
Instructions: Language of the Computer

A. Carini – Digital System Architectures

Introduction

• To command a computer’s hardware, you must speak its language.
• The words of a computer’s language are called instructions, and its vocabulary is called an

instruction set.
• Computer languages are quite similar, more like regional dialects than independent languages.
• The chosen instruction set is ARMv8, introduced in 2011. We will use a subset of ARMv8, called LEGv8

(“Lessen Extrinsic Garrulity”).
• This similarity of instruction sets occurs because:

• all computers are constructed based on similar underlying principles;
• there are a few basic operations that all computers must provide;
• computer designers have a common goal: the language should make it easy to build the

hardware and the compiler while maximizing performance and minimizing cost and energy.

A. Carini – Digital System Architectures

Operations of the Computer Hardware

• Every computer must be able to perform arithmetic.
• The LEGv8 notation for add the two variables b and c and to put their sum in a:

• All arithmetic operations have this form.
• Suppose we want to place the sum of four variables b, c, d, and e into variable a:

• Requiring every instruction to have exactly three operands conforms to the philosophy of keeping the
hardware simple:
• hardware for a variable number of operands is more complicated than for a fixed number.

• Design Principle 1: Simplicity favors regularity

A. Carini – Digital System Architectures

Compiling a C Assignment into LEGv8

• C code:

• What might a C compiler produce?

A. Carini – Digital System Architectures

Operands of the Computer Hardware

• Arithmetic instructions use register operands.
• LEGv8 has a 32 × 64-bit register file

• Use for frequently accessed data
• 64-bit data is called a “doubleword”

• 32 x 64-bit general purpose registers X0 to X31
• 32-bit data called a “word”

• 32 x 32-bit general purpose sub-registers W0 to W31

• The reason for the limit of 32 registers may be found in

• Design Principle 2: Smaller is faster.

• A very large number of registers may increase the clock cycle time simply because it takes electronic
signals longer when they must travel farther.

• The designer must balance the craving of programs for more registers with the designer’s desire to
keep the clock cycle fast.

• Another reason for not using more than 32 is the number of bits requested in the instruction format.

A. Carini – Digital System Architectures

Compiling a C Assignment Using Registers

• C Code:

• The variables f, g, h, i, and j are assigned to the registers X19, X20, X21, X22, and X23, respectively.
• What is the compiled LEGv8 code?

A. Carini – Digital System Architectures

Memory operands

• Programming languages have simple variables that contain single data elements, but they also have
more complex data structures—arrays and structures.

• These composite data structures can contain many more data elements than there are registers.
• How can a computer represent and access such large structures?
• Arrays and structures are kept in memory.
• LEGv8 must include instructions that transfer data between memory and registers.
• Such instructions are called data transfer instructions.
• To access a word or doubleword in memory, the instruction must supply the memory address.
• Memory is just a large, single-dimensional array, with the address acting as the index to that

array, starting at 0.

A. Carini – Digital System Architectures

Memory operands

• The data transfer instruction that copies data from memory to a register is called load.
• The format of the load instruction is the name of the operation LDUR, load register, followed by

the register to be loaded, then a base register and an offset, a constant used to access memory.
• (U for unscaled)

• Let’s assume that A is an array of 100 doublewords and that the compiler has associated the variables
g and h with the registers X20 and X21. The base address of A is in X22.

• Compile this C statement:

A. Carini – Digital System Architectures

Memory operands

• The data transfer instruction that copies data from memory to a register is called load.
• The format of the load instruction is the name of the operation LDUR, load register, followed by

the register to be loaded, then a base register and an offset, a constant used to access memory.
• (U for unscaled)

• Let’s assume that A is an array of 100 doublewords and that the compiler has associated the variables
g and h with the registers X20 and X21. The base address of A is in X22.

• Compile this C statement:

A. Carini – Digital System Architectures

There is an error…

Memory operands

• The compiler allocates data structures like arrays and structures to locations in memory.
• The compiler can then place the proper starting address into the data transfer instructions.
• Virtually all architectures today address individual bytes.
• The address of a doubleword matches the address of one of the 8 bytes within the doubleword,

and addresses of sequential doublewords differ by 8.
• Thus,

LDUR X9,[X22,#64] // 8 x 8 = 64

• Computers divide into those that use the address of the leftmost or “big end” byte as the doubleword
address versus those that use the rightmost or “little end” byte.

• LEGv8 can work either as big-endian or little-endian.
• LEGv8 does not require words to be aligned in memory, except for instructions and the stack.

A. Carini – Digital System Architectures

Memory operands

• The instruction complementary to load is traditionally called store; it copies data from a register to
memory.

• The format of a store is similar to that of a load: the name of the operation, STUR, store register,
followed by the register to be stored, the base register, and the offset to select the array element.

• Assume variable h is associated with register X21 and the base address of the array A is in X22.
• Compile

A. Carini – Digital System Architectures

Memory operands

• Many programs have more variables than computers have registers.
• Registers are faster to access than memory.

