’asse di Mozzi.

Corollario 4.6.1. Il vettore ω⃗ ha derivati uguali nello spazio e nel corpo, cioè

(4.6.3) ˙⃗ω :=
dω⃗

dt |spazio
=

dω⃗

dt |corpo

Esercizio 4.6.1. Calcolare i vettori derivati rispetto al tempo dei versori della base mobile adattata
alle coordinate cilindriche e sferiche, tramite la formula di derivazione cinematica (4.6.2)

Esercizio 4.6.2. Dimostrare che il modulo di ogni vettore u⃗(t) ha derivate rispetto al tempo uguali
nello spazio e nel corpo, cioè

(4.6.4)
d|u⃗|

dt |spazio
=

d|u⃗|

dt |corpo

4.6.2 Composizione delle velocità

Consideriamo due terne Σ :=
(

O0, e(0)
)

e Σ′(t) := (O′(t), e′(t)
)

in moto rigido una rispetto all’altra.
Per convenzione, chiameremo Σ0 terna fissa e Σ′(t) terna mobile.

O
0

e⃗1(0)

e⃗2(0)

e⃗3(0)

O′(t)

e⃗ ′
1(t)

e⃗ ′
2(t)

e⃗ ′
3(t)

P (t)

Σ

Σ′(t)

Vogliamo studiare il moto di un punto materiale che si muove rispetto ad entrambe le terne e,
in particolare, come la sua velocità viene misurata dai due osservatori Σ e Σ′. Denoteremo con

v⃗(ass)P : la velocità diP valutata daΣ
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(v⃗O′ , ω⃗) : la velocità diO′ e la velocità angolare di Σ′(t) valutate daΣ

v⃗(rel)P : velocità diP valutata da Σ′(t)

Vale il

Teorema 4.6.1 (Galileo, 1564-1642).

(4.6.5) v⃗(ass)P = v⃗(rel)P + v⃗(tr)P ,

dove la velocità v⃗(tr)P è detta velocità di trascinamento di P in Σ′(t) ed è pari a

(4.6.6) v⃗(tr)P = v⃗O′ + ω⃗ × (P −O′) .

Dimostrazione. Scomponiamo il vettore posizione di P rispetto ad O come

P −O0 = (P −O′) + (O′ −O0)

e applichiamo la formula di derivazione cinematica (4.6.2) a tutti i suoi termini. Otterremo

d

dt |Σ
(P −O0) =

d

dt |Σ
(P −O′) +

d

dt |Σ
(O′ −O0)

=
d

dt |Σ′

(P −O′) + ω⃗ × (P −O′) + v⃗O′

= v⃗(rel)P + ω⃗ × (P −O′) + v⃗O′ .

(4.6.7)

Osserviamo che la differenza tra le velocità di P in Σ e Σ′(t) è data dal vettore v⃗(tr)P , che dipende
dalla velocità di O′, da ω⃗ e dalla posizione di P rispetto ad O′. Se ad un istante fissato v⃗(rel)P = 0⃗, il
vettore v⃗(tr)P rappresenta la velocità di un punto solidale alla terna Σ′(t) che, quindi, viene trascinato
nel moto di tale terna rispetto a Σ. Ciò spiega il motivo del termine velocità di trascinamento per
la (4.6.6).

Casi particolari

• Moto traslatorio.
Se la terna Σ′(t) si muove di moto traslatorio rispetto a Σ, ω⃗ = 0⃗. In questo caso

(4.6.8) v⃗(tr)P = v⃗O′ ,

quindi il campo della velocità di trascinamento ha una struttura uniforme.

• Moto rotatorio
Se le due terne si muovono di moto rotatorio una rispetto all’altra, esiste un asse che rimane
fisso sia in Σ, sia in Σ′(t). Detto (O0 ≡ O′ = O, e⃗3(0) ≡ e⃗ ′

3(t)) tale asse, si ha che v⃗O′ = 0⃗ e
ω⃗ = ω(t) e⃗3. Allora

(4.6.9) v⃗(tr)P = ω(t) e⃗3 × (P −O) ,

quindi il campo della velocità di trascinamento ha una struttura rotatoria intorno all’asse e⃗3.
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4.6.3 Composizione delle accelerazioni

Vogliamo studiare le accelerazioni del punto P misurate dai due osservatori Σ e Σ′(t). Denoteremo
con

a⃗(ass)P : l’accelerazioni diP , valutata da Σ

(⃗aO′ , ˙⃗ω) : l’accelerazioni di O′ e l’accelerazione angolare di Σ′(t) valutate da Σ

a⃗(rel)P : accelerazione diP valutata daΣ′(t)

Vale il

Teorema 4.6.2 (Coriolis, 1792-1843).

(4.6.10) a⃗(ass)P = a⃗(rel)P + a⃗(tr)P + a⃗(Cor)
P ,

dove a⃗(tr)P , a⃗(Cor)
P sono dette rispettivamente accelerazione di trascinamento e accelerazione di

Coriolis (o complementare) di P e sono pari a

a⃗(tr)P = a⃗O′ + ˙⃗ω × (P −O′) + ω⃗ ×
(

ω⃗ × (P −O′)
)

(4.6.11)

a⃗(Cor)
P = 2 ω⃗ × v⃗(rel)P .(4.6.12)

Dimostrazione. Derivando rispetto al tempo la (4.6.5), otterremo

(4.6.13)
d

dt |Σ
v⃗P =

d

dt |Σ
v⃗(rel)P +

d

dt |Σ
v⃗(tr)P

Tenendo conto di

d

dt |Σ
v⃗(rel)P =

d

dt |Σ′

v⃗(rel)P + ω⃗ × v⃗(rel)P(4.6.14)

= a⃗(rel)P + ω⃗ × v⃗(rel)P

d

dt |Σ
v⃗(tr)P =

d

dt |Σ

(

v⃗O′ + ω⃗ × (P −O′)
)

= a⃗O′ + ˙⃗ω × (P −O′) + ω⃗ × (v⃗P − v⃗O′)(4.6.15)

= a⃗O′ + ˙⃗ω × (P −O′) + ω⃗ ×
(

v⃗(rel)P + ω⃗ × (P −O′)
)

.

Osserviamo che la differenza tra l’accelerazione di P in Σ e in Σ′(t) consta di 2 termini: il primo,
a⃗(tr)P , dipende dall’accelerazione di O′, da ω⃗ e dalla sua derivata, dalla posizione di P rispetto a
O′. Il secondo termine, a⃗(Cor)

P , è ortogonale a ω⃗ e alla velocità di P in Σ′(t). È detto accelerazione
di Coriolis. Se ad un dato istante, v⃗(rel)P = 0⃗, il termine (4.6.11) è l’unico che sopravvive, quindi,
rappresenta l’accelerazione di un punto solidale alla terna Σ′(t); per questo motivo, esso viene detto
accelerazione di trascinamento.

Casi particolari
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• Moto traslatorio.
Se la terna Σ′(t) si muove di moto traslatorio rispetto a Σ, ω⃗ = 0⃗ implica che

a⃗(tr)P = a⃗O′(4.6.16)

a⃗(Cor)
P = 0⃗ .(4.6.17)

Quindi il campo dell’accelerazione di trascinamento è uniforme e quello dell’accelerazione di
Coriolis è nullo. Inoltre, se il moto traslatorio è rettilineo ed uniforme, anche a⃗(tr)P = 0⃗, quindi

a⃗(ass)P = a⃗(rel)P ∀P ∈ E3 .

Dunque, tutti gli osservatori che si muovono di reciproco moto traslatorio rettilineo uniforme,
attribuiscono ad un generico punto materiale P la stessa accelerazione (Principio d’Invarianza
Galileiana).

• Moto rotatorio
Se la terna Σ′(t) si muove di moto rotatorio rispetto a Σ, O0 ≡ O′, ω⃗ = ω(t) e⃗3 implicano che

a⃗(tr)P = ω̇ e⃗3 × (P −O)− |ω⃗|2(P −O)⊥ ,(4.6.18)

a⃗(Cor)
P = 2ω e⃗3 × v⃗(rel)P .(4.6.19)

Quindi, il campo dell’accelerazione di trascinamento è la somma di un termine trasversale,
dipendente dall’accelerazione angolare, che ha una struttura rotatoria intorno all’asse e⃗3 e
di un termine "assipeto" dipendente linearmente dalla distanza di P dall’asse di rotazione.
Infine, l’accelerazione di Coriolis sta nel piano ortogonale all’asse di rotazione ed è ortogonale
a v⃗(rel)P .

Esercizio 4.6.3. Si consideri il modello del Tema d’esame del 29 Gennaio 2018. Si calcolino
la velocità e l’accelerazione del punto P in funzione delle coordinate libere (ϕ, θ), applicando il
Teorema di Galileo e quello di Coriolis alla terna fissa Σ = (O; e⃗x, e⃗y, e⃗z) e a quella mobile Σ′(t) =
(O; e⃗ρ, e⃗ϕ, e⃗z).

