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Today

§ Creating Heurustic

§ Graph Search



Recap: Search



Recap

§ A* expands the fringe node with lowest f value where
§ f(n) = g(n) + h(n)
§ g(n) is the cost to reach n
§ h(n) is an admissible estimate of the least cost from n to a goal node:     

0 £ h(n) £ h*(n)

§ A* tree search is optimal
§ Its performance depends heavily on the heuristic h



Creating Heuristics



Creating Admissible Heuristics

§ Most of the work in solving hard search problems optimally is in coming up 
with admissible heuristics

§ Often, admissible heuristics are solutions to relaxed problems, where new 
actions are available

§ Problem 𝑃! is a relaxed version of 𝑃" if A2(s) ÊA1(s) for every s
§ Theorem: ℎ!∗ 𝑠 ≤ ℎ"∗ 𝑠 , ∀ 𝑠, so ℎ!∗(𝑠) is admissible for 𝑃"
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Example: 8 Puzzle

§ What are the states?
§ How many states?
§ What are the actions?
§ What should the costs be?

Start State Goal StateActions



8 Puzzle I

§ Heuristic: Number of tiles misplaced
§ Would it be admissible?
§ h(start) =
§ This is a relaxed-problem heuristic

8

Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



8 Puzzle II

§ What if we had an easier 8-puzzle where 
any tile could slide any direction at any 
time, ignoring other tiles?

§ Total Manhattan distance

§ Would it be admissible?

§ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State



8 Puzzle III

§ How about using the actual cost as a heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§ With A*: a trade-off between quality of estimate and work per node
§ As heuristics get closer to the true cost, you will expand fewer nodes but usually 

do more work per node to compute the heuristic itself



Dominance, Trivial Heuristics

§ Dominance: ha ≥ hc if

§ Max of admissible heuristics is admissible

§ Trivial heuristics
§ The zero heuristic: the smallest  admissible heuiristic
§ The exact heuristic: the larger admissible heuristic



Example: Knight’s moves

§ Minimum number of knight’s moves to get from A to B?
§ h1 = (Manhattan distance)/3 

§ h1
’ = h1 rounded up to correct parity (even if A, B same color, odd otherwise)

§ h2 = (Euclidean distance)/√5 (rounded up to correct parity)
§ h3 = (max x or y shift)/2 (rounded up to correct parity)

§ h(n) = max( h1
’(n), h2(n), h3(n)) is admissible!



Graph Search



§ Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph

Tree Search: Extra Work!



Graph Search

§ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

§ Idea: never expand a state twice

§ How to implement: 
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never been 

expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

§ Can graph search wreck completeness?  Why/why not?

§ How about optimality?



Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many states within d steps of start?

How many states in search tree of depth d?

(a) (b) (c)Basic idea of graph search: don’t re-expand a state that has been expanded previously



A* Graph Search Gone Wrong?
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Consistency of Heuristics
§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal
h(A) ≤ h*(A)

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc
h(A) – h(C) ≤ c(A,C)

or h(A) ≤ c(A,C) + h(C) (triangle inequality)
§ Note: h* necessarily satisfies triangle inequality

§ Consequences of consistency:
§ The f value along a path never decreases:

h(A) ≤ c(A,C) + h(C)   => g(A) + h(A) ≤ g(A) + c(A,C) + h(C)
§ A* graph search is optimal
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Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

§ Consequences of consistency:

§ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

§ A* graph search is optimal
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Optimality of A* Graph Search

§ Sketch: consider what A* does with a 
consistent heuristic:

§ Fact 1: In tree search, A* expands nodes in 
increasing total f value (f-contours)

§ Fact 2: For every state s, nodes that reach 
s optimally are expanded before nodes 
that reach s suboptimally

§ Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1



Optimality

§ Tree search:
§ A* is optimal if heuristic is admissible
§ UCS is a special case (h = 0)

§ Graph search:
§ A* optimal if heuristic is consistent
§ UCS optimal (h = 0 is consistent)

§ Consistency implies admissibility

§ In general, most natural admissible heuristics 
tend to be consistent, especially if from 
relaxed problems



A*: Summary

§ A* orders nodes in the queue by   f(n) = g(n) + h(n) 
§ A* is optimal for trees/graphs with admissible/consistent heuristics

§ Heuristic design is key: often use relaxed problems
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Tree Search Pseudo-Code



Graph Search Pseudo-Code



But…

§ A* keeps the entire explored region in memory

§ => will run out of space before you get bored waiting for the answer

§ There are variants that use less memory (Section 3.5.5):



Iterative-deepening A* search (IDA* ) 

§ IDA* works like iterative deepening, except it uses an f-limit 
instead of a depth limit
§ The the cutoff is the f-cost (g+h);
§ On each iteration, remember the smallest f-value that exceeds the 

current limit, use as new limit
§ When each path’s f-cost is an integer, this works very well, resulting in 

steady progress towards the goal each iteration
§ Very inefficient when f is real-valued and each node has a unique value



Recursive best-first search (RBFS) 

§ RBFS is a recursive depth-first search that uses an f-limit = the f-
value of the best alternative path available from any ancestor of 
the current node 
§ When the limit is exceeded, the recursion unwinds back to the 

alternative path
§ But  it  also remember the best reachable f-value on that branch, 

backed-up value
§ It can therefore decide whether it’s worth reexpanding the subtree at 

some later time
§ More efficient than IDA∗, but still suffers from excessive node re-

generation. 





Simplified memory-bounded (SMA* ).

§ SMA* uses all available memory for the queue, minimizing 
thrashing
§ When full, drop worst node on the queue but remember its value in the 

parent
§ It regenerates the subtree only when all other paths have been shown 

to look worse than the path it has forgotten.


