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Example |

 Atherosclerotic Cardiovascular
Disease Risk Calculator to determine
10-year risk of heart disease or stroke

* http://static.nheart.org/riskcalc/app/index.
html#!/baseline-risk



http://static.heart.org/riskcalc/app/index.html#!/baseline-risk
http://static.heart.org/riskcalc/app/index.html#!/baseline-risk
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Example Il

Epidemiology. 2009 May ; 20(3): 367-373. doi:10.1097/EDE.0b013e31819b93¢0.
Maternal Blood Manganese Levels and Infant Birth Weight

Ami R. Zota®°, Adrienne S. Ettinger®©d, Maryse Bouchard?, Chitra J. Amarasiriwardena®c,

“The objective of the present analysis was
to examine the relationship between in
utero manganese exposure and birth
weight”

“Birth weight increased with manganese
levels up to 3.1 pg/L, and then a slight

(L 0O A 0L 0L redUCtlon |n Welght was Observed at hlgher

1 2 3 4 5

Maternal blood manganese ( ug/dL ) I eve I S”



app.wooclap.com/OOFUPI

Example Il

T-Wave Inversion, QRS Duration, and QRS/T Angle as
Electrocardiographic Predictors of the Risk for Sudden
Cardiac Death _{ips/l]““mvel e hvih

Jari Antero Laukkanen, MD, PhD*"**, Emanuele Di Angelantonio, MD, PhD*, Hassan Khan, MD, PhD", vil

“Cox proportional hazards models were used to evaluate “'"“1/ ’\/fJL/\
the risk of SCD first for TWI [...] with multivariable VE-’W -
adjustment for age and clinical factors (age, alcohol e
consumption, cigarette smoking, serum low- and high- . vs‘@ |

density lipoprotein cholesterol, systolic blood pressure,
type 2 diabetes, BMI, high-sensitivity C-reactive protein,
previous myocardial infarction, and cardiorespiratory

fitness)”



Outline

* Purpose of regression models
* Simple linear regression

* Multivariable approach

* Logistic regression

* Model building



https://icons8.com/illustrations/author/5ec7b0e101d0360016f3d1b3
https://icons8.com/

Purpose of regression models

* Prediction: predicting responses of individual subjects - prediction

* Estimation: estimate the shape and magnitude of the
relationship between a predictor variable and a

response variable :
- i L > description
* Hypothesis testing: study association between :

predictor variable and a response variable after
adjusting for the effect of other predictors



Simple linear regression

Interest: association between height and FEV1

* Response: Y =FEV1
* Predictor: X = height

FEV1
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ID Height FEV1

(cm) (liters)
sl 164.0 3.54
S2 167.0 3.54
s3 170.4 3.19
s4 171.2 2.85
S5 171.2 3.42
s6 171.3 3.20
s7 172.0 3.60
s8 172.0 3.78
s9 174.0 4.32
s10 176.0 3.75
s11 177.0 3.09




Simple linear regression

Interest: association between height and FEV1

* Response: Y =FEV1
* Predictor: X = height

Y=a+b - X+E

For each subject /:
y;=a+b-x+e,
For subject s2:
3.54=a+b-167+e,

a and b are coefficients to

FEV1

o
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ID Height FEV1

(cm) (liters)
sl 164.0 3.54
S2 167.0 3.54
s3 170.4 3.19
s4 171.2 2.85
S5 171.2 3.42
s6 171.3 3.20
s7 172.0 3.60
s8 172.0 3.78
s9 174.0 4.32
s10 176.0 3.75
s11 177.0 3.09




The lest-square line

Question: which is the best line fitting the data?

rror .

Regression line

* The one that minimizes errors * r y,=a-+ba+Error
e

* Errors in terms squared deviation of
points from the regression line ® .‘H j,—a+br,

Observed Value "4
Method of the . o
O RLIEIcEl — find aand b that minimize:

> (y,~(a+b-x,)} We have analytical
=1 solutions...




