
Exercises Lecture III:

Random numbers with non uniform distributions;

1. Exponential distribution with Inverse Transformation Method

(a) With the Inverse Transformation Method we can generate random
numbers according to the exponential distribution f(z) = λe−λz,
starting from random numbers with uniform distribution: if x is
the random variable with uniform distribution in [0,1], then z =
−ln(x) is distributed according to e−z. Write a code implementing
the algorithm. An example is given in expdev.f90.

(b) Check—doing a histogram—that the random variate z generated
with that algorithm is actually exponentially distributed.
(What is convenient to plot in order to check this behavior? Hint:
with gnuplot you can print the log of your data (e.g., suppose you
saved the values of z in column 1 and its frequency in column 2, plot
with u 1:(log($2)) or u 1:(log10($2)) )).

(c) With gnuplot you can also do the fit of the histogram with an ex-
ponential function using the least-square method, with λ as fitting
parameter. Check whether you get the expected value of λ. (It is
convenient to make a semilog plot as suggested above and then make
a least-square linear fit; the slope is λ)
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2. An example of non uniform distribution:
comparison between different algorithms

Suppose you want to generate a random variate x in (-1,1) with distri-
bution

p(x) =
1

π
(1− x2)−1/2.

Consider both methods suggested below, do the histograms and check that
both methods give correct results.

(a) From the Inverse Transformation Method:
generate a random number y with uniform distribution in [0,1] and
consider x = cos(πy) (or x = sin(2πy), or x = sinπ(2y−1). . .Why?).

(b) Generate two random numbers U and V with uniform distribution
in [0,1]. Disregard them if U2 + V 2 > 1. Otherwise consider

x =
U2 − V 2

U2 + V 2

Note 1: the last method has the advantage of using only elementary ope-
rations.
Note 2: since x is also negative, pay attention to the algorithm used to
make the histogram; you should notice the difference between the intrinsic
functions int and nint; see also floor. From Chapman’s book:

AINT(A,KIND): Real elemental function

- Returns A truncated to a whole number.

AINT(A) is the largest integer which is smaller than |A|, with the sign of A.

For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

- Argument A is Real; optional argument KIND is Integer

ANINT(A,KIND): Real elemental function

- Returns the nearest whole number to A.

For example, ANINT(3.7) is 4.0, and AINT(-3.7) is -4.0.

- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND): Integer elemental function

- Returns the largest integer < or = A.

For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.

- Argument A is Real of any kind; optional argument KIND is Integer

- Argument KIND is only available in Fortran 95

NINT(A[,KIND])

- Integer elemental function

- Returns the nearest integer to the real value A.

- A is Real

2



3. Gaussian distribution: Box-Muller algorithm
Consider the Box-Muller algorithm to generate a random number gaussian
distribution (see for instance boxmuller.f90; the gasdev subroutine used
inside is similar to what you can find in “Numerical Recipes”: it gives a
gaussian distribution with σ = 1 and average µ = 0). Do a histogram of
the data generated, calculate numerically from the sequence the average
value and the variance, check with the expected results.

4. Gaussian distribution: the central limit theorem
Use the central limit theorem in order to produce random numbers with
gaussian distribution. Remind that given a sequence of independent ran-
dom numbers ri, their average

xN =
1

N

N∑
i=1

ri

is distributed according to

PN (x) =
1√
2πσ2

exp

(
− (xN − µ)2

2σ2

)
with µ =< r >, σ2 = (< r2 > − < r >2)/N .
Furthermore, defining

zN =
xN − µ

σ

we have < z4N >≈ 3 < z2N >2.

(a) Use random numbers ri uniformly distributed in [−1,1], choosing
N≈ 50 and generating at least ≈ 1000 points xN . Verify (doing an
histogram) that xN have a Gaussian distribution.

(b) Calculate numerically < xN > and σ2
x and compare them with µ and

σ2 analytically calculated.