• Operating on memory data requires loads and stores and more instructions to be executed.
• Compiler must use registers for variables as much as possible, spilling to memory for less frequently

used variables.
• Accessing registers also uses much less energy than accessing memory.
• To achieve the highest performance and conserve energy, an instruction set architecture must have

enough registers, and compilers must use registers efficiently.
• Register optimization is important!

• Assuming 64-bit data, registers were roughly 200 times faster (0.25 ns vs. 50 ns) and 10,000 times
more energy efficient (0.1 vs. 1000 picoJoules) than DRAM in 2015.

• These large differences led to caches, which reduce the performance and energy penalties of going to
memory.

A. Carini – Digital System Architectures

Constant or Immediate Operands

• Many times a program will use a constant in an operation.
• Using the instructions we have seen so far, we would have to load a constant from memory to use

one.
• For example, to add the constant 4 to register X22:

• An alternative is to offer versions of the arithmetic instructions in which one operand is a constant, as
ADDI, Add Immediate

• Constant operands occur frequently, and by including constants inside arithmetic instructions,
operations are much faster and use less energy than if constants were loaded from memory.

A. Carini – Digital System Architectures

Clarifications

• Although the LEGv8 registers are 64 bits wide, the full ARMv8 instruction set has two execution states:
AArch32, in which registers are 32 bits wide, and AArch64, which has a 64-bit wide register.

• The migration from 32-bit address computers to 64-bit address computers left compiler writers a
choice of the size of data types in C. Clearly, pointers should be 64 bits, but what about integers?

• We will use long long int for the 64bit words, size_t for indexes to arrays (it guarantees they are
the right size no matter how big the array).

• In the full ARMv8 instruction set, register 31 is XZR in most instructions but the stack point (SP) in
others. To avoid confusion, in LEGv8 register 31 is always XZR and SP is always register 28.

• The full ARMv8 instruction set does not use the mnemonic ADDI; it just uses ADD, and lets the
assembler pick the proper opcode.

A. Carini – Digital System Architectures

Representing Instructions in the Computer

• Instructions are encoded in binary code, called machine code
• We’ll show the LEGv8 language version of the instruction represented symbolically as

• The decimal and the binary representation are

• This layout of the instruction is called the instruction format. There are five fields.
• All LEGv8 instructions are 32 bits long.

A. Carini – Digital System Architectures

1000 1011 0001 0101 0000 0010 1000 1001two = 8B15028916

Hexadecimal

• Base 16
• Compact representation of bit strings
• 4 bits per hex digit

A. Carini – Digital System Architectures

LEGv8 R-format Instructions

• opcode: operation code
• Rm: the second register source operand
• shamt: shift amount (00000 for now)
• Rn: the first register source operand
• Rd: the register destination

A. Carini – Digital System Architectures

opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

Good compromises

• A problem occurs when an instruction needs longer fields than those of the R format.
• For example, the load register instruction must specify two registers and a constant.
• If the address were to use one of the 5-bit fields in the format R, the largest constant within the load

register instruction would be limited to only 25 −1 or 31.
• This constant is used to select elements from arrays or data structures, and it often needs to be much

larger than 31.
• We have a conflict between the desire to keep all instructions the same length and the desire to have

a single instruction format.

• Design Principle 3: Good design demands good compromises.

• The compromise chosen by the LEGv8 designers is to keep all instructions the same length, thereby
requiring distinct instruction formats for different kinds of instructions.
• Different formats complicate decoding, but allow 32-bit instructions uniformly
• Keep formats as similar as possible

A. Carini – Digital System Architectures

LEGv8 D-format Instructions

• Load/store instructions
• Rn: base register
• address: constant offset from contents of base register (±256 bytes, i.e., +/- 32 doublewords)
• Rt: destination (load) or source (store) register number

• Opcode = 1986, Rn = 22, address = 64, Rt = 9

A. Carini – Digital System Architectures

opcode op2 Rn Rt

11 bits 9 bits 2 bits 5 bits 5 bits

address

LEGv8 I-format Instructions

• Immediate instructions
• Rn: source register
• Rd: destination register

• Immediate field is zero-extended. Thus, only positive immediates!

A. Carini – Digital System Architectures

opcode Rn Rd

10 bits 12 bits 5 bits 5 bits

immediate

LEGv8 Instructions seen so far

A. Carini – Digital System Architectures

Stored Program Computers

• Today’s computers are built on two key principles:
• 1. Instructions are represented as numbers.
• 2. Programs are stored in memory to be read or written, just like data.

A. Carini – Digital System Architectures

• These principles lead to the stored-program concept;
• Memory can contain the source code for an editor program,

the corresponding compiled machine code, the text that
the compiled program is using, and even the compiler
that generated the machine code. Programs can operate on
programs.

• Programs are often shipped as files of binary numbers.
• Computers can inherit ready-made software provided they are

compatible with an existing instruction set.
• Such “binary compatibility” often leads industry to align around a

small number of instruction set architectures.

Logical operations

• Highly used for packing and unpacking of bits into words.