θ

S

P

A
B

CD

H

2 a

a S

e⃗y

e⃗z

e⃗x

e⃗ϕ

e⃗ρ

E
ϕ

H
P

D ≡ O

C

B

A

4a

θ

e⃗z
e⃗r

e⃗ρ

e⃗θ
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4.6.4 Composizione delle velocità angolari

In questa sezione studieremo in dettaglio la composizione di due moti rigidi qualsiasi, della parte
lineare dei loro componenti polari, degli operatori di spin e delle loro velocità angolari. Precisamente,
consideriamo una terna fissa Σ0 =

(

O0, e(0)
)

e due terne in moto Σ′(t) =
(

O′(t), e′(t)
)

e Σ(t) =
(

O(t), e(t)
)

. La terna Σ′(t) sarà detta intermedia, la terna Σ(t) solidale. Chiameremo moto di
trascinamento Φtr e moto assoluto Φa, rispettivamente, quello delle terna intermedia e della terna
solidale rispetto alla terna fissa. Chiameremo moto relativo Φrel quello della terna solidale rispetto
alla terna intermedia.

O
0

e⃗1(0)

e⃗2(0)

e⃗3(0)

Σ0

Σ′(t)

O′(t)

e⃗ ′
1(t)

e⃗ ′
3(t)

e⃗ ′
2(t)

O(t)

e⃗1(t)

e⃗2(t)

e⃗3(t) Σ(t)

Φtr Φrel

Φass

Posto

(4.6.20) e(t) = e′(t)[Rrel] , e′(t) = e(0)[Rtr] , e(t) = e(0)[Rass] ,

i corrispondenti operatori di spin sono

(4.6.21) Arel = ṘrelR
T
rel , Atr = ṘtrR

T
tr , Aass = ṘassR

T
ass .

Concatenando le prime due equazioni della (4.6.20) e confrontando il risultato con con la terza
segue che la matrice di piazzamento del moto composto

Φass = Φrel ◦ Φtr

è data da

(4.6.22) [Rass] = [Rtr][Rrel] .

Teorema 4.6.3 (Frisi 1728-1784). Detta ω⃗tr la velocità angolare della terna intermedia rispetto
alla terna fissa e ω⃗rel la velocità angolare della terna solidale rispetto a quella intermedia, la velocità
angolare della terna solidale rispetto a quella fissa è pari alla somma delle suddette velocità angolari

(4.6.23) ω⃗ass = ω⃗tr + ω⃗rel .

Dimostrazione. L’operatore di spin del moto assoluto è dato da

Aass = ṘassR
T
ass ,
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quindi la matrice associata rispetto alla base fissa risulta per la (4.6.22)

(4.6.24) [Aass] =
d

dt

(

[Rtr][Rrel]
)(

[Rtr][Rrel]
)T

= ˙(

[Rtr][Rrel] + [Rtr][Ṙrel]
)

[Rrel]
T [Rtr]

T =

= ˙[Rtr]✘✘✘✘✘✘
[Rrel][Rrel]

T [Rtr]
T + [Rtr][Ṙrel][Rrel]

T [Rtr]
T = [Atr] + [Rtr][Arel][Rtr]

−1

La tesi si ottiene osservando che la matrice [Atr] è la matrice rappresentativa dell’operatore di spin
nel moto di trascinamento, rispetto alla base fissa; [Arel] è la matrice rappresentativa dell’opera-
tore di spin nel moto relativo, rispetto alla base intermedia, quindi [Rtr][Arel][Rtr]T è la matrice
rappresentativa dello stesso operatore rispetto alla base fissa. Infatti, in base alla (4.4.13)

ω⃗rel × y⃗ = e(0)[Arel]
e(0)
e(0)[y⃗]

e(0) = e(0)[Rtr][Arel][Rtr]
−1[y⃗]e(0)

(4.6.20)
= e′(t)[Arel][y⃗]

e
′(t)

Corollario 4.6.2. Supponiamo che le due terne mobili siano entrambe solidali a un rigido. Allora
Rrel è indipendente dal tempo, quindi Arel = 0E3

, ω⃗rel = 0⃗ e ω⃗ass = ω⃗tr. Pertanto, le velocità
angolari di tutte le terne solidali a un rigido coincidono.

Esempio 4.6.1. Consideriamo un rigido con un punto fisso O. Applicando il Teorema di Frisi alla
terna fissa

(

O, e(0)
)

, alle due terne intermedie
(

O, e′(t)
)

e
(

O, e′′(t)
)

, a quella solidale al rigido
(

O, e(t)
)

, già utilizzate nella dimostrazione del Teorema di Eulero 4.3.1, si ricava che la velocità
angolare ω⃗ del moto polare, sulla terna non ortogonale

(

O; e⃗3(0), n⃗(t), e⃗3(t)
)

, assume la forma

(4.6.25) ω⃗ = ϕ̇ e⃗3(0) + θ̇ n⃗(t) + ψ̇ e⃗3(t) .

Esercizio 4.6.4. Verificare che la (4.6.25) equivale alla (4.5.3) e alla (4.5.4).

4.7 Moto di precessione

In questa sezione, studieremo un caso particolare di moto polare che ha notevoli applicazioni al
moto delle trottole e a quello del pianeta Terra: il moto di precessione.

Definizione 4.7.1. Il moto di precessione è un moto rigido che preserva un punto O del modello
(moto polare) e un angolo compreso tra due assi concorrenti in O, il primo fisso nello spazio, detto
asse di precessione, il secondo solidale al rigido, detto asse di figura.

Tale moto si può realizzare, per esempio, montando l’asse di figura del modello su un telaio
rigido in modo che il modello sia libero di ruotare intorno a tale asse e vincolando, a sua volta, il
telaio a ruotare intorno all’asse di precessione.

Il suo flusso sarà

Φt : B0 → E3, P0 $→ P (t) = Φt(O) + Φ̂t(P0 −O) = O +Rt(P0 − O) ,

dove l’operatore di rotazione Rt deve essere un caso particolare di quello del moto polare. Per
determinare Rt, scegliamo come terna fissa (O; E⃗1, E⃗2, E⃗3) con l’asse (O; E⃗3) coincidente con l’asse
di precessione e la terna solidale (O; e⃗1(t), e⃗2(t), e⃗3(t)) con l’asse (O; e⃗3(t)) coincidente con l’asse
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E⃗3

E⃗2

E⃗1
ϕ̃(t)

e⃗3(t)

n⃗(t)

e⃗2(t)

e⃗ ′
1(t)e⃗1(t)

θ

ψ(t)

O

ψ(t)

Figura 4.7.1: Moto di precessione

di figura, come nella Fig. 4.7.1. Come coordinate sovrabbondanti possiamo scegliere gli angoli di
Eulero della terna solidale rispetto alla terna fissa. Possiamo calcolare il numero dei gradi di libertà
con il metodo del bilancio, tenendo conto che l’equazione di vincolo è data da

θ = cost

ed ha matrice Jacobiana di rango massimo. Dunque, il rigido così vincolato ha l = 3− 1 = 2 gradi
di libertà. Come coordinate libere possiamo prendere

• l’angolo ϕ̃ di rotazione del telaio, cioè l’angolo formato dal piano fisso (O; E⃗1, E⃗3) e il piano
mobile (O; E⃗3, e⃗3(t)), contenente sia l’asse di precessione sia l’asse di figura;

• l’angolo di Eulero ψ di rotazione del rigido intorno all’asse di figura, compreso tra n⃗(t) ed
e⃗1(t).

È facile convincersi che l’angolo ϕ̃ differisce dall’angolo di precessione ϕ di Eulero per una costante

(4.7.1) ϕ = ϕ̃+ π/2 ,

quindi la sua derivata rispetto al tempo coincide con quella di ϕ . Dunque, dal teorema di Eulero
sul moto polare segue che

Proposizione 4.7.1. Un moto di precessione si può sempre scomporre in modo unico in due moti
rotatori, uno intorno all’asse fisso e uno intorno all’asse di figura.

Allora, la matrice rappresentativa dell’operatore di rotazione Rt rispetto alla base fissa B0 =
(E⃗1, E⃗2, E⃗3), si calcola semplicemente sostituendo la (4.7.1) nella (4.3.12)

(4.7.2) [Rt]
B0 =

⎡

⎣

− sin ϕ̃ cosψ − cos ϕ̃ cos θ sinψ sin ϕ̃ sinψ − cos ϕ̃ cos θ cosψ cos ϕ̃ sin θ
cos ϕ̃ cosψ − sin ϕ̃ cos θ sinψ − cos ϕ̃ sinψ − sin ϕ̃ cos θ cosψ sin ϕ̃ sin θ

sin θ sinψ sin θ cosψ cos θ

⎤

⎦
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Analogamente, la matrice di spin del moto di precessione si calcola sostituendo la (4.7.1) e la sua
derivata rispetto al tempo nella (4.5.2), ottenendo così

(4.7.3) [A]B0 := [ṘRT ]B0 =

⎡

⎣

0 −( ˙̃ϕ+ ψ̇ cos θ) ψ̇ sin ϕ̃ sin θ
˙̃ϕ+ ψ̇ cos θ 0 −ψ̇ cos ϕ̃ sin θ

−ψ̇ sin ϕ̃ sin θ ψ̇ cos ϕ̃ sin θ 0

⎤

⎦ ,

e, quindi, il vettore velocità angolare

(4.7.4) ω⃗ = ψ̇ cos ϕ̃ sin θ E⃗1 + ψ̇ sin ϕ̃ sin θ E⃗2 + ( ˙̃ϕ+ ψ̇ cos θ) E⃗3 .

