Introduction to Artificial Intelligence

Informed Search

Instructor: Laura Nenzi

University of Trieste, Italy

[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

" Creating Heurustic

" Graph Search

Recap: Search

Recap

" A* expands the fringe node with lowest f value where

= f(n) = g(n) + h(n)
" g(n) is the cost to reach n

" h(n) is an admissible estimate of the least cost from n to a goal node:
0 < h(n) £ h*(n)

" A* tree search is optimal
" |ts performance depends heavily on the heuristic h

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

* Problem P, is a relaxed version of P, if 4,(s) o> A,(s) foreverys
= Theorem: h5(s) < hi(s),V s, so h5(s) is admissible for P,

Example: 8 Puzzle

1) 2 |4 7|1 y |
5 & | 45 3 4
8 3 1 S8l 6 6 | 7

Start State Actions Goal State

3
2

1@“

~7.

P2
>
®

———

—_—

= What are the states?
" How many states?

= What are the actions?
= What should the costs be?

8 Puzzle |

Heuristic: Number of tiles misplaced
Would it be admissible?

h(start) = 8

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore

What if we had an easier 8-puzzle where
any tile could slide any direction at any

time, ignoring other tiles?

Total Manhattan distance

Would it be admissible?

h(start)= 3+1+2+..=18

8 Puzzle

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What's wrong with it? ﬁ rt

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Dominance, Trivial Heuristics

= Dominance: h, 2 h_if

Vn : hg(n) > he(n)
= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics
= The zero heuristic: the smallest admissible heuiristic
= The exact heuristic: the larger admissible heuristic

exact
|

mazx(hg, hy)

Example: Knight’'s moves

= Minimum number of knight’s moves to get from A to B?

* h, =(Manhattan distance)/3
= h, = h,rounded up to correct parity (even if A, B same color, odd otherwise)

* h, =(Euclidean distance)/V5 (rounded up to correct parity)
* h,=(max x ory shift)/2 (rounded up to correct parity)

= h(n) = max(h{(n), h,(n), hs(n)) is admissible!

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

s N
() P
B @0 ..,-f"” .

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e P
/\ |
b/jg h r q
| /\@ |
r f
- ®O L
f q c G
N |
G a

C
I
a

Graph Search

" |dea: never expand a state twice

= How to implement:

"= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

" |mportant: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many states within d steps of start?
»
How many states in search tree of depth d?
o—0—9©
»

Basic idea of graph search: don’t re-expand a state that has been expanded previously

A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

~—

A (1+4) B(1+1)

! !

C (2+1) C (3+1)

} !

G (5+0) G (6+0)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < h*(A)

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < c(A,C)
or h(A) £ c(A,C) + h(C) (triangle inequality)
‘\‘ E = Note: h* necessarily satisfies triangle inequality
"“ . = Consequences of consistency:
“‘ = The fvalue along a path never decreases:

h(A) £c(A,C) + h(C) =>g(A) + h(A) <g(A) + c(A,C) + h(C)

= A* graph search is optimal

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:
= A*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

= A* orders nodes in the queue by f(n) =g(n) + h(n)
= A*is optimal for trees/graphs with admissible/consistent heuristics

= Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE|problem]|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

But...

A* keeps the entire explored region in memory

=> will run out of space before you get bored waiting for the answer

There are variants that use less memory (Section 3.5.5):

Iterative-deepening A* search (IDA*)

" |IDA* works like iterative deepening, except it uses an f-limit
instead of a depth limit
" The the cutoff is the f-cost (g+h);

= On each iteration, remember the smallest f-value that exceeds the
current limit, use as new limit

* When each path’s f-cost is an integer, this works very well, resulting in
steady progress towards the goal each iteration

" Very inefficient when f is real-valued and each node has a unique value

Recursive best-first search (RBFS)

= RBFS is a recursive depth-first search that uses an f-limit = the f-

value of the best alternative path available from any ancestor of
the current node

= When the limit is exceeded, the recursion unwinds back to the
alternative path

= But it also remember the best reachable f-value on that branch,
backed-up value

" |t can therefore decide whether it's worth reexpanding the subtree at
some later time

= More efficient than IDAx, but still suffers from excessive node re-
generation.

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

449

(b) After unwinding back to Sibiu
and expanding Fagaras

591 450

(c) After switching back to Rimnicu Vilcea

and expanding Pitesti 366
Csibiu O, T S
447
646 K 450 671 .
447
CCraiovay (Pitesti > Sibiu_D
526 417 553

418 615 607

Simplified memory-bounded (SMA*).

" SMA* uses all available memory for the queue, minimizing
thrashing

=" When full, drop worst node on the queue but remember its value in the
parent

" |t regenerates the subtree only when all other paths have been shown
to look worse than the path it has forgotten.