A. Carini – Digital System Architectures

Logical operations

• The first class of such operations is called shifts.
• They move all the bits in a doubleword to the left (logical shift left LSL) or right (logical shift right LSR),

filling the emptied bits with 0s.
• Example

A. Carini – Digital System Architectures

X19

X11

Logical operations

• Another useful operation that isolates fields is AND.
• AND is a bit-by-bit operation that leaves a 1 in the result only if both bits of the operands are 1.
• Example:

• OR is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1.

A. Carini – Digital System Architectures

X11

X10

X9

X9

Logical operations

• NOT takes one operand and places a 1 in the result if one operand bit is a 0, and vice versa.
• In keeping with the three-operand format, the designers of ARMv8 decided to include the instruction

EOR (Exclusive OR) instead of NOT.
• Since exclusive OR creates a 0 when bits are the same and a 1 if they are different, the equivalent to

NOT is an EOR 111…111.

• Constants are useful in logical operations as well as in arithmetic operations, so LEGv8 also provides
the instructions and immediate (ANDI), or immediate (ORRI), and exclusive or immediate (EORI).

A. Carini – Digital System Architectures

EOR X9,X10,X12 // NOT operation

(In ARMv8: MOVN)

Differences between ARMv8 and LEGv8

• The immediate fields for ANDI, ORRI, and EORI of the full ARMv8 instruction set are not simple
12-bit immediates.

• ARMv8 has the unusual feature of using a complex algorithm for encoding immediate values.
• Some small constants (e.g., 1, 2, 3, 4, and 6) are valid, while others (e.g., 5) are not.
• LEGv8 simply uses normal 12-bit immediates as found in ADDI.
• This difference means EORI X1,X1,#5 is legal for LEGv8 but not ARMv8.

• Unlike almost all other computer architectures, ARMv8 allows a register to be shifted as part of an
arithmetic or logical instruction.

• Since this combination is unusual in computer architectures and not frequently generated by
compilers, LEGv8 treat shifts as separate instructions.

• The opcode used is that of UBFM (unsigned bitfield move) but the Rm and shamt fields coding has
been simplified.

A. Carini – Digital System Architectures

Instructions for Making Decisions

• Decision making is commonly represented in programming languages using the if statement,
sometimes combined with go to statements and labels.

• LEGv8 includes two decision-making instructions, similar to an if statement with a go to.

• means go to the statement labeled L1 if the value in register equals zero.
• CBZ stands for compare and branch if zero.

• means go to the statement labeled L1 if the value in register does not equal zero.
• CBNZ stands for compare and branch if not zero.

• These two instructions are traditionally called conditional branches.

A. Carini – Digital System Architectures

Compiling if-then-else into Conditional Branches

• f, g, h, i, and j are variables that correspond to the five registers X19 through X23.
• What is the compiled LEGv8 code for this C if statement?

A. Carini – Digital System Architectures

Assembler calculates addresses

Compiling a while Loop in C

• Here is a traditional loop in C:

• Assume that i and k correspond to registers X22 and X24 and the base of the array save is in X25.
• What is the LEGv8 assembly code corresponding to this C code?

A. Carini – Digital System Architectures

Basic Blocks

• basic block A sequence of instructions with
• No branches (except possibly at the end) and
• No branch targets or branch labels (except possibly at the beginning).

A. Carini – Digital System Architectures

• A compiler identifies basic blocks for optimization
• An advanced processor can accelerate execution
of basic blocks

More Conditional Operations

• The full set of comparisons is less than (<), less than or equal (≤), greater than (>), greater than or
equal (≥), equal (=), and not equal (≠).

• Comparisons must also deal with the dichotomy between signed and unsigned numbers.
• Condition codes or flags are used to handle all these cases:

• negative (N) – the result that set the condition code had a 1 in the most significant bit;
• zero (Z) – the result that set the condition code was 0;
• overflow (V) – the result that set the condition code overflowed; and
• carry (C) – the result that set the condition code had a carry out of the most significant bit or a

borrow into the most significant bit.
• They are set by a limited number of operations —ADD, ADDI, AND, ANDI, SUB, and SUBI— when the

condition code is activated.
• In LEGv8 assembly language, append an S to the end of one of these instructions if you want to set

condition codes: ADDS, ADDIS, ANDS, ANDIS, SUBS, and SUBIS.

A. Carini – Digital System Architectures

More Conditional Operations

• Conditional branches (written as B.cond) use combinations of the condition codes.
• Use subtract to set flags, then conditionally branch:

• B.EQ
• B.NE
• B.LT (less than, signed), B.LO (less than, unsigned)
• B.LE (less than or equal, signed), B.LS (less than or same, unsigned)
• B.GT (greater than, signed), B.HI (greater than, unsigned)
• B.GE (greater than or equal, signed), B.HS (greater than or same, unsigned)

A. Carini – Digital System Architectures

Conditional Example

• C code:
if (a > b) a += 1;

a in X22, b in X23

• The corresponding LEGv8 assembly code is:

SUBS X9,X22,X23 // use subtract to make comparison

B.LE Exit // conditional branch

ADDI X22,X22,#1

Exit: …

A. Carini – Digital System Architectures

Supporting Procedures in Computer Hardware

• procedure A stored subroutine that performs a specific task based on the parameters with which it is
provided.

