
Introduction to Artificial Intelligence

Informed Search

Instructor: Laura Nenzi

University of Trieste, Italy
[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

§ Creating Heurustic

§ Graph Search

Recap: Search

Recap

§ A* expands the fringe node with lowest f value where
§ f(n) = g(n) + h(n)
§ g(n) is the cost to reach n
§ h(n) is an admissible estimate of the least cost from n to a goal node:

0 £ h(n) £ h*(n)

§ A* tree search is optimal
§ Its performance depends heavily on the heuristic h

Creating Heuristics

Creating Admissible Heuristics

§ Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

§ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

§ Problem 𝑃! is a relaxed version of 𝑃" if A2(s) ÊA1(s) for every s
§ Theorem: ℎ!∗ 𝑠 ≤ ℎ"∗ 𝑠 , ∀ 𝑠, so ℎ!∗(𝑠) is admissible for 𝑃"

15
366

Example: 8 Puzzle

§ What are the states?
§ How many states?
§ What are the actions?
§ What should the costs be?

Start State Goal StateActions

8 Puzzle I

§ Heuristic: Number of tiles misplaced
§ Would it be admissible?
§ h(start) =
§ This is a relaxed-problem heuristic

8

Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

§ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

§ Total Manhattan distance

§ Would it be admissible?

§ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

§ How about using the actual cost as a heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§ With A*: a trade-off between quality of estimate and work per node
§ As heuristics get closer to the true cost, you will expand fewer nodes but usually

do more work per node to compute the heuristic itself

Dominance, Trivial Heuristics

§ Dominance: ha ≥ hc if

§ Max of admissible heuristics is admissible

§ Trivial heuristics
§ The zero heuristic: the smallest admissible heuiristic
§ The exact heuristic: the larger admissible heuristic

Example: Knight’s moves

§ Minimum number of knight’s moves to get from A to B?
§ h1 = (Manhattan distance)/3

§ h1
’ = h1 rounded up to correct parity (even if A, B same color, odd otherwise)

§ h2 = (Euclidean distance)/√5 (rounded up to correct parity)
§ h3 = (max x or y shift)/2 (rounded up to correct parity)

§ h(n) = max(h1
’(n), h2(n), h3(n)) is admissible!

Graph Search

§ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

§ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

§ Idea: never expand a state twice

§ How to implement:
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never been

expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

§ Can graph search wreck completeness? Why/why not?

§ How about optimality?

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many states within d steps of start?

How many states in search tree of depth d?

(a) (b) (c)Basic idea of graph search: don’t re-expand a state that has been expanded previously

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Consistency of Heuristics
§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal
h(A) ≤ h*(A)

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc
h(A) – h(C) ≤ c(A,C)

or h(A) ≤ c(A,C) + h(C) (triangle inequality)
§ Note: h* necessarily satisfies triangle inequality

§ Consequences of consistency:
§ The f value along a path never decreases:

h(A) ≤ c(A,C) + h(C) => g(A) + h(A) ≤ g(A) + c(A,C) + h(C)
§ A* graph search is optimal

h=1

A

G

h=4 C

1

h=3

Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

§ Consequences of consistency:

§ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

§ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality of A* Graph Search

§ Sketch: consider what A* does with a
consistent heuristic:

§ Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

§ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

§ Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1

Optimality

§ Tree search:
§ A* is optimal if heuristic is admissible
§ UCS is a special case (h = 0)

§ Graph search:
§ A* optimal if heuristic is consistent
§ UCS optimal (h = 0 is consistent)

§ Consistency implies admissibility

§ In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

§ A* orders nodes in the queue by f(n) = g(n) + h(n)
§ A* is optimal for trees/graphs with admissible/consistent heuristics

§ Heuristic design is key: often use relaxed problems

g

g

h h

Tree Search Pseudo-Code

Graph Search Pseudo-Code

But…

§ A* keeps the entire explored region in memory

§ => will run out of space before you get bored waiting for the answer

§ There are variants that use less memory (Section 3.5.5):

Iterative-deepening A* search (IDA*)

§ IDA* works like iterative deepening, except it uses an f-limit
instead of a depth limit
§ The the cutoff is the f-cost (g+h);
§ On each iteration, remember the smallest f-value that exceeds the

current limit, use as new limit
§ When each path’s f-cost is an integer, this works very well, resulting in

steady progress towards the goal each iteration
§ Very inefficient when f is real-valued and each node has a unique value

Recursive best-first search (RBFS)

§ RBFS is a recursive depth-first search that uses an f-limit = the f-
value of the best alternative path available from any ancestor of
the current node
§ When the limit is exceeded, the recursion unwinds back to the

alternative path
§ But it also remember the best reachable f-value on that branch,

backed-up value
§ It can therefore decide whether it’s worth reexpanding the subtree at

some later time
§ More efficient than IDA∗, but still suffers from excessive node re-

generation.

Simplified memory-bounded (SMA*).

§ SMA* uses all available memory for the queue, minimizing
thrashing
§ When full, drop worst node on the queue but remember its value in the

parent
§ It regenerates the subtree only when all other paths have been shown

to look worse than the path it has forgotten.

