Modelli di regressione Ilaria Gandin

Corso per le Scuole di Specialità
26 Gennaio 2023

Example I

- Atherosclerotic Cardiovascular Disease Risk Calculator to determine 10-year risk of heart disease or stroke
- http://static.heart.org/riskcalc/app/index. html\#!/baseline-risk

Example II

Epidemiology. 2009 May ; 20(3): 367-373. doi:10.1097/EDE.0b013e31819b93c0.
Maternal Blood Manganese Levels and Infant Birth Weight
Ami R. Zota ${ }^{a, b}$, Adrienne S. Ettinger ${ }^{\text {a,c, }, d, ~ M a r y s e ~ B o u c h a r d ~}{ }^{\text {a }}$, Chitra J. Amarasiriwardena ${ }^{\text {a, }, \mathrm{C}}$,

"The objective of the present analysis was to examine the relationship between in utero manganese exposure and birth weight"
"Birth weight increased with manganese levels up to $3.1 \mu \mathrm{~g} / \mathrm{L}$, and then a slight reduction in weight was observed at higher levels"

Example III

The American Journal of Cardiology

T-Wave Inversion, QRS Duration, and QRS/T Angle as T-Wave Inversion, QRS Duration, and QRS/T Angle as
Electrocardiographic Predictors of the Risk for Sudden Cardiac Death
Jari Antero Laukkanen, MD, $\mathrm{PhD}^{\mathrm{a}, \mathrm{b}, *}$, Emanuele Di Angelantonio, MD, $\mathrm{PhD}^{\mathrm{c}}$, Hassan Khan, MD, $\mathrm{PhD}^{\mathrm{c}}$,
"Cox proportional hazards models were used to evaluate the risk of SCD first for TWI [...] with multivariable adjustment for age and clinical factors (age, alcohol consumption, cigarette smoking, serum low- and high-
 density lipoprotein cholesterol, systolic blood pressure, type 2 diabetes, BMI, high-sensitivity C-reactive protein, previous myocardial infarction, and cardiorespiratory fitness)"

Outline

- Purpose of regression models
- Simple linear regression
- Multivariable approach
- Logistic regression
- Model building

Purpose of regression models

- Prediction: predicting responses of individual subjects
- Estimation: estimate the shape and magnitude of the relationship between a predictor variable and a response variable
- Hypothesis testing: study association between predictor variable and a response variable after adjusting for the effect of other predictors

Simple linear regression

Interest: association between height and FEV1

- Response: Y = FEV1
- Predictor: X = height

ID	Height (cm)	FEV1 (liters)
s1	164.0	3.54
s2	167.0	3.54
s3	170.4	3.19
s4	171.2	2.85
s5	171.2	3.42
s6	171.3	3.20
s7	172.0	3.60
s8	172.0	3.78
$s 9$	174.0	4.32
s10	176.0	3.75
s11	177.0	3.09

Simple linear regression

Interest: association between height and FEV1

- Response: Y = FEV1
- Predictor: X = height

$$
Y=a+b \cdot X+E
$$

For each subject i :

$$
y_{i}=a+b \cdot x_{i}+e_{i}
$$

For subject s2:

$$
3.54=a+b \cdot 167+e_{2}
$$

a and b are coefficients to be estimated

ID	Height (cm)	FEV1 (liters)
s1	164.0	3.54
s2	167.0	3.54
s3	170.4	3.19
s4	171.2	2.85
s5	171.2	3.42
s6	171.3	3.20
s7	172.0	3.60
s8	172.0	3.78
s9	174.0	4.32
s10	176.0	3.75
s11	177.0	3.09

The lest-square line

Question: which is the best line fitting the data?

- The one that minimizes errors
- Errors in terms squared deviation of points from the regression line

Method of the least-squares
\rightarrow find a and b that minimize:

$$
\sum_{i=1}^{n}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2}
$$

Evaluating the regression equation

We are summarizing patterns of the data:

- It is inevitable that assumptions have to be made
- These assumption can be evaluated (eg. whether predictor have reasonably linear effect)
- Testing underlying assumption is especially important if specific claims are made on the effect of the predictor

Evaluating the regression equation

Inferential prospective:

- Y, X and E are random variables
- b (regression coefficient) estimate: how to deal with uncertainty?
- Model fit: how to measure? When the model should be accepted?

