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Today

" Creating Heurustic

" Graph Search




Recap: Search




Recap

" A* expands the fringe node with lowest f value where

= f(n) = g(n) + h(n)
" g(n) is the cost to reach n

" h(n) is an admissible estimate of the least cost from n to a goal node:
0 < h(n) £ h*(n)

" A* tree search is optimal
" |ts performance depends heavily on the heuristic h



Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!




Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

* Problem P, is a relaxed version of P, if 4,(s) o> A,(s) foreverys
= Theorem: h5(s) < hi(s),V s, so h5(s) is admissible for P,



Example: 8 Puzzle
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= What are the states?
" How many states?

= What are the actions?
= What should the costs be?



8 Puzzle |

Heuristic: Number of tiles misplaced
Would it be admissible?

h(start) = 8

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore




What if we had an easier 8-puzzle where
any tile could slide any direction at any

time, ignoring other tiles?

Total Manhattan distance

Would it be admissible?

h(start)= 3+1+2+..=18

8 Puzzle

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73




8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What's wrong with it? ﬁ rt

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself




Dominance, Trivial Heuristics

= Dominance: h, 2 h_if

Vn : hg(n) > he(n)
= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics
= The zero heuristic: the smallest admissible heuiristic
= The exact heuristic: the larger admissible heuristic

exact
|

mazx(hg, hy)



Example: Knight’'s moves

= Minimum number of knight’s moves to get from A to B?

* h, =(Manhattan distance)/3
= h, = h,rounded up to correct parity (even if A, B same color, odd otherwise)

* h, =(Euclidean distance)/V5 (rounded up to correct parity)
* h,=(max x ory shift)/2 (rounded up to correct parity)

= h(n) = max( h{(n), h,(n), hs(n)) is admissible!




Graph Search




Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.
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Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

" |dea: never expand a state twice

= How to implement:

"= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

" |mportant: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?



Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many states within d steps of start?
»
How many states in search tree of depth d?
o—0—9©
»

Basic idea of graph search: don’t re-expand a state that has been expanded previously




A* Graph Search Gone Wrong?

State space graph

Search tree
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Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < h*(A)

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < c(A,C)
or h(A) £ c(A,C) + h(C) (triangle inequality)
‘\‘ E = Note: h* necessarily satisfies triangle inequality
"“ . = Consequences of consistency:
“‘ = The fvalue along a path never decreases:

h(A) £c(A,C) + h(C) =>g(A) + h(A) <g(A) + c(A,C) + h(C)

= A* graph search is optimal



Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal



Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal



Optimality

Tree search:
= A*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems




A*: Summary

= A* orders nodes in the queue by f(n) =g(n) + h(n)
= A*is optimal for trees/graphs with admissible/consistent heuristics

= Heuristic design is key: often use relaxed problems




Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT( fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end




Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE|problem]|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end




But...

A* keeps the entire explored region in memory

=> will run out of space before you get bored waiting for the answer

There are variants that use less memory (Section 3.5.5):



Iterative-deepening A* search (IDA* )

" |IDA* works like iterative deepening, except it uses an f-limit
instead of a depth limit
" The the cutoff is the f-cost (g+h);

= On each iteration, remember the smallest f-value that exceeds the
current limit, use as new limit

* When each path’s f-cost is an integer, this works very well, resulting in
steady progress towards the goal each iteration

" Very inefficient when f is real-valued and each node has a unique value



Recursive best-first search (RBFS)

= RBFS is a recursive depth-first search that uses an f-limit = the f-

value of the best alternative path available from any ancestor of
the current node

= When the limit is exceeded, the recursion unwinds back to the
alternative path

= But it also remember the best reachable f-value on that branch,
backed-up value

" |t can therefore decide whether it's worth reexpanding the subtree at
some later time

= More efficient than IDAx, but still suffers from excessive node re-
generation.



(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

449

(b) After unwinding back to Sibiu
and expanding Fagaras

591 450

(c) After switching back to Rimnicu Vilcea

and expanding Pitesti 366
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Simplified memory-bounded (SMA* ).

" SMA* uses all available memory for the queue, minimizing
thrashing

=" When full, drop worst node on the queue but remember its value in the
parent

" |t regenerates the subtree only when all other paths have been shown
to look worse than the path it has forgotten.