Evaluating the regression equation

We are summarizing patterns of the data:
* |tis inevitable that assumptions have to be made

* These assumption can be evaluated (eg. whether predictor
have reasonably linear effect)

* Testing underlying assumption is especially important if specific
claims are made on the effect of the predictor



Evaluating the regression equation

Inferential prospective:

* Y, X and E are random variables

* b (regression coefficient) estimate: how to deal with uncertainty?
 Model fit: how to measure? When the model should be accepted?
Main assumptions:

1. Linearity

2. Error term is normally distributed and has constant variance



Assumptions

1. Linearity: the relationship between X and Y can be expressed
In a linear way
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Assumptions

y. =a+tbz+Error
2. Error term: analysis of residuals T;Resi R
' =

Regression line

- <
) * i =a+bx,
J

Observed Value "/

Y=a+b-X e« To check normality: histogram, g-q plot

* To check homoscedasticity: plot
residuals vs predicted values

Why? the probability distribution of b depends on the
distribution of the error term



Standardized Residuals

Assumptions

2. Error term: analysis of residuals

Standardized Residuals
0

15 05 0.5 1.5 156 05 0.5 1.5

Standardized Predicted Values Standardized Predicted Values

} Residual

o>

y. =a+bz+Error

Regression line

L.!ifl :ﬂ"'h.'l'.'.

Predicted value y.

Observed value



Goodness-of-fit

* 5SS, pression=2_ (7,  measures how values differ
from the grand mean

© SS..aa=2. yi—9.) - measures the error between e
predicted and observed values i

L*<3

We can define the coefficient of determination:

It ranges between 0 and 1
F-test can be performed , SS .
T regression

to obtain the overall ro=
significance SSregression+SSresidual Can be in interpreted as the

proportion of variance explained
by the dependent variable




Inference on the regression
coefficient

 Hypothesis testing

- H,:b=0 this signifies no “relationship”

or “effect”
- Use of t-test

e Confidence interval for b:

- b=+t -SE(b)

Model Coefficients - FEV1

i
1 95% Confidence Interval |

Predictor Estimate SE | Lower Upper | It P I
l L8 N & &N N ___§N N §N _§N _§N | ‘ l ------

Intercept -3.16 0.83 -4.80 -1.51 -3.79 0. 0002

0.51 2.83 4.83 7.56 <.0001




Multivariable linear regression

A response variable is modelled against a linear combination of
two or more simultaneously predictor variables:

Y=a+b X ,+...4b, X, +E

To explore the relationship between a response variables and
two or more independent variables (or covariates®, “predictors”)
appraised simultaneously

To estimate the independent impact of a given covariate on the
dependent variable, by adjusting for the contributions of all the
other covariates



Multivariable linear regression

- Example: Effects on blood pressure (Y) of weight (X;) and
smoking (X:) expressed as number of cigarettes per day)

Y =37+0.01-weight +0.5-cigarettes+ E

* b; are partial regression coefficients: change of Y for 1 unit
change of X; and all the others Xj; remain constant

 0.01 - average increase of y across subjects when weight is
iIncreased by 1 unit. if cigarette smoking is unchanged



Categorical predictors

3800

Example: Effects on birth weight (Y)
of length of gestation and smoking
status (yes/no)

Y =—-2390+143-gest —244-smoker+ E

3200

Wat

2800

» -244 : for smokers, on average,
birth weight is reduced by 2449

2400

3d 36 38 40 42

Gest

If one of the predictors X; is binary, b; estimates the mean difference
In Y for Xi=1 compared to X=0 - affects only the intercept



Categorical predictors

95% Confidence Interval

Lower Upper Here, CancerStage

Model Term Coefficient 5td. Error t Sig.
Intercept -1.672 4705 -3.553 .000 -2.596 -747 has 4 groups
IL6 -.054 0104 -5.146 .000 -.074 -.033
CRP -.020 0095 -2.131 .033 -.039 -.002
LengthofStay - 115 0358  -3204 001 -.185 -.045

—_CancerStage=IV 9910 1537 -14374 .000 2,511 1008 — » Effectofstage IV vs
CancerStage=lI| -.947 1028 -9.207 .000 -1.148 .. 745 reference group
CancerStage=l| -390 0739 -5285 000 -.535 -246 _

CapcaSage=| ob 1 _ _ _ —— Stage | is the reference
Experience 1105 0231 4535 .000 059 150 group

If one of the predictors X; is categorical, with more than two
groups, the comparison is performed by setting a reference group
(thus we fall in the previous binary case)



Multivariable linear regression

(Obstet Gynecol 2013;121:46-50)

Correlation Between Birth Weight and
Maternal Body Composition

Etaoin Kent, MRCOG, MRCPL, Vicky O’Dwyer, Mrcpi, Chro Fattah, mp, Nadine Farah, mp,

Table 3. Multivariate Regression Analysis of
Predictors of Birth Weight

Regression Coefficient

For one more gestational week,on

Variable (95% CI) P ] ! )

‘ average the weight increase is
Gestational age at 143.0 (129.6-156.4) <.001

delivery (wk) 143 Og

Fat-free mass 19.8 (17.0-22.7) <.001
| Smoking —219.0 (—248.0 to 170.0) <.001
Parity 124 7 (90.4-159.0) <.001
Age (y) 3 (0.3-6.3) 032
Fat mass 7(—=19to0 3.3) 621

Being smoker, on average
decreases the weight by 219.0g

Cl, confidence interval.