Una maniera più veloce di determinare ω⃗ è quella di utilizzare il teorema di addizione delle velocità
angolari. A tale scopo, introduciamo la terna intermedia (O; e⃗ ′

1(t), n⃗(t), e⃗3(0)) con e⃗ ′
1(t) e n⃗(t)

versori, rispettivamente, paralleli e ortogonali alla base del telaio e introduciamo la terna solidale
(O; e⃗1(t), e⃗2(t), e⃗3(t)). Allora, si ha

ω⃗tr = ˙̃ϕE⃗3 , ω⃗rel = ψ̇e⃗3(t)

Dunque, la velocità angolare totale si può scrivere

(4.7.5) ω⃗ = ˙̃ϕE⃗3 + ψ̇e⃗3(t) ,

cioè somma di due componenti

• la velocità angolare di precessione intorno all’asse fisso ω⃗pr = ˙̃ϕE⃗3

• la velocità angolare di rotazione intorno all’asse di figura ω⃗rot = ψ̇e⃗3(t).

Si noti che, scomponendo il versore dell’asse di figura sulla terna fissa, risulta

e⃗3(t) = sin θ
(

cos ϕ̃ E⃗1 + sin ϕ̃ E⃗2

)

+ cos θ E⃗3 ,

quindi la (4.7.4) e la (4.7.5) coincidono.
Se θ ≠ π

2 , la precessione si distingue in

anterograda: i due componenti di ω⃗ formano un angolo acuto

ω⃗pr · ω⃗rot =

>0
!!❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

<0
""❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

retrograda: i due componenti di ω⃗ formano un angolo ottuso

Proprietà del moto di precessione:

(1) I versori E⃗3, ω⃗, e⃗3(t) sono complanari ∀t ∈ I;

(2) l’asse di figura (O; e⃗3(t)) descrive un cono circolare di semiapertura θ intorno all’asse fisso
(O; E⃗3), come nella Fig. 4.7.2;
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AIR

O
e⃗3(t)

E⃗3

ω⃗pr

ω⃗rot

ω⃗
θ

AIR
O

e⃗3(t)

E⃗3

ω⃗pr

ω⃗rot

ω⃗

θ

Figura 4.7.2: Coni di precessione anterograda e retrograda

(3) il campo delle velocità è rotatorio e l’AIR passa per il punto fisso O (come in ogni moto
polare).

La scomposizione (4.7.5) caratterizza il moto di precessione all’interno della classe dei moti
polari. Infatti, vale il seguente

Teorema 4.7.1. Un moto polare è una precessione se e solo se esistono due versori, uno fisso nello
spazio, c⃗, uno solidale al rigido, k⃗(t), tali che

(4.7.6) ω⃗(t) = λ(t)⃗c+ µ(t)k⃗(t) ,

dove λ, µ : I → R sono funzioni regolari del tempo.

Dimostrazione. Detto θ l’angolo compreso tra c⃗ e k⃗(t), dimostriamo che esso è costante nel tempo.
Infatti,

d

dt

(

cos θ(t)
)

=
d

dt
(⃗c · k⃗) = c⃗ ·

d

dt
k⃗

(4.6.1)
= c⃗ · ω⃗ × k⃗

(4.7.6)
= 0

Se, in particolare, la precessione è regolare (o uniforme), cioè λ e µ sono costanti, vale la seguente

Proposizione 4.7.2. In una precessione regolare

• il modulo della velocità angolare è costante;

• sono costanti gli angoli compresi tra due qualunque dei vettori (⃗c, ω⃗, k⃗);

• l’AIR descrive due coni rotondi detti coni di Poinsot, uno intorno all’asse di precessione (cono
fisso) e uno intorno all’asse di figura (cono mobile). Tali coni sono tangenti lungo la comune
generatrice avente la direzione di ω⃗ e rotolano senza strisciare uno sull’altro. Si vedano le
Fig. 4.7.3 e 4.7.4
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k

rot

pr

cono
mobile

cono
fisso

c

θ = α+ β

α β

O

AIR

Figura 4.7.3: Coni di Poinsot: precessione anterograda

Dimostrazione. .

• Dalla (4.7.6) segue che |ω⃗|2 = λ2 + µ2 + 2λµ cos θ. Dal fatto che θ, λ e µ sono costanti per
ipotesi, segue la tesi.

• Detti α e β gli angoli compresi rispettivamente tra
(

c⃗, ω⃗
)

e
(

ω⃗, k⃗(t)
)

, si ha

cosα =
c⃗ · ω⃗

|ω⃗|
=
λ+ µ cos θ

|ω⃗|
, cosβ =

k⃗(t) · ω⃗

|ω⃗|
=

µ+ λ cos θ

|ω⃗|
.

• Dal punto precedente segue che, durante il moto, l’AIR descrive un cono rotondo di semi-
apertura α intorno all’asse

(

O; c⃗
)

e un altro cono di semi-apertura β intorno all’asse
(

O; k⃗(t)
)

.
I due coni hanno in comune la generatrice coincidente con l’asse d’istantanea rotazione che,
ricordiamo, è il luogo geometrico di tutti e soli i punti del rigido con velocità istantanea nulla.

Esempio 4.7.1. Il moto di precessione retrograda, quasi-regolare della Terra, con angolo di inclina-
zione θ dell’asse terrestre di circa 23◦ rispetto all’asse fisso, ortogonale al piano dell’eclittica (orbita
solare). Ha un periodo di circa 26.000 anni e causa un anticipo di circa 20′/anno dell’arrivo degli
equinozi. Tali giorni corrispondono alle due intersezioni dell’asse dei nodi con l’eclittica, quindi
al momento in cui i raggi solari arrivano ortogonali all’asse terrestre. Tale anticipo è noto come
precessione degli equinozi. Si veda la Fig. 4.7.5.

4.8 Moto rigido piano

Definiamo moto rigido piano quello che lascia invariato l’insieme dei punti di un piano π solidale
a R. In altri termini, R possiede un piano π i cui punti si muovono parallelamente a un piano
direttore fisso π′, parallelo a π. Dunque, tutte le linee di corrente sono curve appartenenti a piani
paralleli a π′. Abbiamo già incontrato un particolare esempio di moto piano: il moto rotatorio di un
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AIR
c

cono fisso

cono mobile

AIR

cono mobile

cono fisso

c

ω⃗(prec)

ω⃗(rot)

ω⃗

θ = α− β

ω⃗

ω⃗(prec)

ω⃗(rot)

k⃗(t)

k⃗(t)

θ = β − α

β
α α β

Figura 4.7.4: Coni di Poinsot: precessioni retrograde

rigido tridimensionale attorno ad un asse fisso. Un altro esempio è quello di una lamina vincolata
a muoversi nel suo piano.

Teorema 4.8.1 (Eulero). Il più generale moto piano si può scomporre (in infiniti modi) in un moto
traslatorio, con il vettore della traslazione sempre parallelo al piano direttore, e un moto rotatorio
intorno ad un asse ortogonale al piano direttore. Quindi, scelto un arbitrario punto del rigido O(t),
il suo flusso Φ è dato da

(4.8.1) P (t) = Φt(P0) = ρt(τs⃗(t)) = O(t) +Rt

(

P0 − Φ−1
t (O(t)

)

= O0 + s⃗(t) +Rt (P0 −O0) ,

dove, ∀t ∈ I,

(4.8.2) O0 = Φ−1
t

(

O(t)
)

, s⃗(t) =
(

O(t)−O0

)

∥ π′ , Rt = R(ϕ,k⃗ ) k⃗ ⊥ π′ .

Di conseguenza, ω⃗ = ω(t) k⃗ e il campo di velocità del rigido ad un istante t̄, o è traslatorio, se
ω(t̄) = 0, oppure è rotatorio intorno all’AIR, che è sempre parallelo a k⃗. In questo caso, il punto
Ωπ d’intersezione dell’AIR con una qualunque sezione piana π del rigido, parallela al piano direttore,
è detto centro d’istantanea rotazione (CIR) relativo a π. La sua posizione è data dal vettore

(4.8.3) Ωπ −O =
ω⃗ × v⃗O
|ω⃗|2

O ∈ π .

Dimostrazione. Sappiamo dal Teorema 4.4.1 che il più generale moto rigido si scompone (in infiniti
modi) in un moto traslatorio composto con un moto polare. Per il moto piano, la traslazione deve
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Figura 4.7.5: precessione degli equinozi
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necessariamente essere parallela al piano direttore, mentre il moto polare, lasciando invariati tutti i
piani solidali paralleli al piano direttore, deve essere necessariamente rotatorio intorno ad una asse
ortogonale al piano invariante. Quindi, il suo flusso è dato dalla (4.8.1) con le condizioni (4.8.2).
Naturalmente, la (4.8.2) comporta che la velocità angolare di un rigido che si muove di moto piano
è sempre ortogonale al piano direttore. Tale proprietà, insieme al fatto che i punti di R hanno
velocità parallela al piano direttore, implica che l’invariante scalare cinematico si annulla

(4.8.4) I = v⃗P · ω k⃗ = 0 .

Dunque, il campo di velocità non può essere elicoidale.

