FISICA NUCLEARE (3)

- Calcolo della Neutron drip line
- La misura e la sezione d'urto di Rutherford
- Struttura dei nuclei e modelli nucleari: modello a gas di Fermi

Neutron drip line

Fissato Z, crescita N porta a **isotopi instabili** (n in livelli sempre meno legati _ princ. esclusione) Massimo # n che per dato $Z \Rightarrow$ **isotopi stabili**: **neutron drip line** \Rightarrow nuclidi per i quali nulla energia S_n di separazione d'un n

$$S_n = -[M(A, Z) - M(A - 1, Z) - m_n]c^2 =$$

= -[Zm_p + Nm_n - B(A, Z) - Zm_p - (N - 1)m_n + B(A - 1, Z) - m_n]c² =
= B(A, Z) - B(A - 1, Z)

 $B(A,Z) \sim$ funz. continua di $A \in Z \Rightarrow$ sviluppo Taylor fino 1° termine

 $B(A + \delta A, Z + \delta Z) \approx B(A, Z) + [\partial B/\partial A]\delta A + [\partial B/\partial Z]\delta Z + \dots$ ed essendo $\delta A = -1$, $\delta Z = 0$.

 $B(A + \delta A, Z + \delta Z) \approx B(A, Z) - [\partial B / \partial A]$

da cui

$$S_n \approx B(A, Z) - B(A + \delta A, Z + \delta Z) \approx B(A, Z) - B(A - 1, Z) \approx \partial B / \partial A$$

d'un *n*

Da Weizsäcker, trascurando accoppiamento e con $Z \simeq (Z-1)$

$$B(A,Z) = b_V A + b_S A^{2/3} + b_C \frac{Z^2}{A^{1/3}} + b_{sim} \frac{(A-2Z)^2}{A}$$
$$\partial B/\partial A \simeq \frac{S_n}{S_n} = b_V + \frac{2}{3} b_S A^{-1/3} - \frac{1}{3} b_C Z^2 A^{-4/3} + b_{sim} \left[1 - \frac{4Z^2}{A^2}\right]$$

Derivando $\frac{\partial}{\partial A}$:

Condizione per "drip line":
$$S_n = 0$$

 $b_V + b_{sim} - \frac{2}{3}b_S A^{-1/3} = Z^2 \left(\frac{1}{3}b_C A^{-4/3} + \frac{4b_{sim}}{A^2}\right)$
da cui
 $Z_{n_dline} = \sqrt{\frac{b_V + b_{sim} - \frac{2}{3}b_S A^{-1/3}}{\frac{b_C}{3}A^{-4/3} + 4\frac{b_{sim}}{A^2}}}$

Similmente si può dedurre anche una "proton drip line"

La misura di Rutherford, Geiger e Mardsen

Pot. coulombiano bersaglio $V = Z_2 e/(4\pi\epsilon_0 r)$. Particella incide con velocità v su traiettoria // asse z e distante b da esso (b parametro d'urto)

• Classicamente determinare angolo $\frac{\partial(b)}{\partial(b)}$; si procede trovando $\frac{b(\partial)}{b(d)}$

V pot. centrale-kepleriano. En. totale: $E_T = E_k + E_P$. Traiettoria: ellisse $E_T < 0$, iperbole $E_T > 0$, $E_T \equiv E_k = mv^2/2 > 0$ ⇒ iperbole

• Conservazione mom. ang. ed energia \Rightarrow all' ∞ questi valgono mvb ed $mv^2/2$; in A (max. avvicinamento) valgono $mv_A l$ e $[mv_A^2/2 + Z_1Z_2e^2/(4\pi\epsilon_0 l)]$ Quindi: $b = \frac{lv_A}{v}$, $v^2 = v_A^2 + \frac{2Z_1Z_2e^2}{4\pi\epsilon_0 ml}$ Si pone: $l_0 = \frac{2Z_1Z_2e^2}{4\pi\epsilon_0 mv^2} = \frac{Z_1Z_2e^2}{4\pi\epsilon_0 E_k}$ che fissata $E_k = mv^2/2$, coincide col punto A^* di max. avvicinamento per un urto centrale (b = 0) $\Rightarrow v_{A^*} = 0$ Quindi: $v^2 = v_A^2 + v^2 \frac{l_0}{l}$ In urto centrale elastico particella carica $Z_1 e$ avvicina il nucleo lungo z fino a distanza minima l_0 , corrispondente ad A^* , poi inverte il moto diffusa ad angolo π . Da quanto ottenuto segue