R2=0.245.

Dependent variable: birth weight.

Independent variables: age, parity, gestational age at delivery,
smoking, fat mass, and fat-free mass.




Assumptions

1. Linearity
2. Error term is normally distributed and has constant variance

3. No multicollinearity: a predictor variable must not be
correlated to other predictor variables (|r|>0.8)

Correlation: BP, Age, Weight, BSA, Dur, Pulse, Stress
BP Lge Weight BSL Dur  Pulse Correla_tlon
Age 0.653 matrix
Weight | 0.950 | 0.407
BSA 0.866 | 0.378
Dur 0.293 0.344 0.201 0.131
Fulse 0.721 0.61%9 0.653 0.465 0.402
Stress 0.164 0.368 0.034 0.018 0.312 0.508




Logistic regression

What if the outcome of interest Y is a binary variable?

e disease/no disease

 dead/alive
A case-control study on hormone therapy as a risk factor f""’i;
for breast cancer in Finland: intrauterine system carries -~ - s e e >
nternational Journa of Cancer L - :
a risk as well v : ’
Heli K. Lyytinen®, Tadeusz Dyba?, Olavi Ylikorkala® and Eero I. Pukkala®? ‘

The purpose of this study was to evaluate the association between postmenopausal hormone therapy (HT) and the risk for
breast cancer in recently postmenopausal Finnish women. All Finnish women with first invasive breast cancer diagnosed
between the ages of 50 and 62 years during 1995-2007 (n = 9,956) were identified from the Finnish Cancer Registry. For
each case, 3 controls of the same age were retrieved from the Finnish Population Register. The cases and controls were



Logistic regression

What if the outcome of interest Y is a binary variable?
« disease/no disease

 dead/alive

Absen

—6 6060 7%2 00000 ¢ @

nnnnnnnn

0.8
0.6
0.4
0.2
0.0

Absent

Present
|

0.8
0.6
0.4
0.2
0.0



Logistic regression

It is aimed to model the effects of multiple predictors on a binary

response variable
— Y takes values 0 or 1 (disease no or yes)
Let’'s denote P=E(Y)=P(Y=1)

We can use a non-linear function to link
response and linear combination of predictors:

1
f<x>:1+exp(—x)

Present

Absent

0.8
0.6
0.4
02
0.0



Logistic regression

Sigmoid -
function o

Logit
function

P=P(Y=1) 1

P.= i Maximum
l 1+exp(—(a+bxi)) p. | Likelihood

Estimation

After the logit transformation, the right side of the equation is linear



Logistic regression

Example: one continuous predictor
log(i)=a+b-BMI+E P = P(diabetes)

1-P
What happens for one unit change in BMI?
/" ltstheOR Odds Ratio (OR)
'\ P <., obtained b
1 —a+b : y __P
Og(l—P') e »_ 1—P'" __ i increasing BMI =T
b m— <= TOR L ofoneunt . [
log(———)=a+b(x+1) 1-p' rsolarom
1— ot e P,/(1-P,)

With respect to b, it's | [N
the log odds ratio:




Logistic regression

* P=P(heart disease)

* Predictors: age, weight, gender, VO2max

To obtain the OR, we have to exp(b)

b is the logOR

Variables in the Equation

95% C.Lfor EXP(B)
B SE. Wald df Sig. Exp(B) | Lower | Upper
Step1® T age | 085 [ 028 [ 9132 | 1| 003 1.089 | 1.030 | 1.1511
weight {006 023 065 1 799 1.006 962 1.051
gender(1) 1.950 842 5.356 1 021 7.026 1348 | 36.625
VO2max 089 048 4.266 1 039 906 824 995
Constant -1.676 3.336 253 1 615 187

a. Variable(s) entered on step 1: age, weight, gender, VO2max.

