
Modelli di regressione
Ilaria Gandin

Corso per le Scuole di 
Specialità
26 Gennaio 2023



Example I
● Atherosclerotic Cardiovascular 

Disease Risk Calculator to determine 
10-year risk of heart disease or stroke

● http://static.heart.org/riskcalc/app/index.
html#!/baseline-risk

http://static.heart.org/riskcalc/app/index.html#!/baseline-risk
http://static.heart.org/riskcalc/app/index.html#!/baseline-risk


Example II

“The objective of the present analysis was 
to examine the relationship between in 
utero manganese exposure and birth 
weight”

“Birth weight increased with manganese 
levels up to 3.1 μg/L, and then a slight 
reduction in weight was observed at higher 
levels”



Example III

“Cox proportional hazards models were used to evaluate 
the risk of SCD first for TWI [...] with multivariable 
adjustment for age and clinical factors (age, alcohol 
consumption, cigarette smoking, serum low- and high-
density lipoprotein cholesterol, systolic blood pressure, 
type 2 diabetes, BMI, high-sensitivity C-reactive protein, 
previous myocardial infarction, and cardiorespiratory 
fitness)”

app.wooclap.com/OOFUPI



Illustrations  by Pixeltrue on icons8

 Purpose of regression models
 Simple linear regression
 Multivariable approach
 Logistic regression
 Model building

Outline

https://icons8.com/illustrations/author/5ec7b0e101d0360016f3d1b3
https://icons8.com/


Purpose of regression models
● Prediction: predicting responses of individual subjects
● Estimation: estimate the shape and magnitude of the 

relationship between a predictor variable and a 
response variable

● Hypothesis testing: study association between 
predictor variable and a response variable after 
adjusting for the effect of other predictors

prediction

description



Simple linear regression

Interest: association between height and FEV1
● Response: Y = FEV1
● Predictor: X = height

ID Height 
(cm)

FEV1 
(liters)

s1 164.0 3.54

s2 167.0 3.54

s3 170.4 3.19

s4 171.2 2.85

s5 171.2 3.42

s6 171.3 3.20

s7 172.0 3.60

s8 172.0 3.78

s9 174.0 4.32

s10 176.0 3.75

s11 177.0 3.09

s12 177.0 4.05



Simple linear regression

Interest: association between height and FEV1
● Response: Y = FEV1
● Predictor: X = height

ID Height 
(cm)

FEV1 
(liters)

s1 164.0 3.54

s2 167.0 3.54

s3 170.4 3.19

s4 171.2 2.85

s5 171.2 3.42

s6 171.3 3.20

s7 172.0 3.60

s8 172.0 3.78

s9 174.0 4.32

s10 176.0 3.75

s11 177.0 3.09

s12 177.0 4.05

Y =a+b⋅X+E

For each subject i:
y i=a+b⋅xi+ei

3.54=a+b⋅167+e2
For subject s2:

a and b are coefficients to 
be estimated



The lest-square line

Question: which is the best line fitting the data?

Method of the 
least-squares

● The one that minimizes errors
● Errors in terms squared deviation of 

points from the regression line  

→ find a and b that minimize:

∑
i=1

n

( y i−(a+b⋅xi))
2 We have analytical 

solutions...



Evaluating the regression equation

We are summarizing patterns of the data:
● It is inevitable that assumptions have to be made
● These assumption can be evaluated (eg. whether predictor 

have reasonably linear effect)
● Testing underlying assumption is especially important if specific 

claims are made on the effect of the predictor



Evaluating the regression equation

Inferential prospective:
● Y, X and E are random variables
● b (regression coefficient) estimate: how to deal with uncertainty?
● Model fit: how to measure? When the model should be accepted?

Main assumptions:

1. Linearity

2. Error term is normally distributed and has constant variance

 



Assumptions 

1. Linearity: the relationship between X and Y can be expressed 
in a linear way

Shows some linearity Does not shows non-linearity Shows non-linearity



Assumptions

2. Error term: analysis of residuals

Y =a+b⋅X

Why? the probability distribution of b depends on the 
distribution of the error term  

● To check normality: histogram, q-q plot
● To check homoscedasticity: plot 

residuals vs predicted values  

Residual



Assumptions

2. Error term: analysis of residuals Residual

Predicted value

Observed value

ŷ i

y i



Goodness-of-fit

•                             : measures how values differ     
                             from the grand mean

•                             : measures the error between    
                             predicted and observed values

We can define the coefficient of determination:  

SSregression=∑ ( ŷi− ȳi)
2

SSresidual=∑ ( yi− ŷi)
2

r2=
SSregression

SSregression+SSresidual

It ranges between 0 and 1

Can be in interpreted as the 
proportion of variance explained 

by the dependent variable

F-test can be performed 
to obtain the overall 

significance  



Inference on the regression 
coefficient

● Hypothesis testing               
–                 this signifies no “relationship”   

                  or “effect”
– Use of t-test

● Confidence interval for b:
–

H 0 :b=0 b
SE (b)