• Procedures are one way to implement abstraction in software.
• In the execution of a procedure, the program must follow these six steps:

1. Put parameters in a place where the procedure can access them.
2. Transfer control to the procedure.
3. Acquire the storage resources needed for the procedure.
4. Perform the desired task.
5. Put the result value in a place where the calling program can access it.
6. Return control to the point of origin, since a procedure can be called from several points in a

program.

A. Carini – Digital System Architectures

LEGv8 Support for Procedures

• LEGv8 software follows the following convention for procedure calling in allocating its 32 registers:
• X0–X7: eight parameter registers in which to pass parameters or return values.
• LR (X30): one return address register to return to the point of origin.

• LEGv8 assembly language includes an instruction just for the procedures:
• branch-and-link instruction (BL)

• it branches to an address and simultaneously saves the address of the following instruction, i.e.,
the return address in register LR (X30).

• To support the return from a procedure, computers like LEGv8 use the branch register instruction (BR)
meaning an unconditional branch to the address specified in a register:

• Implicit in the stored-program idea is the need to have a register to hold the address of the current
instruction being executed, the program counter.

A. Carini – Digital System Architectures

Using more registers

• Suppose a compiler needs more registers for a procedure than the eight argument registers.
• Any registers needed by the caller must be restored to the values that they contained before the

procedure was invoked.
• The ideal data structure for spilling registers is a stack—a last-in-first-out queue.
• A stack needs a pointer, the stack pointer, to the most recently allocated address in the stack.
• The stack pointer (SP), which is just one of the 32 registers, is adjusted by one doubleword for each

register that is saved or restored.
• SP is X28 in LEGv8, but is X31 in ARMv8.

• Placing data onto the stack is called a push, and removing data from the stack is called a pop.
• By historical precedent, stacks “grow” from higher addresses to lower addresses.
• This convention means that you push values onto the stack by subtracting from the stack

pointer.
• Adding to the stack pointer shrinks the stack, thereby popping values off the stack.

A. Carini – Digital System Architectures

Compiling a C Procedure That Doesn’t Call Another Procedure

• The parameter variables g, h, i, and j correspond to the argument registers X0, X1, X2, and X3,
• f corresponds to X19.

• We will use X9, X10, X19: they could be needed by the caller. Thus, we will “push” them into the stack.

A. Carini – Digital System Architectures

Compiling a C Procedure That Doesn’t Call Another Procedure

leaf_example:

SUBI SP, SP, #24 // adjust stack to make room for 3 items

STUR X10, [SP,#16] // save register X10 for use afterwards

STUR X9, [SP,#8] // save register X9 for use afterwards

STUR X19, [SP,#0] // save register X19 for use afterwards

ADD X9,X0,X1 // register X9 contains g + h

ADD X10,X2,X3 // register X10 contains i + j

SUB X19,X9,X10 // f = X9 − X10, which is (g + h) − (i + j)

ADD X0,X19,XZR // returns f (X0 = X19 + 0)

LDUR X19, [SP,#0] // restore register X19 for caller

LDUR X9, [SP,#8] // restore register X9 for caller

LDUR X10, [SP,#16] // restore register X10 for caller

ADDI SP,SP,#24 // adjust stack to delete 3 items

BR LR // branch back to calling routine

A. Carini – Digital System Architectures

Local Data on the Stack

A. Carini – Digital System Architectures

Register Usage

A. Carini – Digital System Architectures

• We have used temporary registers and assumed their old values must be saved and restored.
• To avoid saving and restoring a register whose value is never used, LEGv8 software separates 19 of the

registers into two groups:
• X9–X18: temporary registers that are not preserved by the callee (called procedure) on a

procedure call;
• X19–X27: saved registers that must be preserved on a procedure call (if used, the callee saves

and restores them).

Non-Leaf Procedures

A. Carini – Digital System Architectures

• Non-Leaf Procedures are procedures that call other procedures
• For nested call, caller needs to save on the stack:

• Its return address LR
• Any arguments (X0-X7) and temporaries (X9-X17) needed after the call

• Restore from the stack after the call

Non-Leaf Procedure Example

A. Carini – Digital System Architectures

• C code:
long long int fact(long long int n)

{

if (n < 1) return 1;

else return n * fact(n - 1);

}

• Argument n in X0
• Result in X1 (<<< unusual !!! Should be in X0)

Non-Leaf Procedure Example

A. Carini – Digital System Architectures

fact:

SUBI SP, SP, #16 // adjust stack for 2 items

STUR LR, [SP,#8] // save the return address

STUR X0, [SP,#0] // save the argument n

SUBIS XZR,X0, #1 // test for n < 1

B.GE L1 // if n >= 1, go to L1

ADDI X1,XZR, #1 // return 1

ADDI SP,SP,#16 // pop 2 items off stack

BR LR // return to caller

L1: SUBI X0,X0,#1 // n >= 1: argument gets (n − 1)

BL fact // call fact with (n − 1)

LDUR X0, [SP,#0] // return from BL: restore argument n

LDUR LR, [SP,#8] // restore the return address

ADDI SP, SP, #16 // adjust stack pointer to pop 2 items

MUL X1,X0,X1 // return n * fact (n − 1)

BR LR // return to the caller

Preserved/Not Preserved between calls

A. Carini – Digital System Architectures

Managing C variables

A. Carini – Digital System Architectures

• A C variable is generally a location in storage, and its interpretation depends both on its type and
storage class.