Main assumptions:

1. Linearity
2. Error term is normally distributed and has constant variance

Assumptions

1. Linearity: the relationship between X and Y can be expressed in a linear way

Shows some linearity

(Does not shows non-linearity

\times Shows non-linearity

Assumptions

2. Error term: analysis of residuals

- To check normality: histogram, q-q plot
- To check homoscedasticity: plot residuals vs predicted values

Why? the probability distribution of b depends on the distribution of the error term

Assumptions

2. Error term: analysis of residuals

Standardized Predicted Values

Standardized Predicted Values

Predicted value \hat{y}_{i}
Observed value y_{i}

Goodness-of-fit

- $S S_{\text {regression }}=\sum\left(\hat{y}_{i}-\bar{y}_{i}\right)^{2}$: measures how values differ from the grand mean
- $S S_{\text {residual }}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$: measures the error between predicted and observed values

We can define the coefficient of determination:

It ranges between 0 and 1

```
F-test can be performed
    to obtain the overall
        significance
```

$$
r^{2}=\frac{S S_{\text {regression }}}{S S_{\text {regression }}+S S_{\text {residual }}}
$$

Can be in interpreted as the proportion of variance explained by the dependent variable

Inference on the regression coefficient

- Hypothesis testing
- $H_{0}: b=0$ this signifies no "relationship" or "effect"
- Use of t-test

- Confidence interval for b :
- $b \pm t^{\circ} \cdot S E(b)$

Predictor	Estimate	SE	Lower	Upper	\mathbf{t}	\mathbf{p}	
	Intercept	-3.16	0.83	-4.80	-1.51	-3.79	0.0002
	height	3.83	0.51	2.83	4.83	7.56	$<.0001$

Multivariable linear regression

A response variable is modelled against a linear combination of two or more simultaneously predictor variables:

$$
Y=a+b_{1} X_{1}+\ldots+b_{k} X_{k}+E
$$

- To explore the relationship between a response variables and two or more independent variables (or covariates", "predictors") appraised simultaneously
- To estimate the independent impact of a given covariate on the dependent variable, by adjusting for the contributions of all the other covariates

Multivariable linear regression

- Example: Effects on blood pressure (Y) of weight $\left(X_{1}\right)$ and smoking (X_{2}) expressed as number of cigarettes per day)

$$
Y=37+0.01 \cdot \text { weight }+0.5 \cdot \text { cigarettes }+E
$$

- b_{i} are partial regression coefficients: change of Y for 1 unit change of X_{i} and all the others $X_{j, j \neq i}$ remain constant
- $0.01 \rightarrow$ average increase of y across subjects when weight is increased by 1 unit. if cigarette smoking is unchanged

Categorical predictors

Example: Effects on birth weight (Y) of length of gestation and smoking status (yes/no)

$$
Y=-2390+143 \cdot \text { gest }-244 \cdot \text { smoker }+E
$$

- -244 : for smokers, on average, birth weight is reduced by 244 g

If one of the predictors X_{i} is binary, b_{i} estimates the mean difference in Y for $X_{i}=1$ compared to $X_{i}=0 \rightarrow$ affects only the intercept

Categorical predictors

Model Term	Coefficient	Std. Error	t	Sig.	95\% Confidence Interval		Here, CancerStage
					Lower	Upper	
Intercept	-1.672	. 4705	-3.553	. 000	-2.596	-. 747	has 4 grouns
IL6	-. 054	. 0104	-5.146	. 000	-. 074	-. 033	
CRP	-. 020	. 0095	-2.131	. 033	-. 039	-. 002	
LengthofStay	-. 115	0358	-3.204	001	-. 185	-. 045	
CancerStage = IV	-2.210	. 1537	-14.374	. 000	-2.511	-1.908	- Effect of stage /V vs
CancerStage=III	-. 947	. 1028	-9.207	. 000	-1.148	-. 745	reference group
CancerStage=11	-. 390	. 0739	-5.285	000	-. 535	-. 246	
CancerStage=1	$0^{\text {b }}$		Stage / is the reference
Experience	. 105	. 0231	4.535	. 000	. 059	. 150	group