N.B. Attenzione a non confondere il concetto di moto con quello di campo delle velocità (o atto
di moto). Nel caso del moto piano il moto è roto-traslatorio, come abbiamo visto, mentre il campo
di velocità è semplicemente traslatorio, oppure rotatorio.

y

x

ϕ

O0

O(t)

−→
E 3 ≡ k⃗

−→e 3(t)

−→
E 2

−→
E 1

−→e 1(t)

−→e 2(t)

È chiaro che, per il moto piano, tutte le sezioni di R parallele a π si muovono anch’esse paral-
lelamente al piano direttore π′, dato che devono mantenere distanza invariata da π per il vincolo
di rigidità. Quindi, il moto piano lascia invariata la giacitura di ogni piano di R parallelo a π.
D’altra parte, nota la posizione di una sezione di R e quindi quella di 3 suoi punti non allineati, è
determinata la configurazione di R. Quindi, nel moto piano, non è restrittivo limitarsi a studiare
il moto di una sezione del rigido appartenente al piano direttore. Dunque, scegliamo una sezione
del rigido, chiamiamo π il piano solidale alla sezione e π′ il piano contenente la stessa sezione ma
immaginato fisso. Scelta una terna fissa su π′ e una mobile solidale a π, come in figura, possiamo
prendere come coordinate libere di R le coordinate cartesiane {(x, y)} dell’origine O(t) della terna
mobile e il suo angolo di rotazione ϕ. Allora

(4.8.5) ω⃗ = ϕ̇ E⃗3 .

Corollario 4.8.1. Se ω⃗(t̄) ≠ 0⃗, il CIR è l’unico punto solidale a R e appartenente al piano π del
moto che, all’istante t̄, ha velocità nulla. Inoltre, vale che

(4.8.6) v⃗P = ϕ̇ E⃗3 × (P − Ω) ∀P ∈ R .
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P

v⃗P

Ω
ϕ̇

È chiaro che, se sono noti il CIR e la velocità angolare, cioè la coppia (Ω, ϕ̇), grazie alla (4.8.6)
si può determinare la velocità di ogni punto del rigido, che avrà

• modulo pari a
|v⃗P | = |ϕ̇|ΩP ;

• direzione ortogonale al segmento ΩP ;

• verso determinato dalla regola della mano destra.

Viceversa, dalla (4.8.6) segue un metodo per determinare la coppia (Ω, ϕ̇), noti i vettori velocità di
2 soli punti del rigido, P e Q, appartenenti alla sezione piana π.

Teorema 4.8.2 (Chasles, 1793-1880). .

• Se v⃗P non è parallela a v⃗Q, il CIR è il punto d’intersezione delle rette passanti per P e
Q e ortogonali, rispettivamente, alle loro velocità. Il modulo della velocità angolare risulta
|ϕ̇| = |v⃗P |

ΩP
.

P

Q

v⃗P

v⃗Q

Ω

• Se v⃗P e v⃗Q sono parallele, si possono verificare due casi.

– v⃗P = v⃗Q, allora il campo di velocità è traslatorio (dimostrarlo per esercizio), ϕ̇ = 0 e il
CIR non è definito;
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– v⃗P ≠ v⃗Q, allora, a causa della proprietà di equiproiettività, la retta congiungente i punti
P e Q è ortogonale alle due velocità (dimostrarlo per esercizio). In questo caso, il CIR
sta su tale congiungente, in modo che

|v⃗P |

ΩP
=

|v⃗Q|

ΩQ
= |ϕ̇|

In particolare,

∗ se le due velocità sono discordi, il CIR è interno al segmento PQ lo divide in parti
direttamente proporzionali ai moduli delle velocità.

P

Q

v⃗P

v⃗Q

Ω

∗ se le due velocità sono concordi, il CIR è esterno al segmento PQ, dalla parte del
punto con velocità minore.

P

v⃗P

Ω

Q

v⃗Q
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Esempio: campo delle velocità di una scala con due appoggi

O

A

B Ω

−→e 2

−→e 3
−→v A

−→v B

−→e 1
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Esempio: campo delle velocità di un’asta appoggiata in A e infilata in B.

A

B

Ω

v⃗A

v⃗B

Esempio: campo delle velocità di un sistema biella-manovella

B

C
☼

ϕϕ

−→e 2

−→e 3

−→e 1

R1 R2

Ω(R2)

Ω(R1)
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Esempio: campo delle velocità di un disco in puro rotolamento

O

θ
−→e 2

−→e 3

−→e 1

Ω ≡ C

θ̇

4.8.1 Accelerazioni del moto piano

Dalla (4.5.11), tenendo conto che la velocità angolare è sempre ortogonale al piano del moto e
(P −O)⊥ = P −O, si ha

(4.8.7) a⃗P = a⃗O + ˙⃗ω × (P −O) + ω⃗ × (ω⃗ × (P −O)) = a⃗O + ϕ̈ E⃗3 × (P −O)− ϕ̇2(P −O) ,

dove P e O sono punti del rigido appartenenti a π.

4.8.2 Disco appoggiato su di una guida rettilinea

Consideriamo un disco di raggio R e di spessore trascurabile, vincolato a stare nel suo piano. Come
tutti i rigidi piani ha 3 gradi di libertà. Come coordinate libere, possiamo prendere le due coordinate
cartesiane del centro del disco e un angolo θ compreso tra un asse fisso e uno solidale al disco, ad
esempio come nella figura.
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A

θ

s

w

−→e 2

−→e 3

−→e 1

Supponiamo, ora, che il disco sia ulteriormente vincolato a stare appoggiato su una guida rigida
rettilinea (eventualmente mobile). Tale vincolo è semplice. Infatti, introducendo la terna fissa
(O; e⃗t, e⃗n, e⃗3) di figura e le coordinate sovrabbondanti {(s, w, θ)} possiamo rappresentare il vincolo
unilatero come

w ≥ R

O
A

P

s

w

C′

C

θ

−→e
t

−→e
n

−→e 3

d

La matrice Jacobiana corrispondente ha rango massimo, quindi possiamo concludere che
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• v = r = 0 nelle configurazioni ordinarie

• v = r = 1 nelle configurazioni di confine.

Da ora in poi, studieremo il modello soltanto nelle configurazioni di confine (l = 2), scegliendo come
coordinate libere {(s, θ)}.

Prima di tutto, osserviamo che il contatto fra il disco e la guida individua 2 punti:

1. C ∈ R, è il punto del rigido che ad un istante fissato t̄ si trova a contatto con la guida;

2. C′ ∈ alla guida, è il punto della guida che allo stesso istante t̄ si trova a contatto con il rigido.

Scriviamo la velocità del punto C all’istante t̄. Poiché C ∈ R, si ha

(4.8.8) v⃗C = v⃗A + ω⃗ × (C −A) = ṡe⃗t + θ̇e⃗3 × (−Re⃗n) = (ṡ+Rθ̇)e⃗t

Sottolineamo che tale rappresentazione è una rappresentazione spaziale o euleriana, cioè fornisce la
velocità del punto del disco che all’istante t̄ passa per il corrispondente punto C′ appartenente alla
guida. Per calcolare l’accelerazione di C, utilizziamo la (4.8.7) per i punti C e A

(4.8.9) a⃗C = a⃗A+ ˙⃗ω×(C−A)− |ω⃗|2(C−A) = s̈e⃗t+ θ̈e⃗3×(−Re⃗n)− θ̇
2(−Re⃗n) = (s̈+Rθ̈)e⃗t+Rθ̇2e⃗n

N.B. L’accelerazione del punto C del rigido a contatto con la guida non coincide con la derivata
rispetto al tempo della (4.8.8) che è la velocità calcolata in C e non in un generico punto del rigido,
ma con la derivata rispetto al tempo della velocità di un generico punto sul bordo del disco, valutata
nel punto C. Infatti, preso un generico punto P sul disco a distanza d dal centro A e detto θ l’angolo
tra i vettori −e⃗n e P −A si ha

(4.8.10) P −A = d(sin θ e⃗t − cos θ e⃗n) ⇒ (P −A)|θ=2kπ = −d e⃗n

Allora, la velocità di P è data da
(4.8.11)
v⃗P = v⃗A+ω⃗×(P−A) = ṡe⃗t+θ̇e⃗3×d(sin θ e⃗t−cos θ e⃗n) = ṡe⃗t+dθ̇(sin θ e⃗n+cos θ e⃗t) = (ṡ+dθ̇ cos θ)e⃗t+dθ̇ sin θe⃗n ,

quindi v⃗P |θ=2kπ = (ṡ+ dθ̇)e⃗t e coincide con v⃗C se d = R. Inoltre

(4.8.12) a⃗P = ˙⃗vP (θ) = (s̈+ d(θ̈ cos θ − θ̇2 sin θ))e⃗t + d(θ̈ sin θ + θ̇2 cos θ)e⃗n

e quindi a⃗P |θ=2kπ = (s̈+ dθ̈)e⃗t + dθ̇2e⃗n e coincide con a⃗C se d = R.
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O
A
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C

θ

−→e
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−→e
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−→e 3

−→a
t

−→a
n

−→a

Nella prossima sezione studieremo la cinematica del disco nell’ ipotesi che al vincolo d’appoggio
si aggiunga il vincolo di puro rotolamento.