• Example types include integers and characters.
• C has two storage classes: automatic and static.
• Automatic variables are local to a procedure and are discarded when the procedure exits.
• Static variables exist across exits from and entries to procedures.

• declared outside all procedures or using the keyword static
• To simplify access to static data, some LEGv8 compilers reserve a register, called the global pointer, or

GP, e.g., X27.

• Automatic variables are saved in registers or stack.
• Static variables are saved in the static data segment.
• Dynamically allocated memory is placed in the heap.

Procedure frame

A. Carini – Digital System Architectures

• The segment of the stack containing a procedure’s saved registers and local variables is called a
procedure frame or activation record.

• Some ARMv8 compilers use a frame pointer (FP) to point to the first doubleword of the frame
of a procedure.

• A stack pointer might change during the procedure.
• A frame pointer offers a stable base register within a procedure for local memory-references.

Memory Layout

A. Carini – Digital System Architectures

• Text: program code
• Static data: global variables

• e.g., static variables in C,
constant arrays and strings

• Dynamic data: heap
• E.g., malloc in C, new in Java

• Stack: automatic storage

Summary of Register Conventions

A. Carini – Digital System Architectures

Byte/Halfword Operations

A. Carini – Digital System Architectures

• LEGv8 byte/halfword load/store
• Load byte:

• LDURB Rt, [Rn, offset]

• Sign extend to 64 bits in Rt (???)
• Store byte:

• STURB Rt, [Rn, offset]

• Store just rightmost byte
• Load halfword:

• LDURH Rt, [Rn, offset]

• Sign extend to 64 bits in Rt (???)
• Store halfword:

• STURH Rt, [Rn, offset]

• Store just rightmost halfword
• LEGv8 word load/store

• Load signed word (signed extended to 64 bits):
• LDURSW Rt, [Rn, offset]

• Store word:
• STURW Rt, [Rn, offset]

String Copy Example

A. Carini – Digital System Architectures

• C code:
• Null-terminated string

void strcpy (char x[], char y[])

{ size_t i;

i = 0;

while ((x[i]=y[i])!='\0')

i += 1;

}

• Base addresses for arrays x and y are found in X0 and X1, while i is in X19.

String Copy Example

A. Carini – Digital System Architectures

• LEGv8 code:

strcpy:

SUBI SP,SP,8 // push X19

STUR X19,[SP,#0]

ADD X19,XZR,XZR // i=0

L1: ADD X10,X19,X1 // X10 = addr of y[i]

LDURB X11,[X10,#0] // X11 = y[i]

ADD X12,X19,X0 // X12 = addr of x[i]

STURB X11,[X12,#0] // x[i] = y[i]

CBZ X11,L2 // if y[i] == 0 then exit

ADDI X19,X19,#1 // i = i + 1

B L1 // next iteration of loop

L2: LDUR X19,[SP,#0] // restore saved $s0

ADDI SP,SP,8 // pop 1 item from stack

BR LR // and return

Note that…

A. Carini – Digital System Architectures

• ARMv8 software is required to keep the stack aligned to “quadword” (16 byte) addresses to get better
performance. This convention means that a single char variable allocated on the stack occupies 16
bytes, even though it needs less. However, a C string variable or an array of bytes will pack 16 bytes
per quadword.

• LEGv8 keeps everything 64 bits vs. providing both 32-bit and 64-bit address instructions as in ARMv8,
which means it needs to include STURW (store word) as an instruction even though it is not specified
in ARMv8 in assembly language. ARMv8 just uses STUR with a W register name (32-bit register)
instead of X register name (64-bit register).

Wide Immediate Operands

A. Carini – Digital System Architectures

• Most constants are small and the 12-bit immediate is sufficient.
• For the occasional 32-bit constant
• MOVZ: move wide with zeros
• MOVK: move wide with keep
• can set any 16 bits of a constant in a register.
• The 16-bit field to be loaded is specified by adding LSL and then the number 0, 16, 32, or 48.

IW format

Addressing in Branches

A. Carini – Digital System Architectures

• B-type
• B 1000 // go to location 10000ten

• CB-type
• CBNZ X19, Exit // go to Exit if X19 != 0

• Both addresses are PC-relative
• Address = PC + offset (from instruction)

• This form of branch addressing is called PC-relative addressing.
• Since all LEGv8 instructions are 4 bytes long, LEGv8 stretches the branch distance by having PC-relative

addressing refer to the number of words to the next instruction instead of the number of bytes.
• the 19-bit field can branch ±1 MB from the current PC
• the 26-bit field can branch ±128 MB from the current PC

5 10000ten

6 bits 26 bits

181 Exit

8 bits 19 bits

19

5 bits

Addressing in Branches

A. Carini – Digital System Architectures

• Most conditional branches are to a nearby location, but occasionally they branch far away, farther
than can be represented in the 19 bits of the conditional branch instruction.