If one of the predictors X_{i} is categorical, with more than two groups, the comparison is performed by setting a reference group (thus we fall in the previous binary case)

Multivariable linear regression

(Obstet Gynecol 2013;121:46-50)
 Correlation Between Birth Weight and Maternal Body Composition

Etaoin Kent, mRCoG, MRCPI, Vicky O'Dweyer, MRCPI, Chro Fattah, MD, Nadine Farah, MD,

Table 3. Multivariate Regression Analysis of Predictors of Birth Weight

	Regression Coefficient $\mathbf{(9 5 \% ~ C I)}$	\boldsymbol{P}
Variable	$143.0(129.6-156.4)$	$<.001$
Gestational age at delivery (wk)	$19.8(17.0-22.7)$	$<.001$
Fat-free mass	$-219.0(-248.0$ to 170.0$)$	$<.001$
Smoking	$124.7(90.4-159.0)$	$<.001$
Parity	$3.3(0.3-6.3)$.032
Age (y)	$0.7(-1.9$ to 3.3$)$.621
Fat mass		

Cl , confidence interval.
$\mathrm{R}^{2}=0.245$.
Dependent variable: birth weight.
Independent variables: age, parity, gestational age at delivery, smoking, fat mass, and fat-free mass.

For one more gestational week,on average the weight increase is 143.0 g

Being smoker, on average decreases the weight by 219.0 g

Assumptions

1. Linearity
2. Error term is normally distributed and has constant variance
3. No multicollinearity: a predictor variable must not be correlated to other predictor variables ($|r|>0.8$)

Correlation: BP, Age, Weight, BSA, Dur, Pulse, Stress							Correlation matrix
	BP	Age	Weight	BSA	Dur	Pulse	
Age	0.659						
Weight	0.950	0.407					
BSA	0.866	0.378	0.875				
Dur	0.293	0.344	0.201	0.131			
Pulse	0.721	0.619	0.659	0.465	0.402		
Stress	0.164	0.368	0.034	0.018	0.312	0.506	

Logistic regression

What if the outcome of interest Y is a binary variable?

- disease/no disease
- dead/alive
A case-control study on hormone therapy as a risk factor
for breast cancer in Finland: intrauterine system carries
a risk as well
IJC
International Journal of Cancer
Heli K. Lyytinen ${ }^{1}$, Tadeusz Dyba ${ }^{2}$, Olavi Ylikorkala ${ }^{1}$ and Eero I. Pukkala ${ }^{2,3}$

The purpose of this study was to evaluate the association between postmenopausal hormone therapy (HT) and the risk for breast cancer in recently postmenopausal Finnish women. All Finnish women with first invasive breast cancer diagnosed between the ages of 50 and 62 years during 1995-2007 ($n=9,956$) were identified from the Finnish Cancer Registry. For each case, 3 controls of the same age were retrieved from the Finnish Population Register. The cases and controls were

Logistic regression

What if the outcome of interest Y is a binary variable?

- disease/no disease
- dead/alive

Logistic regression

It is aimed to model the effects of multiple predictors on a binary response variable
$\rightarrow Y$ takes values 0 or 1 (disease no or yes)
Let's denote

$$
P=E(Y)=P(Y=1)
$$

We can use a non-linear function to link response and linear combination of predictors:

Logistic regression

Sigmoid function

Logit function

$$
P=P(Y=1) \quad P_{i}=\frac{1}{1+\exp \left(-\left(a+b x_{i}\right)\right)} \quad \log \left(\frac{P_{i}}{1-P_{i}}\right)=a+b x_{i}
$$

After the logit transformation, the right side of the equation is linear

Logistic regression

Example: one continuous predictor

$$
\log \left(\frac{P}{1-P}\right)=a+b \cdot B M I+E \quad P=\mathrm{P}(\text { diabetes })
$$

What happens for one unit change in $B M I$?