Odds Ratio (OR

OR>1 increased odds for disease

OR=1 no change odds

OR<1 decreased odds for disease

in age, the estimated
OR is 1.089
- the risk (in,odds)

M ——————————

Different from
probability!



Logistic regression

Assumptions:

The outcome is a binary variable

There is a linear relationship between the logit of the
outcome and each predictor variables

Absence of multicollinearity among predictors

There are no influential values (extreme values or outliers) in

the continuous predictors
Check the
residuals!



Logistic regression

A case-control study on hormone therapy as a risk factor

a risk as well

Heli K. Lyytinen®, Tadeusz Dyba?, Olavi Ylikorkala® and Eero I. Pukkala®?

for breast cancer in Finland: intrauterine system carries o . e ¢ ‘
nrernational journa of Cancer i o
(u’:,
>

Table 3. Relative risk of invasive breast cancer among

postmenopausal women using hormone therapy

Therapy Cases Controls OR' 95% CI D

No user? 5,473 17,956 1.00 (Reference)

Estradiol-only therapy 991 3,300 1.01 0.93-1.09 0.88

Progestagen-only 138 476 0.97 0.80-1.17 0.73
therapy

LNG-IUS’ 329 708 1.53 1.33-1.75 0.001

Estradiol-progestagen 1,731 4,243 1.36 1.27-1.46 0.001
therapy

Estradiol plus LNG-IUS 287 473 2.07 1.78-2.41 0.001

Mixed therapy® 927 2,534 1.22 1.12-1.33 0.001

Tibolone 80 178 1.36 1.15-1.96 0.003

'Adjusted with age, parity, age at first birth and health care district.

Had bought HT never or for [ess than 6 months.
releasing intrauterine system. “Mixture of estradiol-only, progestagen-
only, estradiol-progestagen therapy, or tibolone.

Levonorgestrel

“A multivariate conditional logistic regression model was used
to estimate, by means of the odds ratio (OR), the relative risk

for breast cancer associated with each category of HT use”

Although not shown, multiple
predictors were included in the

model




Generalized Linear Models

GLM provide a set of recognized procedures for relating response
variables to a linear combination of one or more predictors:

g(p) = Bo+ BiXi + B2Xa + ...
Where g(u) represents the link function e

1
1 1
i Poisson i
: distribution '
Response  Predictor Residual i |
Model variable variable(s) distribution Link i , i
: 1
Linear regression®  Continuous  Continuous/ Gaussian Identity g(i) = EI h i
Categorica| (ﬂormal] ” | !I“.yxx||x:
Logistic regression  Binary Continuous/ Binomial
Categorical e

Log-linear models ~ Counts Categorical i Poisson




Ravani. Clinical research
of kidney diseases IV:
standard regression
models. Nephrol Dial
Transplant (2008)

Generalized Linear Models

Examples
of ¥

Left
Ventricular
Mass, LVM

Risk of a
Binary
Event

Rates of a
Count
Event

Input-output
relationship

Error (residual)
distribution

Gaussian

Binomial

Poisson

ety

Link function
and inverse

K Kay o0y Xp

I
|—- Identity
Identity

—

—_—

LP

LP

LP

Meaning of the
coefficients

Differences

Odds Ratios

Rate Ratios

When working
with GLM the

interpretation of

the predictor
effects becomes
more challenging




Which predictors?

Ideally, every epidemiological study would be
designed with attention given to a small set of risk
factors, and a further set of possible confounding
variables identified a priori

The exact nature of risk factors could be unknown
In the study design phase (limited prior
knowledge) and many possible candidate
exposure variables (including proxies) are
measured - strategies for model building




Missing data

If a subject presents a
missing value in one of

the predictors, he will be S am p I e S i Z e

completely removed from
the analysis

* When estimafg regression models an
adequate effective sample size must be
ensured

* |f the fitted model is too complex (too ﬂﬁﬁﬂiﬁmﬂﬁh

many predictors for the amount of
iInformation in the data), the goodness . P
of fit of the model will be exaggerated '
and future observed values will not o
agree with the predicted values .. e
(overfitting, lack of generalization) (P




Sample size f

~
\“\-.