• The assembler comes to the rescue!
• Given

• It can replace the short-address conditional branch with

LEGv8 Addressing Mode Summary

A. Carini – Digital System Architectures

• The addressing modes of the LEGv8 instructions are the following:

1. Immediate addressing, where the operand is a constant within the instruction itself.
2. Register addressing, where the operand is a register.
3. Base or displacement addressing, where the operand is at the memory location whose address

is the sum of a register and a constant in the instruction, e.g. LDUR, STUR
4. PC-relative addressing, where the branch address is the sum of the PC and a constant in the

instruction.

LEGv8 Addressing Mode Summary

A. Carini – Digital System Architectures

LEGv8 Encoding Summary

A. Carini – Digital System Architectures

LEGv8 Encoding Summary

A. Carini – Digital System Architectures

Parallelism and Instructions: Synchronization

A. Carini – Digital System Architectures

• Two processors sharing an area of memory
• P1 writes, then P2 reads
• Data race if P1 and P2 don’t synchronize

• Result depends on order of accesses
• Hardware support required

• Atomic read/write memory operation
• No other access to the location allowed between the read and write

• Could be a single instruction
• E.g., atomic swap of register ↔memory
• Or an atomic pair of instructions

• Assume that we want to build a simple lock where the value 0 is used to indicate that the lock is free
and 1 is used to indicate that the lock is unavailable.

• A processor tries to set the lock by doing an exchange of 1, which is in a register, with the memory
address corresponding to the lock.

• The value returned from the exchange instruction is 1 if some other processor had already claimed
access, and 0 otherwise.

• In the latter case, the value is also changed to 1, preventing any competing exchange in another
processor from also retrieving a 0.

Synchronization in LEGv8

A. Carini – Digital System Architectures

• LEGv8 includes a special load and a special store called:
• load exclusive register (LDXR)
• store exclusive register (STXR)

• These instructions are used in sequence.
• If the contents of the memory location specified by LDXR are changed before the STXR to the same

address occurs, then the STXR fails and does not write the value to memory.
• The STXR is defined to both store the value of a register in memory and to change the value of another

register to a 0 if it succeeds and to a 1 if it fails.
• STXR specifies three registers: one to indicate failure or success, one to hold the value to be stored in

memory, and one to hold the address.

Synchronization in LEGv8

A. Carini – Digital System Architectures

• Example 1: atomic swap (to test/set lock variable)

• Example 2: lock

• Unlock:

Translating and Starting a Program

A. Carini – Digital System Architectures

To identify the type of file, UNIX follows a
suffix convention for files:
C source files are named x.c,
assembly files are x.s,
object files are named x.o,
statically linked library routines are x.a,
dynamically linked library routes are x.so,
executable files are called a.out.
MS-DOS uses the suffixes .C, .ASM, .OBJ,
.LIB, .DLL, and .EXE to the same effect.

Many compilers produce object
modules directly

Static linking

Compiler

A. Carini – Digital System Architectures

• The compiler transforms the C program into an assembly language program.
• In 1975, many operating systems and assemblers were written in assembly language because

memories were small and compilers were inefficient.
• Today compilers can produce assembly language programs nearly as well as an assembly language

expert, and sometimes even better for large programs.

Assembler

A. Carini – Digital System Architectures

• The assembler translates the assembly language program into machine language.
• It creates an object file, which is a combination of machine language instructions, data, and

information needed to place instructions properly in memory.

• The assembler can also treat common variations of machine language instructions, i.e.,
pseudoinstructions. E.g., LEGv8 accepts

• Converted to

• Converted to

• Converted to

Assembler

A. Carini – Digital System Architectures

• To produce the binary version of each instruction in the assembly language program, the assembler
must determine the addresses corresponding to all labels.

• Assemblers keep track of labels used in branches and data transfer instructions in a symbol table.
• The table contains pairs of symbols and addresses.

• The object file for UNIX systems typically contains six distinct pieces:
• The object file header describes the size and position of the other pieces of the object file.
• The text segment contains the machine language code.
• The static data segment contains data allocated for the life of the program.
• The relocation information identifies instructions and data words that depend on absolute

addresses when the program is loaded into memory.
• The symbol table contains the remaining labels that are not defined, such as external

references.
• The debugging information contains a concise description of how the modules were compiled

so that a debugger can associate machine instructions with C source files.

Linker (also called linker editor)

A. Carini – Digital System Architectures

• The linker is a systems program that combines independently assembled machine language programs
and resolves all undefined labels into an executable file.

• There are three steps for the linker:
1. Place code and data modules symbolically in memory.
2. Determine the addresses of data and instruction labels.
3. Patch both the internal and external references.

• The linker uses the relocation information and symbol table in each object module to resolve all
undefined labels (i.e., in branch instructions and data addresses).