4.8.3 Vincolo di puro rotolamento

Supponiamo che il disco rotoli senza strisciare su una guida scabra, eventualmente mobile. Tale
vincolo impone che

(4.8.13) v⃗C = v⃗C′ .
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O
A

C′

C −→v
C

−→v ′
C

ṡ

θ

−→e
t

−→e
n

−→e 3

Disco su guida fissa

Da ora in poi, supponiamo che la guida sia fissa. Allora, dalla (4.8.13) segue che

(4.8.14) v⃗C = 0⃗

cioè la velocità di tutti i punti del rigido che passano per il punto C′ della guida è nulla. Pertanto,
dalla (4.8.8) si ottiene

(4.8.15) ṡ+Rθ̇ = 0 ,

cioè un vincolo sulle velocità lagrangiane {(ṡ, θ̇)}, quindi di mobilità. Tuttavia, tale vincolo è
integrabile rispetto al tempo e si riduce al vincolo olonomo

(4.8.16) f(s, θ) := s+Rθ − s0 = 0 θ ∈ R ,

che è un vincolo semplice poiché la matrice Jacobiana J = [1, R] ha rango massimo.
N.B. Per gli scopi della prossima sezione, possiamo facilmente verificare che

∂2f

∂s ∂θ
= 0 =

∂2f

∂θ ∂s

cioè le derivate seconde miste sono uguali, come segue dalla regolarità del vincolo e dal Lemma di
Schwarz.

Dunque, il vincolo di puro rotolamento toglie un ulteriore grado di libertà al disco appoggiato,
che si riduce a un modello con un solo grado di libertà. Come coordinata libera, possiamo prendere

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.



110 CAPITOLO 4. CINEMATICA DEI RIGIDI

la coordinata θ e, per semplicità, porremo s0 = 0, in modo che s|θ=0 = 0 . Dalla (4.8.9) ricaviamo
che

(4.8.17) a⃗C = Rθ̇2e⃗n ,

cioè l’accelerazione del punto C si riduce al solo componenente ortogonale alla guida.
N.B. Possiamo classificare i moti di un disco appoggiato su di una guida in

1. rotolamento con slittamento: |ṡ| < R|θ̇|

2. puro rotolamento: |ṡ| = R|θ̇|

3. rotolamento con strisciamento: |ṡ| > R|θ̇|

Quindi, il puro rotolamento è interpretabile come la fase di transizione tra il regime di slittamento
e quello di strisciamento.

Nel caso di puro rotolamento, la (4.8.11) si riduce a

(4.8.18) v⃗P = θ̇(d cos θ −R)e⃗t + dθ̇ sin θe⃗n ,

che si può integrare rispetto al tempo per ottenere

P (θ(t)) =
(

(d sin θ −Rθ + c1)e⃗t + (c2 − d cos θ)e⃗n
)

c1, c2 ∈ .

Posto P0 = P|θ=0 =
(

c1e⃗t + (c2 − d)e⃗n
)

possiamo scrivere il flusso del disco

Φ(t, P0) = (d sin θ(t)−Rθ(t))e⃗t + d(1− cos θ(t))e⃗n + P0 .

Ad esempio, scegliendo, P0 ≡ O tale equazione diventa l’equazione parametrica della cicloide
disegnata in figura.

O ≡ P0

A

−→e t

−→e n

P (t)

θ

a⃗P0

Tale traiettoria è quella di un punto luminoso fissato sulla ruota di una bicicletta che rotola
senza strisciare nè slittare.
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Centro d’istantanea rotazione del disco

Ricordiamo che il campo di velocità di un rigido piano è, negli istanti in cui ω⃗ ≠ 0⃗, rotatorio,
quindi ammette un punto Ω solidale che ha velocità istantanea nulla, il CIR. Nel caso del disco solo
appoggiato su di una guida, denotato con C il punto del disco a contatto con la guida, l’equazione
del CIR può scriversi come

(4.8.19) Ω− C =
ω⃗ × v⃗C
|ω⃗|2

,

In particolare, se il moto è di puro rotolamento e la guida è fissa, v⃗C = 0⃗), quindi

(4.8.20) Ω ≡ C ,

cioè il CIR coincide con il punto di contatto del disco con la guida. Osserviamo che, il CIR non è
un punto fisso del disco (il disco non ha alcun punto fisso) nonostante v⃗C = 0⃗ nell’istante t̄ in cui
si trova a contatto con la guida. Infatti C ha un’accelerazione non nulla, pari a

(4.8.21) a⃗C = Rθ̇2e⃗n ,

quindi sempre diretta nel verso positivo di e⃗n. Pertanto, ad ogni istante il CIR cambia. Il luogo
geometrico descritto dai CIR al variare del tempo è detto

1. base del moto, se visto da un osservatore fisso;

2. rulletta, se visto da un osservatore solidale a R.

Nel caso di puro rotolamento si può osservare che la base è la retta coincidente con la guida
rigida. Invece, la rulletta è la circonferenza coincidente con il bordo del disco, poichè la distanza tra
il punto A solidale al rigido e i centri C si mantiene costante durante il moto. Si vede inoltre che
durante il moto la rulletta rotola senza strisciare sulla base del moto, poichè le velocità dei punti
di contatto C e C′ sono uguali.
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O

A

C′

C

θ

−→e t

−→e n

−→e 3

i⃗

j⃗

C̄

Ora, è naturale introdurre un nuovo punto che sarà utile nel seguito: il punto geometrico C̄ che
percorre la base del moto "inseguendo" i punti di contatto C e, per tale ragione, sarà detto polo

mobile. Mentre C̄ è associato ad un intervallo di tempo, i punti di contatto C e C′ sono associati
ad istanti di tempo.
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Esercizio 4.8.1. Si consideri il modello articolato della figura sottostante, costituito da un asta
vincolata a ruotare in un piano tramite una cerniera cilindrica nell’estremo A e fissata in O, e da
un disco, vincolato a rotolare sull’asta senza strisciare. Si calcolino la velocità angolare del disco,
la velocità e l’accelerazione del suo centro G, del punto di contatto C e del polo mobile C̄.

O ≡ A

B

C

G

Esercizio 4.8.2. Un rigido è formato da un disco omogeneo, di massa m e raggio R, saldato nel
suo centro G ad un asta AG di massa trascurabile e lunghezza d, il cui estremo A è vincolato ad un
asse fisso verticale (O, e⃗z) mediante una cerniera sferica posta a quota R sull’asse (O, e⃗z). L’asta
AG è ortogonale al piano del disco, il quale rotola senza strisciare sul piano orizzontale scabro
passante per O. Si classifichi il moto, il campo di velocità del rigido e si determini l’asse di Mozzi.
Inoltre, si calcoli la velocità angolare in funzione delle coordinate libere.

ψ

n⃗ϕ

k⃗

n⃗

G

C′

O

k⃗

ı⃗

ȷ⃗

A

C

e⃗z

e⃗x

e⃗y

e⃗z
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4.9 Classificazione dei moti rigidi

Nella tabella seguente, ricapitoliamo tutti i moti rigidi studiati, classificati in base ai loro componenti
elementari.

Tabella 4.9.1: Alcuni moti rigidi

Moti traslatori: τs⃗ Moti polari: σO Moti rototraslatori:
τs⃗ ◦ ρ(ϕ,k⃗) ,

˙⃗
k = 0⃗

Moti rigidi:
τs⃗ ◦ σO

Moti curvilinei:
s⃗(t) = s(t) u⃗(t)

Moti polari: ρψ ◦
ρθ ◦ ρϕ

Moti roto-traslatori

Moti rettilinei:
s⃗(t) = s(t) u⃗

Moti di precessione:
ρψ ◦ ρϕ

Moti elicoidali: (s⃗ ∥
k⃗)

Moti rettilinei uni-
formi: s⃗(t) = (s0 +
v0t) u⃗

Moti rotatori: ρϕ Moti piani: (s⃗ ⊥ k⃗)

Osserviamo che le classi non sono disgiunte: per esempio un moto rotatorio è anche un particolare
moto piano.

4.10 Approfondimento 1: disco appoggiato su un piano

Consideriamo un disco di raggio a e spessore trascurabile, appoggiato su di un piano fisso o mobile
e premettiamo alcune considerazioni geometriche e cinematiche di carattere generale.

E⃗3

E⃗1

E⃗2

O

C

G

ϕ

θ

e⃗1(t)

e⃗2(t)e⃗3(t)

C′

C

©2009 G. Tondo. Questi appunti sono coperti da diritto d’autore.



4.10. APPROFONDIMENTO 1: DISCO APPOGGIATO SU UN PIANO 115

A parte la configurazione in cui il piano di vincolo e il piano del disco coincidono, il disco si
appoggia sul piano in modo che la sua circonferenza sia tangente al piano, cioè in modo che la
retta tangente alla circonferenza nel punto di contatto appartenga al piano di vincolo. Inoltre,
osserviamo che, nel contatto tra un corpo rigido e una curva o una superficie di vincolo, entrambe
rigide, giocano un ruolo importante i seguenti punti:

• i punti materiali C solidali al rigido che, istante per istante, vengono a contatto con il vincolo;

• i punti materiali C′ del vincolo che, istante per istante, vengono a contatto con il corpo rigido;

• il punto geometrico dello spazio C̄ che “insegue” i punti di contatto, cioè che durante il moto
del rigido, istante per istante, coincide con C e C′. Tale punto è detto polo mobile.