Rule-of-thumb: a fitted regression model is likely to be
reliable when the number of predictors p is less than
m/10 or m/20, where m is the limiting sample size

Type of Response Variable Limiting Sample Size m

Linear regression

Continuous n (total sample size) For 3 predictors we need more than
Binary min(ny,ng) " S L0=S0lndiviatd) s

e s . 1 vk 3%
Ordinal (k categories) o ) e BT

[ - i 7 T 3 e - “’-‘ . . . .
Failure (survival) time number of failures Logistic regression

Assuming that cases is the rarer category,

for 3 predictors we need more than
3*10=30 cases (and >30 controls - >60
individuals)

Survival model

For 3 predictors we need more than
3*10=30 failure events (eg. deaths)




Sample size

An appropriate study design is essential:

Number of predictors: we must pursue parsimony in model
specification

If there are known associated predictors (eg. known risk
factors, confounders) to our response variable, these must be
iIncluded in the model and this will increase the complexity

- Adequate sample size!

subject-matter knowledge should guide multivariable model-
building



Variable selection

* Variable selection is used when we face with many potential
predictors but we don’t have the necessary prior knowledge to
prespecify the important ones to be included

 There is a rich set of techniques that algorithmically search
through subsets of the predictors in attempting to choose a
model that both fits the data well and also does not include
many unnecessary variables

* The choice of the approach depends on the aim of model
building



Different scientific aims

Descriptive modelling

Aim: to capture the data
structure

Characteristics:

* Interpretability
* Transportability
* Parsimony

Predictive modelling

Aim: to predict new or future
observations

Characteristics:
* Accuracy
* Complexity allowed

Explanatory modelling

Aim: to test causal theory

Characteristics:

e Starts from theoretical
constructs

« Conclusion often converted-::
into policy recommendations.




The choice

Variable selection |t

Based on subject matter knowledge

Stepwise selection: the fit of many variable
combinations is compared using Information
Criteria

— Akaike’s (AIC): preferable for predictive models

- Bayesian (BIC): preferable for descriptive models

LASSO penalization e

Resampling-based procedures R

And more... (often rooted in machine learning field)



Variable selection

What constitutes a good variable for prediction and a good variable

for significance depend on different properties of the underlying
distributions:

e Significant variables: may be associated with the outcome simply
for a small group of individuals, thereby leading to poor prediction

* Predictive variables: may be influential for the outcome but not
necessarily appear highly significant (for a particular hypothesis)

Statistical significance does not imply practical importance, and
conversely




Variable selection

IFYOU DONT CONTROL FOR
CONFOUNDING VARIABLES,
THEYTL MASK THE REAL
EFFECT AND MISLEAD YOU.

STATBTICS

¥
L
o
e
-
ety
L

BUT IF YOU CONTROL FOR
00 MANY VARABLES,
YOUR CHOICES WILL SHAPE
THE DATA, AND YOU'LL
MISLEAD YOURSELF,

)

SOMEWHERE IN THE MIDOLE 1S
THE SWEET SPOT WHERE YOU DO
BOTH, MAKING YOU EIJGUBL‘\" WRONG.

STATS ARE A FARCE AND TRUTH IS
UNKNOWABLE. SEE YOU NEXT WEEK!

J

https://xkcd.com/2560/




Validation of model predictivity

We would like to ascertain whether predicted values from the
model are likely to accurately predict responses on future
subjects or subjects not used to develop our model - validation

Example: logistic model for diabetes

Receiver Operating Characteristic (ROC) Curve

* The model returns a value P; for
each subject p__explatbx)

i

0.6 1

Area Under the

B 1+exp(a+bx,)

ROC Curve “‘ 04 1

e Can be used to classify diabetic vs

0.2 1

00 0.2 04 0.6 08 10

nOn-d IabetICS? False Positive Rate



Validation of model predictivity

If predictivity (eg. discrimination ability) is measured on the data
used to derive the model, we will get overoptimistic results

Two major ways of model validation:

Requiring more data Y ——

* Use of a separate validation cohort (external) | annansnn
—

. . Higher computational cost
 Resampling methods (internal) — |

- Cross-validation: reserving a subsample to test the 551 [os] 6
model 00| ool oo

Nl

— Bootstrap: mimic the process of obtaining new datasets




Validation of model calibration

* Discrimination is important, but are the risk estimates reliable?

* Calibration plot: observed responses against predicted
responses

Here risk estimate
are systematically °
too low

Here the proportion of
individuals with risk
between 0.4-0.5 is

between 40-50%

Mean oredicted value



s the model useful?

Many predictive models are never used...

* |t was not deemed relevant to make predictions
In the setting envisioned by the authors

e Potential users did not trust the relationships,
weights or variables used to make the
predictions

* The variables necessary to make the
predictions were not routinely available
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