$$v_A^2 = \frac{b^2}{l^2}v^2 \quad , \quad v_A^2 = v^2\left(1 - \frac{l_0}{l}\right) \quad , \quad b^2 = l^2\left(1 - \frac{l_0}{l}\right)$$

ma dalle proprietà dell'iperbole $l = b \cot g \frac{\varphi}{2}$
che sostituito nella terza $\cot g^2 \frac{\varphi}{2} - \frac{l_0}{b} \cot g \frac{\varphi}{2} - 1 = 0$ da cui $l_0 = 2 \ b \ \cot g \varphi$
Dalla figura si ha $\vartheta + 2\varphi = \pi$, da cui: $\cot g \varphi = tg \frac{\vartheta}{2}$;
e infine quanto cercato $b(\vartheta) = \frac{Z_1 Z_2 e^2}{8\pi\epsilon_0 E_k} \cot g \frac{\vartheta}{2}$
Rutherford voleva prevedere quante α diffondono a un certo angolo, sapendo quante incidevano sul bersaglio

6

 Z_2e

 n_0 partic. attraversano, a dist. ∞ dal bersaglio, unità sup. del piano (x,y) nell'unità di tempo, \Rightarrow \Rightarrow dN = $2\pi n_0 b db$ partic. attraversano anello circolare fra b e b+db. Se particelle si conservano, cerchiamo diffuse fra ϑ e $\vartheta + d\vartheta$ $\left| \left| \mathrm{d}b\left(\vartheta\right) \right| = \left| \frac{Z_1 Z_2 e^2}{8\pi\epsilon_0 E_k} \,\mathrm{d}\left(\mathrm{cotg}\frac{\vartheta}{2} \right) \right| = \frac{Z_1 Z_2 e^2}{8\pi\epsilon_0 E_k} \,\frac{\mathrm{d}\vartheta}{2\,\mathrm{sen}^2\vartheta/2}$ YR dϑ Sostituendo in d*N*: $\mathrm{d}N\left(\vartheta\right) = 2\pi \ n_0 \left(\frac{Z_1 Z_2 e^2}{8\pi\epsilon_0 \ E_{\rm h}}\right)^2 \frac{\mathrm{cotg}\vartheta/2}{2 \ \mathrm{sen}^2\vartheta/2} \ \mathrm{d}\vartheta$ dθ R sen_{ϑ} b + dbda cui: \boldsymbol{z} Bersaglio $\frac{\mathrm{d}N\left(\vartheta\right)/n_{0}}{\mathrm{d}\Omega\left(\vartheta\right)} = \frac{\mathrm{d}\sigma\left(\vartheta\right)}{\mathrm{d}\Omega} = \left(\frac{Z_{1}Z_{2}e^{2}}{8\pi\epsilon_{0} E_{k}}\right)^{2} \frac{\mathrm{cotg}\vartheta/2}{2\,\mathrm{sen}\vartheta\,\mathrm{sen}^{2}\vartheta/2} =$ $2\pi b db$ $= \left(\frac{Z_1 Z_2 e^2}{8\pi\epsilon_0 E_k}\right)^2 \frac{\cos\vartheta/2}{2\,\sin^3\vartheta/2\cdot 2\,\sin\vartheta/2\,\cos\vartheta/2} =$ $2\pi R^2 sen \vartheta d\vartheta$ **Sezione d'urto di Rutherford** $\rightarrow = \left(\frac{Z_1 Z_2 e^2}{16\pi\epsilon_0 E_k}\right)^2 \frac{1}{\mathrm{sen}^4 \vartheta/2}$

Se carica uniform. distrib. in sfera di raggio r_0 , al crescere di E_k tutto dovrebbe andare come Rutherford, finchè $b > r_0$

$$r_0 = rac{Z_1 Z_2 e^2}{8\pi\epsilon_0 \ E_k} \ \mathrm{cotg} rac{artheta_0}{2}$$

Ma crescendo $\frac{E_k}{E_k} \Rightarrow$ effetti da dimensioni del nucleo: sez. d'urto devia da quella puramente coulombiana

Crescendo $E_k \alpha$ si avvicinano al nucleo e sentono effetti dell'interazione nucleare, oltre a quelli coulombiani

La sezione d'urto di Rutherford spiega risultati sperimentali!