Questi tre punti, malgrado occupino la stessa posizione nello spazio ad ogni istante, sono di diversa
natura, quindi hanno velocità diverse. Ad esempio, nel problema della Sezione precedente, il polo
mobile C̄ coincide con la proiezione ortogonale del centro del disco A sulla guida, quindi si muove
lungo la guida con la stessa velocità di G, mentre, nel caso di puro rotolamento su guida fissa,
v⃗C = v⃗C′ = 0⃗. Nel problema che stiamo esaminando, calcoleremo più avanti la velocità di C e C̄.

E⃗3

E⃗1

E⃗2O

C̄

G

n⃗

m⃗k⃗(t)

ϕ

θ

θ

n⃗

e⃗3(t)

e⃗1(t)

e⃗2(t)

ψ

E⃗3

Per iniziare l’analisi cinematica, determiniamo i gradi di libertà del disco con il metodo del
bilancio. Il corpo rigido svincolato ha 6 gradi di libertà. Quindi, come coordinate sovrabbondan-
ti, possiamo introdurre, ad esempio, le coordinate cartesiane (xG, yG, zG) del centro del disco G,
rispetto a una terna fissa Σ = (O; E⃗1, E⃗2, E⃗3) con O appartenente al piano di vincolo, il versore
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E⃗3 ortogonale al piano, il versore E⃗1 parallelo a detto piano ed E⃗2 = E⃗3 × E⃗1. Inoltre, per defi-
nire l’orientazione del disco nello spazio, possiamo prendere gli angoli di Eulero (ϕ, θ,ψ) formati,
rispetto alla terna fissa, da una terna (G; e⃗1(t), e⃗2(t), e⃗3(t)) solidale al disco, con e⃗3(t) ortogonale al
disco, il versore e⃗1(t) scelto ad arbitrio nel piano nel disco ed e⃗2(t) = e⃗3(t)× e⃗1(t). Oltre a tali due
terne, considereremo anche una terna intermedia con origine, istante per istante, nel polo mobile
C̄ e versori (n⃗(t), m⃗(t), k⃗(t)) con n⃗(t) versore dei nodi, k⃗(t) = e⃗3(t) e m⃗(t) = k⃗(t) × n⃗(t). Tale
terna sarà detta stereonodale, giacché include il versore dei nodi. Si osservi che le basi associate
alle tre terne così definite coincidono rispettivamente con le basi e(0), e(t), e′′(t), già usate nella
dimostrazione del Teorema di Eulero 4.3.1. Dunque, la trasformazione che manda la base fissa in
quella intermedia è la composizione delle sole precessione e nutazione

(4.10.1) [n⃗(t) m⃗(t) k⃗(t)] = [E⃗1 E⃗2 E⃗3][RϕRθ] ,

con la matrice

(4.10.2) [RϕRθ] =

⎡

⎣

cosϕ − sinϕ cos θ sinϕ sin θ
sinϕ cosϕ cos θ − cosϕ sin θ
0 sin θ cos θ

⎤

⎦ .

Osserviamo che il vincolo (unilatero) di appoggio del disco sul piano costringe il centro del disco G
a soddisfare la disequazione

(4.10.3) zG − a sin θ ≥ 0

Limitandoci a considerare le configurazioni di confine, cioè quelle in cui vale

(4.10.4) zG − a sin θ = 0 ,

poichè il vincolo è semplice possiamo concludere che il disco appoggiato ha 5 gradi di libertà.
Quindi, possiamo prendere come coordinate lagrangiane, ad esempio, (xG, yG,ϕ, θ,ψ). Calcoliamo,
in tali coordinate, la velocità angolare del disco e la velocità spaziale dei punti C solidali al disco
che, istante per istante, vanno a contatto con il piano in C̄. A tale scopo, ricordiamo che, poiché
C,G ∈ R, dalla (4.5.1) segue

v⃗C = v⃗G + ω⃗ × (C −G) .

Quindi, in base al vincolo d’appoggio (4.10.4)

v⃗G = ẋGE⃗1 + ẏGE⃗2 + a cos θ θ̇E⃗3 ,

grazie alla (4.4.16)

(4.10.5) ω⃗ = (θ̇ cosϕ+ ψ̇ sinϕ sin θ)E⃗1 + (θ̇ sinϕ− ψ̇ sin θ cosϕ)E⃗2 + (ϕ̇+ ψ̇ cos θ)E⃗3 ,

C −G = −a m⃗(t)
(4.10.2)
= −a

(

− sinϕ cos θE⃗1 + cosϕ cos θE⃗2 + sin θE⃗3

)

e

ω⃗ × (C −G) =

∣

∣

∣

∣

∣

∣

E⃗1 E⃗2 E⃗3

θ̇ cosϕ+ ψ̇ sinϕ sin θ θ̇ sinϕ− ψ̇ sin θ cosϕ ϕ̇+ ψ̇ cos θ
a sinϕ cos θ −a cosϕ cos θ −a sin θ

∣

∣

∣

∣

∣

∣

.
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Dunque, si trova

v⃗C =

(

ẋG + a
(

(cos θ ϕ̇+ ψ̇) cosϕ− sinϕ sin θ θ̇
)

)

E⃗1+

+

(

ẏG + a
(

(cos θ ϕ̇+ ψ̇) sinϕ+ cosϕ sin θ θ̇
)

)

E⃗2 .

(4.10.6)

Calcoliamo, ora, la velocità del polo mobile C̄. Il suo vettore posizione è dato da

C̄ −O =(C̄ −G) + (G−O) = −a m⃗(t) + (xGE⃗1 + yGE⃗2 + a sin θE⃗3)

(4.10.2)
=

(

− a(− sinϕ cos θ) + xG

)

E⃗1 +
(

− a cosϕ cos θ + yG
)

E⃗2

(4.10.7)

Dunque, la sua velocità è data da
(4.10.8)
v⃗C̄ =

(

− a(− cosϕ cos θ ϕ̇+ sinϕ sin θ θ̇) + ẋG

)

E⃗1 +
(

− a(− sinϕ cos θ ϕ̇− cosϕ sin θ θ̇) + ẏG
)

E⃗2 .

Confrontando la (4.10.6) con la (4.10.8), possiamo concludere che, introducendo le coordinate di C̄

(4.10.9) xC̄ = xG + a sinϕ cos θ , yC̄ = yG − a cosϕ cos θ ,

la relazione tra le velocità di C e di C̄ si può scrivere

(4.10.10) v⃗C = (ẋC̄ + aψ̇ cosϕ)E⃗1 + (ẏC̄ + aψ̇ sinϕ)E⃗2 = v⃗C̄ + a ψ̇ n⃗(t)

Vista la semplicità della (4.10.10) rispetto alla (4.10.6), conveniamo, da ora in poi, di sostituire
le coordinate di G con quelle di C̄ e di utilizzare quindi, come coordinate libere del modello le 5
coordinate (xC̄ , yC̄ ,ϕ, θ,ψ) al posto di quelle originarie.

N.B. Osserviamo che la (4.10.10) si può ricavare più semplicemente, applicando il Teorema di
Galileo 4.6.1 alla terna fissa e alla terna stereonodale. Infatti, con ovvie notazioni, vale

(4.10.11) v⃗C = v⃗(ass)C = v⃗(rel)C + v⃗(tr)C = ψ̇k⃗(t)× (C −G) + v⃗C̄ = a ψ̇ n⃗+ v⃗C̄

poiché il moto del disco relativamente alla terna stereonodale è rotatorio intorno all’asse (G, k⃗(t)),
e la velocità di trascinamento di C coincide con la velocità dell’origine C̄ della terna stereonodale.

N.B. Si osservi che la (4.10.10) non dipende dall’angolo di nutazione θ. Quindi, coincide con
la velocità di C calcolata nella particolare configurazione in cui θ = π/2. In tale configurazione il
calcolo è semplificato dal fatto che C e C̄ coincidono con il piede della proiezione ortogonale di G
sul piano. Per esercizio, rifare il calcolo di v⃗C in questa maniera.

4.10.1 Puro rotolamento

Ora aggiungiamo il vincolo di puro rotolamento richiedendo che il disco rotoli senza strisciare sul
piano di vincolo. Ciò impone che le velocità dei punti di contatto del rigido e del piano siano uguali

v⃗C = v⃗C′ .

Se, in più, supponiamo che il piano di vincolo sia fermo rispetto alla terna Σ, allora v⃗C = 0⃗ e, per
la (4.10.10), segue che

(4.10.12) v⃗C̄ = −a ψ̇ n⃗(t)
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o che, equivalentemente, devono essere soddisfatti i due vincoli di mobilità

ẋC̄ + a cosϕ ψ̇ = 0(4.10.13)
ẏC̄ + a sinϕ ψ̇ = 0 ,(4.10.14)

Studiamo in dettaglio i suddetti vincoli di mobilità e dimostriamo che non sono integrabili, cioè
non derivano da vincoli olonomi. A tale scopo, presentiamo una condizione necessaria e sufficiente
per la (locale) integrabilità di una classe rilevante di vincoli di mobilità, nella seguente

Proposizione 4.10.1. Consideriamo un modello meccanico olonomo con l gradi di libertà e coor-
dinate libere (q1, . . . , ql). Supponiamo che sia soggetto a un vincolo addizionale di mobilità regolare
g(q, q̇, t) = 0, affine nelle velocità generalizzate

(4.10.15) g(q, q̇, t) =
l

∑

i=1

ai(q, t)q̇i + b(q, t) ,

dove q := (q1, . . . , ql) e q̇ := (q̇1, . . . , q̇l). Allora, esso è localmente integrabile se e solo se in ogni
intorno dello spazio delle configurazioni CV sono soddisfatte le condizioni di compatibilità

(4.10.16)
∂aj
∂qk

=
∂ak
∂qj

,
∂aj
∂t

=
∂b

∂qj
j, k = 1, . . . , l .