$$
\begin{array}{ll}
\log \left(\frac{P^{\prime}}{1-P^{\prime}}\right)=a+b x \\
\log \left(\frac{P^{\prime \prime}}{1-P^{\prime \prime}}\right)=a+b(x+1) & \frac{P^{\prime \prime}}{1-P^{\prime \prime}} \\
\frac{P^{\prime}}{1-P^{\prime}} & \begin{array}{c}
\text { It's the OR } \\
\text { obtained by } \\
\text { increasing BMI } \\
\text { of one unit }
\end{array}
\end{array} \begin{gathered}
\text { Odds Ratio (OR) } \\
\text { odds }=\frac{P}{1-P}
\end{gathered}
$$

Logistic regression

Odds Ratio (OR)

- $P=P$ (heart disease)
- Predictors: age, weight, gender, VO2max

To obtain the OR, we have to exp (b)
b is the logOR
\begin{tabular}{\|l
\hline
\end{tabular} |

[^0]For a 1 year increase in age, the estimated OR is 1.089
\rightarrow the risk (in odds) for heart disease is increased by 8.9\%

Logistic regression

Assumptions:

- The outcome is a binary variable
- There is a linear relationship between the logit of the outcome and each predictor variables
- Absence of multicollinearity among predictors
- There are no influential values (extreme values or outliers) in the continuous predictors

Logistic regression

A case-control study on hormone therapy as a risk factor for breast cancer in Finland: intrauterine system carries a risk as well

Heli K. Lyytinen ${ }^{1}$, Tadeusz Dyba ${ }^{2}$, Olavi Ylikorkala ${ }^{1}$ and Eero I. Pukkala ${ }^{2,3}$

Table 3. Relative risk of invasive breast cancer among postmenopausal women using hormone therapy

Therapy	Cases	Controls	OR 1	$95 \% \mathrm{Cl}$	p
No user 2	5,473	17,956	1.00	(Reference)	
Estradiol-only therapy	991	3,300	1.01	$0.93-1.09$	0.88
Progestagen-only therapy	138	476	0.97	$0.80-1.17$	0.73
LNG-IUS					

${ }^{1}$ Adjusted with age, parity, age at first birth and health care district. ${ }^{2}$ Had bought HT never or for less than 6 months. ${ }^{3}$ Levonorgestrel releasing intrauterine system. ${ }^{4}$ Mixture of estradiol-only, progestagenonly, estradiol-progestagen therapy, or tibolone.
"A multivariate conditional logistic regression model was used to estimate, by means of the odds ratio (OR), the relative risk for breast cancer associated with each category of HT use"

Although not shown, multiple predictors were included in the model

Generalized Linear Models

GLM provide a set of recognized procedures for relating response variables to a linear combination of one or more predictors:

$$
g(\mu)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots
$$

Where $g(\mu)$ represents the link function

Model	Response variable	Predictor variable(s)	Residual distribution	Link
Linear regression ${ }^{\text {a }}$	Continuous	Continuous/ Categorical	Gaussian (normal)	Identity $g(\mu)=\mu$
Logistic regression	Binary	Continuous/ Categorical	Binomial	Logit $g(\mu)=\log _{e} \frac{\mu}{1-\mu}$
Log-linear models	Counts	Categorical	Poisson	$\log g(\mu)=\log _{e} \mu$

Generalized Linear Models

Examples
 of Y

Input-output relationship

Error (residual) distribution

Link function and inverse

Differences
Gaussian
Ventricular
Mass, LVM

Meaning of the coefficients

When working with GLM the interpretation of the predictor effects becomes more challenging

Rates of a Count Event

Odds Ratios

Which predictors?

Ideally, every epidemiological study would be designed with attention given to a small set of risk factors, and a further set of possible confounding variables identified a priori

The exact nature of risk factors could be unknown in the study design phase (limited prior knowledge) and many possible candidate exposure variables (including proxies) are measured \rightarrow strategies for model building

Sample size

- When estimatng regression models an adequate effective sample size must be ensured
- If the fitted model is too complex (too

THE BEST WTYTO EXPLINOUEHFIINR many predictors for the amount of information in the data), the goodness of fit of the model will be exaggerated and future observed values will not agree with the predicted values (overfitting, lack of generalization)

Sample size

Rule-of-thumb: a fitted regression model is likely to be reliable when the number of predictors p is less than $m / 10$ or $m / 20$, where m is the limiting sample size

| Type of Response Variable Limiting Sample Size m |
| :--- | :--- | :--- |\quad| $n($ total sample size $)$ |
| :--- |