≈ tn−2

b±t°⋅SE (b)



Multivariable linear regression

A response variable is modelled against a linear combination of 
two or more simultaneously predictor variables:

● To explore the relationship between a response variables and 
two or more independent variables (or covariates“, “predictors”) 
appraised simultaneously

● To estimate the independent impact of a given covariate on the 
dependent variable, by adjusting for the contributions of all the 
other covariates  

Y =a+b1 X1+ ...+bk X k+E



Multivariable linear regression
● Example: Effects on blood pressure (Y) of weight (X1) and 

smoking (X2) expressed as number of cigarettes per day)

● bi are partial regression coefficients: change of Y for 1 unit 
change of Xi and all the others Xj,j≠i remain constant  

● 0.01 → average increase of y across subjects when weight is 
increased by 1 unit. if cigarette smoking is unchanged

Y =37+0.01⋅weight +0.5⋅cigarettes+E



Categorical predictors

If one of the predictors Xi is binary, bi estimates the mean difference 
in Y for Xi=1 compared to Xi=0 → affects only the intercept 

Example: Effects on birth weight (Y) 
of length of gestation and smoking 
status (yes/no)

● -244 : for smokers, on average, 
birth weight is reduced by 244g  

Y =−2390+143⋅gest−244⋅smoker+E



Categorical predictors

If one of the predictors Xi is categorical, with more than two 
groups, the comparison is performed by setting a reference group 
(thus we fall in the previous binary case) 

Here, CancerStage 
has 4 groups 

Stage I is the reference 
group

Effect of stage IV vs 
reference group



Multivariable linear regression

For one more gestational week,on 
average the weight increase is 

143.0g  

Being smoker, on average 
decreases the weight by 219.0g  



Assumptions

1. Linearity

2. Error term is normally distributed and has constant variance

3. No multicollinearity: a predictor variable must not be 
correlated to other predictor variables (|r|>0.8)  

Correlation 
matrix



Logistic regression
What if the outcome of interest Y is a binary variable? 

● disease/no disease
● dead/alive



Logistic regression
What if the outcome of interest Y is a binary variable? 

● disease/no disease
● dead/alive

YY Y



Logistic regression

It is aimed to model the effects of multiple predictors on a binary 
response variable
→ Y takes values 0 or 1 (disease no or yes)

Let’s denote

 

P=E (Y )=P (Y =1)

We can use a non-linear function to link 
response and linear combination of predictors: 

 
f (x)= 1

1+exp(−x)



Logistic regression

After the logit transformation, the right side of the equation is linear

Logit 
function

Sigmoid 
function

P=P(Y =1)
log (

P i

1−Pi
)=a+b xi

Pi=
1

1+exp(−(a+b x i))
Maximum 
Likelihood 
Estimation



Logistic regression

Example: one continuous predictor

What happens for one unit change in BMI?

log ( P
1−P

)=a+b⋅BMI+E P = P(diabetes)

log( P '
1−P '

)=a+b x

log( P ' '
1−P ' '

)=a+b (x+1)

eb=

P ' '
1−P ' '

P '
1−P '

Odds Ratio (OR)
odds= P

1−P

odds ratio=odds of group1
odds of group 2

odds ratio=
P1/(1−P1)
P2/(1−P2)

It’s the OR 
obtained by 

increasing BMI 
of one unit   

With respect to b, it’s 
the log odds ratio:

b=log(OR)

=OR



Logistic regression
● P=P(heart disease)
● Predictors: age, weight, gender, VO2max

b is the logOR

To obtain the OR, we have to exp(b)

For a 1 year increase 
in age, the estimated 

OR is 1.089
→ the risk (in odds) 
for heart disease is 

increased by 8.9%   

Odds Ratio (OR)
OR>1 increased odds for disease

OR=1 no change odds

OR<1 decreased odds for disease

Different from 
probability!



Logistic regression

Assumptions:
● The outcome is a binary variable
● There is a linear relationship between the logit of the 

outcome and each predictor variables
● Absence of multicollinearity among predictors
● There are no influential values (extreme values or outliers) in 

the continuous predictors
Check the 
residuals!



Logistic regression

“A multivariate conditional logistic regression model was used 
to estimate, by means of the odds ratio (OR), the relative risk 
for breast cancer associated with each category of HT use”

Although not shown, multiple 
predictors were included in the 

model 



Generalized Linear Models

GLM provide a set of recognized procedures for relating response 
variables to a linear combination of one or more predictors:

Where g(μ) represents the link function

For count 
count data

Poisson 
distribution



Generalized Linear Models

Ravani. Clinical research 
of kidney diseases IV: 
standard regression 
models. Nephrol Dial 
Transplant (2008)

When working 
with GLM the 
interpretation of
the predictor 
effects becomes 
more challenging 



Which predictors?

