
Introduction to Artificial Intelligence

Informed Search

Instructor: Laura Nenzi

University of Trieste, Italy
[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to AI at UC Berkeley.  All materials available at http://ai.berkeley.edu.]



Today

§ Informed Search
§ Heuristics
§ Greedy Search
§ A* Search



Recap: Search



Recap: Search

§ Search problem:
§ States (configurations of the world)
§ Actions and costs
§ Successor function (world dynamics)
§ Start state and goal test

§ Search tree:
§ Nodes: represent plans for reaching states
§ Plans have costs (sum of action costs)

§ Search algorithm:
§ Systematically builds a search tree
§ Chooses an ordering of the fringe (unexplored nodes)
§ Optimal: finds least-cost plans



The One Queue

All these search algorithms are the 
same except for fringe strategies

Conceptually, all fringes are priority 
queues (i.e. collections of nodes with 
attached priorities)
Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues
Can even code one implementation 
that takes a variable queuing object



Search and Models

Search operates over models of 
the world

The agent doesn’t actually try all 
the plans out in the real world!

Planning is all “in simulation”

Your search is only as good as 
your models…



Example: Pancake Problem

Cost: Number of pancakes flipped



Example: Pancake Problem



Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3
4

3

4

2



General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7



Uninformed Search



Uniform Cost Search

§ Strategy: expand lowest path cost

§ The good: UCS is complete and optimal!

§ The bad:
§ Explores options in every “direction”
§ No information about goal location

Start Goal

…

c £ 3

c £ 2
c £ 1



Video of Demo Contours UCS Empty



Video of Demo Contours UCS Pacman Small Maze



Informed Search



Search Heuristics
§ An heuristic function ℎ(𝑛):

§ Estimates how close a state 𝑛 is to a goal 
§ Designed for a particular search problem
§ Examples: Manhattan distance, Euclidean distance for pathing

10

5
11.2



Example: Heuristic Function

h(x)



Example: Heuristic Function
Heuristic: the number of the largest pancake that is still out of place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)



Greedy Search



Greedy Search

§ Expand the node that seems closest…
i.e. evaluation function 𝑓(𝑛) = ℎ(𝑛)

§ What can go wrong?

Straight-line distances



Greedy Search

§ Strategy: expand a node that you think is 
closest to a goal state
§ Heuristic: estimate of distance to nearest goal for 

each state

§ A common case:
§ Best-first takes you straight to the (wrong) goal

§ Worst-case: like a badly-guided DFS

…
b

…
b



Video of Demo Contours Greedy (Empty)



Video of Demo Contours Greedy (Pacman Small Maze)



A* Search



A* Search

UCS Greedy

A*



Combining UCS and Greedy

§ Uniform-cost orders by path cost, or backward cost  g(n)
§ Greedy orders by goal proximity, or forward cost  h(n)

§ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0 
h=6

g = 1 
h=5

g = 2 
h=6

g = 3 
h=7

g = 4 
h=2

g = 6 
h=0

g = 9 
h=1

g = 10 
h=2

g = 12 
h=0



When should A* terminate?

§ Should we stop when we enqueue a goal?

§ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3



Is A* Optimal?

§ What went wrong?
§ Actual bad goal cost < estimated good goal cost
§ We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7



Admissible Heuristics



Idea: Admissibility

Inadmissible (pessimistic) heuristics break 
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down 
bad plans but never outweigh true costs



Admissible Heuristics

§ A heuristic h is admissible (optimistic) if:

where               is the true cost to a nearest goal

§ Examples:

§ Coming up with admissible heuristics is most of what’s involved 
in using A* in practice.

4
15



Consistent Heuristics

§ A heuristic ℎ is consistent if, for every node 𝑛 and every
successor 𝑛′ of 𝑛 generated by an action 𝑎, we have: 

ℎ(𝑛) ≤ 𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′)



Optimality of A* Tree Search



Optimality of A* Tree Search

Assume:
§ A is an optimal goal node
§ B is a suboptimal goal node
§ h is admissible

Claim:

§ A will exit the fringe before B

…



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the 

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. 𝑓(𝑛) ≤ 𝑓(𝐴)

…



Optimality of A* Tree Search: Blocking

1. 𝑓(𝑛) ≤ 𝑓(𝐴)
§ Definition of f-cost says:
𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) =(path cost to n) + (est. cost of n to A)
𝑓(𝐴) = 𝑔(𝐴) + ℎ(𝐴) =(path cost to A) + (est. cost of A to A)

§ The admissible heuristic must underestimate the true cost
ℎ(𝐴) = (est. cost of A to A)= 0

§ So now, we have to compare:
𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
𝑓(𝐴) = 𝑔(𝐴)

§ ℎ(𝑛)must be an underestimate of the true cost from n to A 
𝑔 𝑛 + ℎ 𝑛 ≤ 𝑔 𝐴
𝑓(𝑛) ≤ 𝑓(𝐴)

…



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the 

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. 𝑓(𝑛) ≤ 𝑓(𝐴)
2. 𝑓(𝐴) ≤ 𝑓(𝐵)

…



Optimality of A* Tree Search: Blocking

2. 𝑓(𝐴) ≤ 𝑓(𝐵)
§ We know that:
𝑓(𝐴) = 𝑔(𝐴) + ℎ(𝐴) = (path cost to A) + (est. cost of A to A)
𝑓(𝐵) = 𝑔(𝐵) + ℎ(𝐵) = (path cost to B) + (est. cost of B to B)

§ The heuristic must underestimate the true cost:             
ℎ(𝐴) = ℎ(𝐵) = 0

§ So now, we have to compare:                                               
𝑓 𝐴 = 𝑔 𝐴
𝑓(𝐵) = 𝑔(𝐵)

§ We assumed that B is suboptimal! So
𝑔 𝐴 < 𝑔 𝐵
𝑓(𝐴) < 𝑓(𝐵)

…



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the 

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. 𝑓(𝑛) ≤ 𝑓(𝐴)
2. 𝑓 𝐴 < 𝑓 𝐵
3. 𝑛 expands before B

§ All ancestors of A expand before B
§ A expands before B
§ A* search is optimal

…



Properties of A*



Properties of A*

…
b

…
b

Uniform-Cost A*



UCS vs A* Contours

§ Uniform-cost expands equally in all 
“directions”

§ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal



Video of Demo Contours (Empty) -- UCS



Video of Demo Contours (Empty) -- Greedy



Video of Demo Contours (Empty) – A*



Video of Demo Contours (Pacman Small Maze) – A*



Comparison

Greedy Uniform Cost A*



A* Applications



A* Applications

§ Video games
§ Pathing / routing problems
§ Resource planning problems
§ Robot motion planning
§ Language analysis
§ …



Video of Demo Pacman (Tiny Maze) – UCS / A*



Video of Demo Empty Water Shallow/Deep – Guess Algorithm