In particolare, se tutte le funzioni ai sono indipendenti dal tempo deve risultare b = 0.

Dimostrazione. Dimostriamo la necessità delle suddette condizioni. Supponiamo che esista un
vincolo olonomo e bilatero

f(q, t) = 0

tale che

(4.10.17) g(q, q̇, t) =
d

dt
f(q, t) =

l
∑

i

∂f

∂qi
q̇i +

∂f

∂t

Confrontando tale equazione con la (4.10.15), devono valere

aj(q, t) =
∂f

∂qj
, b(q, t) =

∂f

∂t
.

Dal Lemma di Schwarz, segue che

(4.10.18)
∂2f

∂qj∂qk
=

∂2f

∂qk∂qj
,

∂2f

∂qj∂t
=

∂2f

∂t∂qj
j, k = 1, . . . , l

e quindi le (4.10.16). Si può dimostrare (ma non lo facciamo qui) che tali condizioni sono anche
sufficienti a garantire la locale integrabilità. Non affrontiamo qui il problema dell’integrabilità
globale.
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Le condizioni (4.10.18) possono essere espresse in forma più compatta nel modo seguente. Infatti,
se consideriamo la matrice jacobiana J(a) dei coefficienti aj(q, t) e il vettore derivato (parzialmente)
rispetto al tempo degli stessi coefficienti, possiamo concludere che il vincolo (4.10.15) è integrabile
se e solo se

J(a) =

[

∂ai
∂qj

]

è simmetrica et

⎡

⎢

⎣

∂a1

∂t
...
∂al

∂t

⎤

⎥

⎦

=

⎡

⎢

⎣

∂b
∂q1
...
∂b
∂ql

⎤

⎥

⎦

.

Tornando al vincolo (4.10.13), verifichiamo se le (4.10.16) sono soddisfatte. Considerato che le
coordinate libere sono q = (xC̄ , yC̄ ,ϕ, θ,ψ), risulta

a1 = 1 , a2 = 0, a3 = 0, a4 = 0, a5 = a cosϕ, b = 0

Dunque,
∂a5
∂q3

= −a sinϕ ≠
∂a3
∂q5

= 0

quindi il primo vincolo non è integrabile. Analogamente, succede per il vincolo (4.10.14).

Esercizio 4.10.1. Verificare che anche il vincolo (4.10.14) non è integrabile.

Esercizio 4.10.2. Verificare che, nel caso del vincolo (4.8.15), le (4.10.16) sono soddisfatte.

Esercizio 4.10.3. Classificare il campo di velocità del disco in puro rotolamento su di un piano.

4.11 Approfondimento 2: angoli nautici di Blagoveščenskij

Per completezza, illustriamo un’altra terna di coordinate libere per il corpo rigido con un punto
fisso O, gli angoli nautici, di uso comune nella navigazione navale e aerea. A tale scopo, osserviamo
che la scelta degli angoli di Eulero si può generalizzare al seguente metodo:

• scelta di due assi fondamentali concorrenti in O, un asse fisso e uno solidale, e scelta dei piani
a loro ortogonali, detti piani fondamentali;

• versore dei nodi n⃗ come prodotto vettoriale normalizzato del versore fondamentale fisso per
il versore fondamentale solidale;

• scelta di due assi di riferimento concorrenti in O nei due piani fondamentali, quindi un asse
di riferimento fisso e uno solidale.

Allora, gli angoli sono:

• angolo di rotazione intorno all’asse fondamentale fisso, misurato tra l’asse di riferimento fisso
e il versore dei nodi n⃗;

• angolo di rotazione intorno al versore dei nodi, misurato tra l’asse fondamentale fisso e l’asse
fondamentale solidale (angolo che, a volte, viene sostituito dall’opposto del suo complementare
a π

2 );

• angolo di rotazione intorno all’asse fondamentale solidale, misurato tra il versore dei nodi e
l’asse di riferimento solidale.
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Nel caso degli angoli di Eulero, l’asse fondamentale fisso e quello solidale sono, rispettivamente, E⃗3

ed e⃗3(t); il piano fondamentale fisso e quello solidale sono il piano dell’eclittica e quello equatoriale.
Gli assi di riferimento sono E⃗1 e e⃗1(t). Nel caso degli angoli nautici, di solito si sceglie come origine
della terna solidale alla nave il suo baricentro G, che si suppone appartenga al piano longitudinale
di simmetria della nave (piano diametrale), come asse fondamentale fisso l’asse verticale (G; e⃗z)
diretto verso il basso, come asse fondamentale solidale l’asse longitudinale della nave (G; ı⃗) orientato
positivamente da poppa a prua. Inoltre, si sceglie come asse di riferimento fisso un asse orizzontale
arbitrario (G; e⃗y) e come asse di riferimento solidale l’asse trasversale alla nave (G; ȷ⃗), orientato
positivamente da sinistra a dritta. Di conseguenza gli angoli nautici sono definiti come:

• angolo di imbardata o di rotta ψ: è l’angolo di rotazione intorno all’asse verticale discendente
(G, e⃗z), misurato fra

(

e⃗y, n⃗(t)
)

, che risulta positivo per accostata a destra;

• angolo di beccheggio θ: è l’angolo di rotazione intorno all’asse dei nodi, misurato tra la super-
ficie dell’acqua tranquilla e l’asse longitudinale nave, risulta positivo per un appoppamento
della nave. Si noti che θ+ π

2 è l’angolo tra il versore fondamentale fisso e quello fondamentale
mobile;

• angolo di rollio ϕ o di sbandamento: è l’angolo di rotazione intorno all’asse fondamentale
mobile ı⃗(t), misurato fra

(

n⃗(t), j⃗(t)
)

, positivo con sbandamento sulla murata destra.

Per ulteriori dettagli, si veda [R. Nabergoj, Fondamenti di Tenuta della Nave al Mare, Appendice
B].
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Eulero Nautici [Blagoveščenskij]

Basi Fissa
(

E⃗1, E⃗2, E⃗3

)

: arbitraria
(

e⃗x, e⃗y, e⃗z
)

: adattata

Solidale
(

e⃗1(t), e⃗2(t), e⃗3(t)
)

:
arbitraria

(

ı⃗(t), ȷ⃗(t), k⃗(t)
)

: adattata

Assi fondamentali Fisso E⃗3 e⃗z: verticale discendente
Solidale e⃗3(t) ı⃗(t): longitudinale nave da

poppa a prua

Piani fondamentali Fisso
(

O; E⃗1, E⃗2

)

: eclittica
(

G; e⃗x, e⃗y
)

: orizzontale
parallelo alla superficie
dell’acqua tranquilla)

Solidale
(

O; e⃗1(t), e⃗2(t)
)

: equato-
riale

(

G; ȷ⃗(t), k⃗(t)
)

: trasversale
nave al mezzo

Linea del nodi Versore n⃗(t) E⃗3×e⃗3(t)

|E⃗3×e⃗3(t)|

e⃗z×⃗ı(t)
|e⃗z×⃗ı(t)|

Assi di riferimento Fisso E⃗1 e⃗y: orizzontale arbitrario
Solidale e⃗1(t) ȷ⃗(t): asse trasversale nave

da sinistra a dritta

Angoli
Rotazione intorno
all’asse fondamen-
tale fisso

ϕ: precessione, fra
(

E⃗1, n⃗(t)
)

ψ: imbardata o rotta fra
(

e⃗y, n⃗(t)
)

Rotazione intorno
a n⃗(t)

θ: nutazione, fra
(

E⃗3, e⃗3(t)
)

θ: beccheggio, fra la su-
perficie dell’acqua tran-
quilla e ı⃗(t)

Rotazione intorno
all’asse fondamen-
tale mobile

ψ: rotazione propria, fra
(

n⃗(t), e⃗1(t)
)

ϕ: rollio fra
(

n⃗(t), j⃗(t)
)
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4.12 Soluzione degli esercizi

Esercizio 4.2.2

Innanzitutto, osserviamo che a causa del vincolo di rigidità, tutti punti dell’asse r del moto elicoidale
Φ(t) (ad un istante fissato) subiscono lo stesso spostamento parallelo all’asse

s⃗(t, O0) = O(t) −O0 = O′(t)−O′
0 = s⃗(t) ∀ O0, O

′
0 ∈ r

Ora scegliamo come centro di riduzione proprio un punto O(t) sull’asse del moto e poniamo

O0 = Φ−1
t (O) , s⃗(t, O0) = O(t)−O0 = s⃗(t) .

Consideriamo il moto traslatorio

(4.12.1) τs⃗(t, P0) = P0 + s⃗(t) ∀P0 ∈ B0

e il moto
ρ = Φ ◦ τ−1

s⃗ = Φ ◦ τ−s⃗

Mostriamo che il punto O(t) è un un punto fisso per ρt. Infatti,

ρ(O(t)) = Φ ◦ τ−1
s⃗ (O(t)) = Φ

(

O(t)− s⃗(t)
)

= Φ(t, O0) = O(t) .