Ideally, every epidemiological study would be 
designed with attention given to a small set of risk 
factors, and a further set of possible confounding 
variables identified a priori 

The exact nature of risk factors could be unknown 
in the study design phase (limited prior 
knowledge) and many possible candidate 
exposure variables (including proxies) are 
measured  → strategies for model building



Sample size
● When estimating regression models an 

adequate effective sample size must be 
ensured 

Missing data
If a subject presents a 
missing value in one of 
the predictors, he will be 
completely removed from 
the analysis  

● If the fitted model is too complex (too 
many predictors for the amount of 
information in the data), the goodness 
of fit of the model will be exaggerated 
and future observed values will not 
agree with the predicted values 
(overfitting, lack of generalization)



Sample size

Rule-of-thumb: a fitted regression model is likely to be 
reliable when the number of predictors p is less than 
m/10 or m/20, where m is the limiting sample size

Linear regression
For 3 predictors we need more than 
3*10=30 individuals  

Logistic regression
Assuming that cases is the rarer category, 
for 3 predictors we need more than 
3*10=30 cases (and >30 controls → >60 
individuals)  

Survival model
For 3 predictors we need more than 
3*10=30 failure events (eg. deaths) 



Sample size

An appropriate study design is essential:
● Number of predictors: we must pursue parsimony in model 

specification
● If there are known associated predictors (eg. known risk 

factors, confounders) to our response variable, these must be 
included in the model and this will increase the complexity
– Adequate sample size!

● subject-matter knowledge should guide multivariable model-
building



Variable selection
● Variable selection is used when we face with many potential 

predictors but we don’t have the necessary prior knowledge to 
prespecify the important ones to be included

● There is a rich set of techniques that algorithmically search 
through subsets of the predictors in attempting to choose a 
model that both fits the data well and also does not include 
many unnecessary variables

● The choice of the approach depends on the aim of model 
building



Descriptive modelling
Aim: to capture the data 
structure  

Aim: to predict new or future 
observations

Aim: to test causal theory 

Different scientific aims

Predictive modelling Explanatory modelling

Characteristics: 
● Interpretability
● Transportability
● Parsimony

Characteristics: 
● Accuracy
● Complexity allowed

Characteristics: 
● Starts from theoretical 

constructs
● Conclusion often converted 

into policy recommendations



Variable selection
● Based on subject matter knowledge
● Stepwise selection: the fit of many variable 

combinations is compared using Information 
Criteria
– Akaike’s (AIC): preferable for predictive models
– Bayesian (BIC): preferable for descriptive models

● LASSO penalization
● Resampling-based procedures
● And more… (often rooted in machine learning field)

The choice 
depends on the

aim of the model!



Variable selection

What constitutes a good variable for prediction and a good variable 
for significance depend on different properties of the underlying 
distributions:

● Significant variables: may be associated with the outcome simply 
for a small group of individuals, thereby leading to poor prediction

● Predictive variables: may be influential for the outcome but not 
necessarily appear highly significant (for a particular hypothesis) 

Statistical significance does not imply practical importance, and 
conversely  



Variable selection

https://xkcd.com/2560/



Validation of model predictivity

We would like to ascertain whether predicted values from the 
model are likely to accurately predict responses on future 
subjects or subjects not used to develop our model → validation
Example: logistic model for diabetes

● The model returns a value Pi for 
each subject

● Can be used to classify diabetic vs 
non-diabetics?

Pi=
exp (a+b x i)
1+exp (a+b xi)

Area Under the 
ROC Curve

(AUC)



Validation of model predictivity

If predictivity (eg. discrimination ability) is measured on the data 
used to derive the model, we will get overoptimistic results
Two major ways of model validation:

● Use of a separate validation cohort (external)
● Resampling methods (internal)

– Cross-validation: reserving a subsample to test the 
model

– Bootstrap: mimic the process of obtaining new datasets

Requiring more data

Higher computational cost



Validation of model calibration
● Discrimination is important, but are the risk estimates reliable?
● Calibration plot: observed responses against predicted 

responses
Here risk estimate 
are systematically 

too low 

Here the proportion of 
individuals with risk 
between 0.4-0.5 is 
between 40-50%



Many predictive models are never used...
● It was not deemed relevant to make predictions 

in the setting envisioned by the authors
● Potential users did not trust the relationships, 

weights or variables used to make the 
predictions

● The variables necessary to make the 
predictions were not routinely available 

Is the model useful?



- Harrell, Frank. (2010). Regression Modeling Strategies: 
With Applications to Linear Models, Logistic Regression, 
and Survival Analysis. 10.1007/978-1-4757-3462-1.
- E. Suárez, Erick & Pérez, Cynthia & Rivera, Roberto & 
Martínez, Melissa. (2017). Applications of Regression 
Models in Epidemiology. 245-250. 
10.1002/9781119212515.index.
- E. W. Steyerberg. Clinical prediction models. Springer 
Cham. 2019
- G. Shmueli. To explain or to predict? Statistical Science 
2010, Vol. 25, No. 3, 289–310 
- W. Sauerbrei et al. State of the art in selection of 
variables and functional forms in multivariable analysis - 
outstanding issues. Diagn Progn Res. 2020;4(1):1–18
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