Sample size

An appropriate study design is essential:

- Number of predictors: we must pursue parsimony in model specification
- If there are known associated predictors (eg. known risk factors, confounders) to our response variable, these must be included in the model and this will increase the complexity
- Adequate sample size!
- subject-matter knowledge should guide multivariable modelbuilding

Variable selection

- Variable selection is used when we face with many potential predictors but we don't have the necessary prior knowledge to prespecify the important ones to be included
- There is a rich set of techniques that algorithmically search through subsets of the predictors in attempting to choose a model that both fits the data well and also does not include many unnecessary variables
- The choice of the approach depends on the aim of model building

Different scientific aims

Descriptive modelling

Aim: to capture the data structure
Characteristics:

- Interpretability
- Transportability
- Parsimony

Predictive modelling

Aim: to predict new or future observations

Characteristics:

- Accuracy
- Complexity allowed

Explanatory modelling

Aim: to test causal theory

Characteristics:

- Starts from theoretical constructs
- Conclusion often converted into policy recommendations.

Variable selection

- Based on subject matter knowledge
- Stepwise selection: the fit of many variable combinations is compared using Information Criteria
- Akaike's (AIC): preferable for predictive models
- Bayesian (BIC): preferable for descriptive models
- LASSO penalization
- Resampling-based procedures

- And more... (often rooted in machine learning field)

Variable selection

What constitutes a good variable for prediction and a good variable for significance depend on different properties of the underlying distributions:

- Significant variables: may be associated with the outcome simply for a small group of individuals, thereby leading to poor prediction
- Predictive variables: may be influential for the outcome but not necessarily appear highly significant (for a particular hypothesis)

Statistical significance does not imply practical importance, and conversely

Variable selection

BUT IF YOU CONTROL FOR TOO MANY VARIABLES, YOUR CHOICES WILL SHAPE THE DATA, AND YOU'LL MISLEAD YOURSELF.

SOMEWHERE IN THE MIDOLE IS THE SWEET SPOT WHERE YOU DO BOTH, MAKING YOU DOUBLY WRONG. STATS ARE A FARCE AND TRUTH IS UNKNOWABLE. SEE YOU NEXT WEEK!

https://xkcd.com/2560/

Validation of model predictivity

We would like to ascertain whether predicted values from the model are likely to accurately predict responses on future subjects or subjects not used to develop our model \rightarrow validation
Example: logistic model for diabetes

- The model returns a value P_{i} for each subject

$$
P_{i}=\frac{\exp \left(a+b x_{i}\right)}{1+\exp \left(a+b x_{i}\right)}
$$

- Can be used to classify diabetic vs non-diabetics?

Validation of model predictivity

If predictivity (eg. discrimination ability) is measured on the data used to derive the model, we will get overoptimistic results

Two major ways of model validation:
Requiring more data

- Use of a separate validation cohort (external)
- Resampling methods (internal)

Higher computational cost

- Cross-validation: reserving a subsample to test the model
- Bootstrap: mimic the process of obtaining new datasets

Validation of model calibration

- Discrimination is important, but are the risk estimates reliable?
- Calibration plot: observed responses against predicted responses

Here risk estimate are systematically too low

Is the model useful?

Many predictive models are never used...

- It was not deemed relevant to make predictions in the setting envisioned by the authors
- Potential users did not trust the relationships, weights or variables used to make the predictions
- The variables necessary to make the predictions were not routinely available

References

- Harrell, Frank. (2010). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. 10.1007/978-1-4757-3462-1.
- E. Suárez, Erick \& Pérez, Cynthia \& Rivera, Roberto \& Martínez, Melissa. (2017). Applications of Regression Models in Epidemiology. 245-250.
10.1002/9781119212515.index.
- E. W. Steyerberg. Clinical prediction models. Springer Cham. 2019
- G. Shmueli. To explain or to predict? Statistical Science 2010, Vol. 25, No. 3, 289-310
- W. Sauerbrei et al. State of the art in selection of variables and functional forms in multivariable analysis outstanding issues. Diagn Progn Res. 2020;4(1):1-18

[^0]: a. Variable(s) entered on step 1: age, weight, gender, VO2max.