(c) Consider zN and verify numerically the relationship < z4N >≈
3 < z2N >2.

(d) Do again the exercise using random numbers ri with exponential
distribution (p(r) = e−r if r ≥ 0, 0 elsewhere). Calculate < xN >,
σ2
xN

and µ, σ2 numerically and analytically, respectively.

(e) (optional) Consider now random numbers ri with distribution

p(r) =
a

π

1

r2 + a2

(Lorentz’s), with a = 1, for instance. Do ⟨x⟩, ⟨x2⟩ and σ2
x exist? Try

to determine the characteristic of the distribution of the variable sum

xN =
1

N

N∑
i=1

ri.
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5. Various random distributions (test of a ready-to-use module)
(Optional)
You can try t random.f90 which uses the module random.f90 to generate
random deviates with other distributions. Remember to compile first the
module: gfortran random.f90 t random.f90
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! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

! expdev.f90

program test_expdev

implicit none

real :: lambda,delta,x

integer :: i,n,nbin,ibin, sizer

integer, dimension(:), allocatable :: histo, seed

print*, " Generates random numbers x distributed as exp(-lambda*x)"

call random_seed(sizer)

allocate(seed(sizer))

print *,’Here the seed has ’,sizer,’ components; insert them (or print "/") >\’

read(*,*)seed

call random_seed(put=seed)

print *," length of the sequence >"

read *, n

print *," exponential decay factor (lambda)>"

read *, lambda

print *," Collecting numbers generated up to 2/lambda (disregard the others)"

print *," and normalizing the distribution in [0,+infinity[ "

print *," Insert number of bins in the histogram>"

read *, nbin

delta = 2./lambda/nbin

allocate (histo(nbin))

histo = 0

do i = 1,n

call expdev(x)

ibin = int (x/lambda/delta) + 1

if (ibin <= nbin)histo(ibin) = histo(ibin) + 1

end do

open (unit=7,file="expdev.dat",status="replace",action="write")

do ibin= 1 ,nbin

write(unit=7,fmt=*)(ibin-0.5)*delta,histo(ibin)/float(n)/delta

end do

contains

subroutine expdev(x) %-------------------------------------------

REAL, intent (out) :: x

REAL :: r

do

call random_number(r)

if(r > 0) exit

end do

x = -log(r)

END subroutine expdev %------------------------------------------

end program test_expdev
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!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

! boxmuller.90

! uses the Box-Muller algorithm to generate

! a random variate with a gaussian distribution (sigma = 1)

!

program boxmuller

implicit none

real :: rnd,delta

real, dimension(:), allocatable :: histog

integer :: npts,i,ibin,maxbin,m

print*,’ input npts, maxbin >’

read*, npts,maxbin

allocate(histog(-maxbin/2:maxbin/2))

histog = 0

delta = 10./maxbin

do i = 1, npts

call gasdev(rnd)

ibin = nint(rnd/delta)

if (abs(ibin) < maxbin/2) histog(ibin) = histog(ibin) + 1

end do

open(1,file=’gasdev.dat’,status=’replace’)

do ibin = -maxbin/2 , maxbin/2

write(1,*)ibin*delta, histog(ibin)/real(npts)/delta

end do

close(1)

deallocate(histog)

stop

contains

SUBROUTINE gasdev(rnd)

IMPLICIT NONE

REAL, INTENT(OUT) :: rnd

REAL :: r2,x,y

REAL, SAVE :: g

LOGICAL, SAVE :: gaus_stored=.false.

if (gaus_stored) then

rnd=g

gaus_stored=.false.

else

do

call random_number(x)

call random_number(y)

x=2.*x-1.

y=2.*y-1.
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r2=x**2+y**2

if (r2 > 0. .and. r2 < 1.) exit

end do

r2=sqrt(-2.*log(r2)/r2)

rnd=x*r2

g=y*r2

gaus_stored=.true.

end if

END SUBROUTINE gasdev

end program boxmuller
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