Dipendenza del rateo di diffusione dal quadrato del numero atomico Z_2 del bersaglio. Andamento conferma previsioni della formula di Rutherford

Spessore bersaglio

Dipendenza da spessore del bersaglio del rateo di diffusione. Andamento lineare suffraga ipotesi del modello atomico di Rutherford (no oscuramento significativo \Rightarrow nucleo molto più piccolo dell'atomo, prevalentemente singolo urto ...)

La sezione d'urto di Rutherford spiega risultati sperimentali!

Dipendenza rateo diffusione dall'energia cinetica per particelle α incidenti su un bersaglio sottile. Andamento conferma previsioni della formula di Rutherford Dipendenza da ϑ del rateo di diffusione per sottile bersaglio d'oro. Andamento conferma previsioni della formula di Rutherford

Modelli

Modello Standard dovrebbe descrivere anche struttura e fenomenologia dei nuclei, ma :

- limitati approcci matematico-computazionali per risolvere QCD su sistemi a bassa energia, come nuclei.
 Transizione fase fra materia Q-G ad alta energia e adronica a più bassa energia, rende inutilizzabili approcci perturbativi
- forza nucleare a corto raggio, ma serve enorme potenza di calcolo per riprodurre accuratamente caratteristiche nucleo con approccio ab initio

Modelli storici relativamente grezzi e approssimati ma spesso unico approccio per risultati quantitativi

Modello a gas di Fermi

Nucleo in stato fondamentale o leggermente eccitato ⇒ gas di Fermi degenere

Nucleoni: due sistemi indipendenti di particelle a spin 1/2 che ubbidiscono <mark>statistica Fermi-Dirac</mark>, e per principio d'esclusione si muovono <mark>~ liberi</mark> nel volume del nucleo con <mark>impulso medio ~ $250~{
m MeV/c}$ </mark>

• Energia del livello occupato superiore: $E_F = p_F^2 / 2M \simeq \frac{33}{2}$ MeV

m B'= (max. valore buca) – (livello Fermi) , \sim cost. per gran parte dei nuclei e $\simeq |B/A|$ = 7 $\div 8~{
m MeV}$

Profondità buca ed energia Fermi \sim indip. da A \Rightarrow al crescere di A livelli meno spaziati e più densi

Es. ²⁰⁸Pb: B/A \simeq 7.67 MeV; **buca** $n \simeq -44$ MeV; **buca** $p \simeq -34$ MeV

Mod. gas Fermi prevede dipendenza |B/A | da eccesso N

En. cinetica media per nucleone è

$$\langle E_k \rangle = \frac{\int_0^{p_{\rm F}} E_k p^2 {\rm d}p}{\int_0^{p_{\rm F}} p^2 {\rm d}p} = \frac{3}{5} \frac{p_{\rm F}^2}{2M} \simeq 20 \text{ MeV}$$

- Contrib. cinetico tot. energia del nucleo $E_k\left(N,Z
ight) = N\langle E_n
angle + Z\langle E_p
angle = rac{3}{10M} \left[N\left(p_{
m F}^{
m n}
ight)^2 + Z\left(p_{
m F}^{
m p}
ight)^2\right]$

- Con nucleo sferico e raggi
$$n e p$$
 uguali $E_k(N,Z) = \frac{3}{10M} \frac{\hbar^2}{R_0^2} \left(\frac{9\pi}{4}\right)^{2/3} \frac{N^{5/3} + Z^{5/3}}{A^{5/3}}$

Minimo per $Z = N \Rightarrow$ energia di legame si riduce per $N \neq Z$

► Mod. gas Fermi ⇒ termini formula Weizsaker

Sviluppando in potenze di
$$(N-Z)$$
: $E_k(N,Z) = \frac{3}{10M} \frac{\hbar^2}{R_0^2} \left(\frac{9\pi}{8}\right)^{2/3} \left[A + \frac{5}{9} \frac{(N-Z)^2}{A} + ...\right]$

10 termine \sim termine di volume ; **20 termine** \sim eccesso *n*

Modello evidenzia valori alti delle velocità dei nucleoni nei nuclei, confermato da risultati sperimentali:

soglia produzione π per urto di p + nucleo cala al crescere di A, poiché nucleoni del bersaglio possono avere velocità non trascurabili ($v/c \simeq 1/4$)

Modello a Gas di Fermi spiega quindi molti risultati sperimentali e ha permesso anche alcune predizioni ...