Questo discorso si può ripetere per qualunque altro punto O′(t) ∈ r ottenendo che

ρ′ = Φ ◦ τ−1
s⃗′ = Φ ◦ τ−s⃗ = ρ

Quindi, tutti i punti dell’asse r sono fissi per lo stesso ρ che, quindi, risulta un moto rotatorio
intorno ad r.

Esercizio 4.6.3

θ

S

P

A
B

CD

H

2 a

a S

e⃗y

e⃗z

e⃗x

e⃗ϕ

e⃗ρ

E
ϕ

H
P

D ≡ O

C

B

A

4a

θ

e⃗z
e⃗r

e⃗ρ

e⃗θ

Per iniziare, consideriamo le due terne:

Σ = (O; e⃗x, e⃗y, e⃗z)
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Σ′ = (O; e⃗ρ, e⃗ϕ, e⃗z)

e le legge di trasformazione fra di esse
⎧

⎪

⎨

⎪

⎩

e⃗ρ = cosϕ e⃗x + sinϕ e⃗y
e⃗ϕ = − sinϕ e⃗x + cosϕ e⃗y
e⃗z = e⃗z

Applichiamo al modello il Teorema di Galileo, considerando la terna Σ come fissa e Σ′ come
intermedia. Allora,

v⃗(ass)P = v⃗(rel)P + v⃗(tr)P

Calcoliamo v⃗(rel)P , cioè la velocità di P relativa a Σ′. Il moto di P rispetto a Σ′ è un moto lungo
l’arco circolare AB sul piano del telaio e di centro H . Quindi, la sua velocità sarà tangente all’arco
AB e proporzionale al prodotto del raggio per θ̇. Allora, per esprimerla in forma semplice, conviene
introdurre una terna ortonormale adattata al punto P ,

Σ′′ = (e⃗r, e⃗θ, e⃗ϕ)

legata a Σ′ dalla legge di trasformazione
⎧

⎪

⎨

⎪

⎩

e⃗r = sin θ e⃗ρ + cos θ e⃗z
e⃗θ = cos θ e⃗ρ − sin θ e⃗z
e⃗ϕ = e⃗ϕ

Su tale terna, la velocità relativa di P è

v⃗(rel)P = a θ̇ e⃗θ = a θ̇(cos θ e⃗ρ − sin θ e⃗z) .

Calcoliamo la velocità di trascinamento di P , cioè la velocità di P immaginato solidale al telaio

v⃗(tr)P =✚✚⃗vA + ω⃗ × (P −A) ,

dove ω è la velocità angolare della terna Σ′ e quindi del telaio, che compie un moto rotatorio attorno
all’asse fisso (O, e⃗z). Quindi,

ω = ϕ̇e⃗z

e
P −A = (P −H) + (H −A) = ae⃗r + ae⃗ρ .

Dunque,
v⃗(tr)P = ϕ̇e⃗z × a(e⃗r + e⃗ρ) = aϕ̇(e⃗z × e⃗r + e⃗z × e⃗ρ) = aϕ̇(sin θ + 1)e⃗ϕ .

Allora,

v⃗(ass)P = a[θ̇ e⃗θ + ϕ̇(sin θ + 1)e⃗ϕ] = a[θ̇(cos θe⃗ρ − sin θe⃗z) + ϕ̇(sin θ + 1)e⃗ϕ]

= a[θ̇ cos θ cosϕ− ϕ̇(1 + sin θ) sinϕ]e⃗x + a[θ̇ cos θ sinϕ+ ϕ̇(1 + sin θ) cosϕ]e⃗y − aθ̇ sin θe⃗z .

Ora, applichiamo al modello il Teorema di Coriolis per calcolare l’accelerazione di P . Sappiamo che

a⃗(ass)P = a⃗(rel)P + a⃗(tr)P + a⃗(Cor)
P .
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Allora,

a⃗(rel)P = ˙⃗v(rel)P = aθ̈e⃗θ + aθ̇ ˙⃗eθ

= a(θ̈e⃗θ − θ̇2e⃗r) = aθ̈(cos θe⃗ρ − sin θe⃗z)− aθ̇2(sin θe⃗ρ + cos θe⃗z)

= a[(θ̈ cos θ − θ̇2 sin θ)e⃗ρ − (θ̈ sin θ + θ̇2 cos θ)e⃗z] ,

a⃗(tr)P = ✚✚⃗aA + ˙⃗ω × (P −A)− |ω⃗|2(P −A)⊥

= ϕ̈e⃗z × a(e⃗r + e⃗ρ)− ϕ̇2a(sin θ + 1)e⃗ρ

= aϕ̈(sin θ + 1)e⃗ϕ − ϕ̇2a(sin θ + 1)e⃗ρ

e
a⃗(Cor)
P = 2 ω⃗ × v⃗(rel)P = 2ϕ̇e⃗z × a θ̇ e⃗θ = 2aϕ̇θ̇ sin(

π

2
+ θ)e⃗ϕ = 2aϕ̇θ̇ cos θe⃗ϕ .

Dunque,

a⃗(ass)P = a[(θ̈ cos θ− θ̇2 sin θ)− ϕ̇2(1+sin θ)]e⃗ρ+a[ϕ̈(sin θ+1)+2ϕ̇θ̇ cos θ]e⃗ϕ−a(θ̈ sin θ+ θ̇2 cos θ)e⃗z .

Esercizio 4.8.1

O ≡ A

B

C

G

Il sistema meccanicoè costituito da 2 corpi rigidi vincolati fra loro tramite un vincolo di puro
rotolamento.

Calcoliamo i gradi di libertá del modello con il metodo del bilancio. I gradi di libertà per 2 rigidi
liberi nel piano sono g = 3 + 3 = 6. I gradi di vincolo sono pari a 2 per la cerniera cilindrica fissa
più altri 2 per il vincolo di puro rotolamento. Allora v = 4 = r è il grado di vincolo sia apparente,
sia effettivo (dimostrarlo per esercizio). Quindi, l = g − r = 2. Dopo aver studiato il metodo dei
congelamenti successivi nel Cap. 5, si può verificare il risultato con tale metodo.

Scegliamo 2 coordinate libere per il sistema dei 2 corpi rigidi, per esempio le coordinate polari
(ρ,ϕ) del polo mobile C̄ che corre lungo l’asta, con 0 ≤ ϕ < 2π e 0 ≤ ρ ≤ L. È chiaro che
ϕ individua univocamente la configurazione dell’asta, mentre ρ quella del disco. Ora dobbiamo
calcolare i vettori posizione e le velocità dei punti C̄, G e la velocità angolari dei 2 rigidi in funzione
delle 2 coordinate libere (ρ,ϕ). Considerando una terna adattata al problema, cioè (O; e⃗ρ, e⃗ϕ, k⃗),
abbiamo

C̄ −O = ρe⃗ρ , G−O = (G− C̄) + (C̄ −O) = Re⃗ϕ + ρe⃗ρ

Derivando rispetto al tempo, otteniamo le velocità:

(4.12.2) v⃗C̄ = ρ̇e⃗ρ + ρ ˙⃗eρ = ρ̇e⃗ρ + ρϕ̇e⃗ϕ , v⃗G = R ˙⃗eϕ + ρ̇e⃗ρ + ρϕ̇e⃗ϕ = (ρ̇−Rϕ̇)e⃗ρ + ρϕ̇e⃗ϕ .
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Per calcolare la velocità angolare del disco, ricorriamo alla cinematica relativa, considerando una
terna fissa (O,Σ0), una terna intermedia solidale all’asta (O,Σ′) = (O; e⃗ρ, e⃗ϕ, k⃗) e una terna solidale
al disco (G;Σ(t) = (G; ı⃗, ȷ⃗, k⃗). Per il Teorema di Frisi,

ω⃗(disco,ass) = ω⃗(disco,rel) + ω⃗(tr) .

Introducendo come coordinata sovrabbondante l’angolo di rotazione del disco θ rispetto alla terna
(O,Σ′), si può scrivere ω⃗(disco,rel) = θ̇k⃗. D’altra parte, per il vincolo di puro rotolamento risulta

0⃗ = v⃗(rel)C′ = v⃗(rel)C = (ρ̇+Rθ̇)e⃗ρ

Dunque, si ottiene ω⃗(disco,rel) = − ρ̇
R k⃗ , quindi

ω⃗(disco,ass) = −
ρ̇

R
k⃗ + ϕ̇k⃗ = (ϕ̇−

ρ̇

R
)k⃗ .

Si osservi, che la velocità del punto di contatto del disco con l’asta è

v⃗C = v⃗C′ = ω⃗(asta) × (C −O) = ϕ̇k⃗ × ρe⃗ρ = ρϕ̇e⃗ϕ ,

diversa da v⃗C̄ . Naturalmente, anche le formule (4.12.2) si possono ricavare tramite la cinematica
relativa. Lo si verifichi per esercizio e si calcolino anche le accelerazioni dei punti C, C̄ e G.

Esercizio 4.8.2

Si veda la correzione del tema d’esame del 20/01/2020: https://moodle2.units.it/mod/folder/view.php?id=260444
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