Introduction to Artificial Intelligence

Informed Search

Instructor: Laura Nenzi

University of Trieste, Italy

[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

" Informed Search
= Heuristics
" Greedy Search
= A* Search

Recap: Search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

The One Queue

All these search algorithms are the

same except for fringe strategies L@ 0\1‘1 *@#@L\lﬂlﬂ

Conceptually, all fringes are priority
gueues (i.e. collections of nodes with

attached priorities)

Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

Can even code one implementation
that takes a variable queuing object

Search and Models

Search operates over models of
the world

The agent doesn’t actually try all
the plans out in the real world!

Planning is all “in simulation”

Your search is only as good as
your models...

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

—

— 4

I

N
‘
W

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

A (-
Action: flip top two A{ Path to reach goal:
Cost: 2 Flip four, flip three

/ l Total cost: 7
>

Uninformed Search

Uniform Cost Search

= Strategy: expand lowest path cost

" The good: UCS is complete and optimall!

" The bad:

= Explores options in every “direction”
®= No information about goal location

Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

= An heuristic function h(n):
= Estimates how close a state n is to a goal
= Designed for a particular search problem
= Examples: Manhattan distance, Euclidean distance for pathing

>
Heuristi—Tron J

Example: Heuristic Function

Straight—line distance \

to Bucharest
Arad 366
Bucharest 0
75 Craiova 160
Dobreta 242
Arad Eforie 161
Fagaras 178
Giurgiu 77
138] Vaslui Hirsova 151
lasi 226
Timisoara Lugoj 244
142 Mehadia 241
11 Pitesti Neamt 234
Oradea 380
98 . Pitesti 98

Hirsova . . e
F] Mehadia Urziceni Rimnicu Vilcea 193
Bucharest Timisoara 329
Dobreta [] 90 Urziceni 80
=l Craiova Eforia Vaslui 199
] Giurgiu Zerind 374

_ /
h(X)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Greedy Search

= Expand the node that seems closest...
i.e. evaluation function f (n) = h(n)

~ Sibiu /

329 374 Arad 366 Mehadia 241

Bucharest 0 Neamt 234

Craiova 160 Oradea 380

Drobeta 242 Pitesti 100

i Eforie 161 Rimnicu Vilcea 193

‘w Fagaras 176 Sibiu 253
380 93 ° b3 Giurgiu 77 Timisoara 329

‘ ?, Hirsova 151 Urziceni 80

" = g) Tasi 226 Vaslui 199

5 Lugoj 244 Zerind 374

Straight-line distances

[} Mehadia

f,'"._ Arad

Dobreta []

= Craiova Eforie
] Giurgiu

366

Csibiu_DPCucharest

253 0

= What can go wrong?

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

h=o

When should A* terminate?

= Should we stop when we enqueue a goal?

= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

Heuristi = Tron

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h™(n)

where h*(n) isthe true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Consistent Heuristics

" A heuristic h is consistent if, for every node n and every
successor n' of n generated by an action a, we have:

h(n) < c(n,a,n’) + h(n")

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
= Aisan optimal goal node

= Bisasuboptimal goal node
= hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n) = f(4)

Optimality of A* Tree Search: Blocking

1 f(n) = f(4)

= Definition of f-cost says:
f(m) =gn) + h(n) =(path cost to n) + (est. cost of n to A)
f(A) =g(A) + h(A) =(path cost to A) + (est. cost of A to 4

= The admissible heuristic must underestimate the true cost
h(A) = (est.costof AtoA)= 0

= So now, we have to compare:
fm)=gn) + h(n)
f(A) =g(A)

" h(n) must be an underestimate of the true cost fromnto A
gn)+ h(n) < g(4)

f(n) = f(4)

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n) = f(4)
2 f(4) =f(B)

Optimality of A* Tree Search: Blocking

2. f(A) = f(B)
= We know that:
f(4) = g(A) + h(A) = (path cost to A) + (est. costof Ato A) n

f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B —

" The heuristic must underestimate the true cost: % “““““
h(A) =h(B)=0 N

" So now, we have to compare: »
f4) = g(4)
f(B) = g(B)

= We assumed that B is suboptimal! So

g(4) < g(B)
f(A) < f(B)

Optimality of A* Tree Search: Blocking

Proof:

= |magine B is on the fringe

Some ancestor n of Ais on the

fringe, too (maybe Al)

Claim: n will be expanded before B

1. f(n) =f(4)

2. f(A) < f(B)

3. n expands before B
All ancestors of A expan
A expands before B
A* search is optimal

dﬁ f(n) < f(A) < f(B)

|

Properties of A*

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

‘ S | 7 SN
\ »ﬂiv\lm/mum‘«,{?’ /'\.’;r:

MENU

A

l“v‘\\m\u

= Video games

A* Applications

Pathing / routing problems

Qo

Resource planning problems

3

Robot motion planning

K,
o
P
N

Language analysis
< O

7

7 ""lql

\ o=
S
/

(<l e
—~ PTEAL
[IZ{’:EEZB:Wor-kef“Loith-Anaq—{)ar J‘sﬁééwb = _J
\9\ oe O, ()
\ :

e

€ - =] Tm‘;.
CAEMEE IRy
- e

1#[3 gt

i

Crtefens
]o o n
L f)

un

e; false
* N -

0 s

Video of Demo Pacman (Tiny Maze) — UCS / A*

= Pydev - Echpse

File Edit Navigate Search Project Run Window |Help

[3~ D ~9- v ¥ v v v v Sl P‘vu:'L- & Team
'DJ 1 search demo emnply
? e‘ 2 search -« cortaurs greedy vs ucs (greedy d
: & 3 search -- contours greedy vs ucs (ucs c=
@ A4 search -- contours greedy vs ucs (astar)
e‘ 5 search - plan tiny astar
@‘ 6 search -- pﬁas tiny ucs
@ 7 vearch -« grikdy bad
eA 8 search - greedy good
& 9sesrch demo maz
@ search demp costs

Run As »
Run l'nr.!wr'].;r:.'lrrn'.

Organize Favorites

[Console B % kil 2 B v v

<terminated> empty.oe

1

11:53 AM

a8/30/2012

Video of Demo Empty Water Shallow/Deep — Guess Algorithm

= Pydey - [chipsa =
File Edit Nawvigste Search Project Run Window |lelp
= - 5~ 0 Q- - - - - - - T [Pyder | A° Team
1 search -- plan Lny astar [
ol 2 search -~ plan tiny ucs | 8

.
aon

3 search demo empty .
4 search -« contours greedy vs ucs i'_"'ggl,h

S search -« cantours greedy vs ucs (ucs

6 search -- contours greedy vs ucs (astar)
[search < greedy bad

8 search -« greedy good

9 search dems maze

AL L L)

search d\gne costs

4-#

Run As »
Run l‘-wmql.mr.r-r‘.

Organize Favorites

[J) Console B Pl ow) [t @M
<terminated> 1 5

<2%Tal cost: 2 .
Nunbey of nodea expanded: 1872

Nunber of unigue nodes

Facman emerges victorious

' numi 2’ 0 'yosulta® 27], 'scorea’ 573

11:54 AM
&/30/2012

i