• If all external references are resolved, the linker next determines the memory locations each module
will occupy.

• When the linker places a module in memory, all absolute references, that is, memory addresses that
are not relative to a register, must be relocated to reflect its true location.

• The linker produces an executable file that can be run on a computer.
• The executable file is a functional program in the format of an object file that contains no

unresolved references.
• It can contain symbol tables and debugging information.
• Relocation information may be included for the loader.

Example: Linking Object Files

A. Carini – Digital System Architectures

Example: Linking Object Files

A. Carini – Digital System Architectures

Example: Linking Object Files

A. Carini – Digital System Architectures

Loader

A. Carini – Digital System Architectures

• The loader is a systems program that places an object program in main memory so that it is ready to
execute.

• The loader follows these steps in UNIX systems:
1. Reads the executable file header to determine size of the text and data segments.
2. Creates an address space large enough for the text and data.
3. Copies the instructions and data from the executable file into memory.
4. Copies the parameters (if any) to the main program onto the stack.
5. Initializes the processor registers and sets the stack pointer to the first free location.
6. Branches to a start-up routine that copies the parameters into the argument registers and calls

the main routine of the program. When the main routine returns, the start-up routine
terminates the program with an exit system call.

Dynamically Linked Libraries

A. Carini – Digital System Architectures

• We have described the traditional static approach to linking libraries before the program is run.
• It has a few disadvantages:

1. The library routines become part of the executable code. If a new version of the library is
released that fixes bugs or supports new hardware devices, the statically linked program keeps
using the old version.

2. It loads all routines in the library that are called anywhere in the executable, even if those calls
are not executed. The library can be large relative to the program.

• These disadvantages lead to dynamically linked libraries (DLLs), where the library routines are not
linked and loaded until the program is run.
• Both the program and library routines keep extra information on the location of nonlocal

procedures and their names.
• In the original version of DLLs, the loader ran a dynamic linker, using the extra information

in the file to find the appropriate libraries and to update all external references.
• But, it still linked all routines of the library that might be called.
• In a more efficient approach each routine is linked only after it is called.

Dynamically Linked Libraries

A. Carini – Digital System Architectures

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

A C Sort Example

A. Carini – Digital System Architectures

• Swap procedure (leaf)

void swap(long long int v[], long long int k)

{

long long int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

• v in X0, k in X1, temp in X9

A C Sort Example

A. Carini – Digital System Architectures

swap: LSL X10,X1,#3 // X10 = k * 8

ADD X10,X0,X10 // X10 = address of v[k]

LDUR X9,[X10,#0] // X9 = v[k]

LDUR X11,[X10,#8] // X11 = v[k+1]

STUR X11,[X10,#0] // v[k] = X11 (v[k+1])

STUR X9,[X10,#8] // v[k+1] = X9 (v[k])

BR LR // return to calling routine

A C Sort Example

A. Carini – Digital System Architectures

• Sort procedure, non-leaf calls swap

void sort (long long int v[], size_t n)

{

size_t i, j;

for (i = 0; i < n; i += 1) {

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {

swap(v,j);

}

}

}

• v in X0, n in X1, i in X19, j in X20,
• we will also need to save v in X21, n in X22

A C Sort Example

A. Carini – Digital System Architectures

• Skeleton of outer loop:

// for (i = 0; i <n; i += 1) {

MOV X19,XZR // i = 0

for1tst:

CMP X19, X1 // compare X19 to X1 (i to n)

B.GE exit1 // go to exit1 if X19 ≥ X1 (i≥n)

(body of outer for-loop)

ADDI X19,X19,#1 // i += 1

B for1tst // branch to test of outer loop

exit1:

A C Sort Example

A. Carini – Digital System Architectures

• Skeleton of inner loop:
//for (j = i − 1; j >= 0 && v[j] > v[j + 1]; j − = 1) {

SUBI X20, X19, #1 // j = i - 1

for2tst: CMP X20,XZR // compare X20 to 0 (j to 0)

B.LT exit2 // go to exit2 if X20 < 0 (j < 0)

LSL X10, X20, #3 // reg X10 = j * 8

ADD X11, X21, X10 // reg X11 = v + (j * 8)

LDUR X12, [X11,#0] // reg X12 = v[j]

LDUR X13, [X11,#8] // reg X13 = v[j + 1]

CMP X12, X13 // compare X12 to X13

B.LE exit2 // go to exit2 if X12 ≤ X13

MOV X0, X21 // first swap parameter is v

MOV X1, X20 // second swap parameter is j

BL swap // call swap

MOV X1, X22 // needed for first loop comparison

SUBI X20, X20, #1 // j –= 1

B for2tst // branch to test of inner loop

exit2:

A C Sort Example

A. Carini – Digital System Architectures

• Preserve saved registers:

SUBI SP,SP,#40 // make room on stack for 5 regs

STUR LR,[SP,#32] // save LR on stack

STUR X22,[SP,#24]// save X22 on stack

STUR X21,[SP,#16]// save X21 on stack

STUR X20,[SP,#8] // save X20 on stack

STUR X19,[SP,#0] // save X19 on stack

MOV X21, X0 // copy parameter X0 into X21

MOV X22, X1 // copy parameter X1 into X22

• Restore saved registers:

exit1: LDUR X19, [SP,#0] // restore X19 from stack

LDUR X20, [SP,#8] // restore X20 from stack

LDUR X21,[SP,#16] // restore X21 from stack

LDUR X22,[SP,#24] // restore X22 from stack

LDUR X30,[SP,#32] // restore LR from stack

ADDI SP,SP,#40 // restore stack pointer

Effect of Compiler Optimization

A. Carini – Digital System Architectures

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

Effect of Language and Algorithm

A. Carini – Digital System Architectures

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

Lessons Learnt

A. Carini – Digital System Architectures

• Instruction count and CPI are not good performance indicators in isolation
• Compiler optimizations are sensitive to the algorithm
• Java/JIT compiled code is significantly faster than JVM interpreted
• Comparable to optimized C in some cases
• Nothing can fix a dumb algorithm!

Arrays versus Pointers

A. Carini – Digital System Architectures

• Array indexing involves:
• Multiplying index by element size
• Adding to array base address

• Pointers correspond directly to memory addresses:
• Can avoid indexing complexity

Arrays versus Pointers

A. Carini – Digital System Architectures

clear1(int array[], int size) {
int i;
for (i = 0; i < size; i += 1)

array[i] = 0;
}

clear2(int *array, int size) {
int *p;
for (p=&array[0]; p<&array[size]; p = p+1)

*p = 0;
}

MOV X9,XZR // i = 0

loop1: LSL X10,X9,#3 // X10 = i * 8

ADD X11,X0,X10 // X11 = address

// of array[i]

STUR XZR,[X11,#0]

// array[i] = 0

ADDI X9,X9,#1 // i = i + 1

CMP X9,X1 // compare i to

// size

B.LT loop1 // if (i < size)

// go to loop1

MOV X9,X0 // p = address of

// array[0]

LSL X10,X1,#3 // X10 = size * 8

ADD X11,X0,X10 // X11 = address

// of array[size]

loop2: STUR XZR,[X9,#0]

// Memory[p] = 0

ADDI X9,X9,#8 // p = p + 8

CMP X9,X11 // compare p to <

// &array[size]

B.LT loop2 // if (p < &array[size])

// go to loop2

Arrays versus Pointers

A. Carini – Digital System Architectures

• Multiply “strength reduced” to shift
• Array version requires shift to be inside loop

• Part of index calculation for incremented i
• c.f. incrementing pointer

• Compiler can achieve same effect as manual use of pointers
• Induction variable elimination
• Better to make program clearer and safer

Real Stuff: ARMv7 (32-bit) Instructions

A. Carini – Digital System Architectures

• Standing originally for the Acorn RISC Machine, later changed to Advanced RISC Machine.
• ARMv1 came out in 1985 with 32 bit addresses.
• Many versions of the 32-bit address ARM instruction set came out over the years, culminating with

ARMv7 in 2005.
• ARMv8 with 64-bit addresses was revealed in 2013, with big differences.

• Similarities between ARMv7 and ARMv8:
• All instructions are 32 bits wide for both architectures.
• The only way to access memory is via load and store instructions on both architectures.

• But …

Real Stuff: ARMv7 (32-bit) Instructions

A. Carini – Digital System Architectures

• Here are some of the differences:
• ARMv7 and the earlier ARM instruction sets have just 15 general-purpose registers.
• No register is hardwired to 0, so ARMv7 and its predecessors need extra instructions to

perform some operations that ARMv8 can do with XZR.
• The missing 16th register in ARMv7 and its predecessors is the program counter (PC).
• ARMv7 addressing modes do not work for all data sizes.
• ARMv7 has Load Multiple and Store Multiple instructions. ARMv8 does not.
• Rather than the immediate field simply being a constant, it is essentially an input to a function

that produces a constant.
• The eight least-significant bits of ARMv7’s 12-bit immediate field are zero-extended to a

32-bit value and then rotated right the number of bits specified in the first four bits of the
field multiplied by two.

• Unlike ARMv8, the early ARM instruction sets omitted a divide instruction.

Real Stuff: The Rest of the ARMv8 Instruction set

A. Carini – Digital System Architectures

• Many assembly instruction are translated to different machine instructions (i.e. opcodes) according to
the data the operate on.

• ARMv8 includes both 32-bit and 64-bit versions of instructions within the same architecture.
• In assembly language, programmers use registers named W0, W1, … instead of the X0, X1, … to

specify 32-bit operations.

Real Stuff: The Rest of the ARMv8 Instruction set

A. Carini – Digital System Architectures

• From ARMv8 Instruction Set overview:

• Most integer instructions in the A64 instruction set have two forms, which operate on either 32-bit or
64-bit values within the 64-bit general-purpose register file.

• Where a 32-bit instruction form is selected, the following holds true:
• The upper 32 bits of the source registers are ignored;
• The upper 32 bits of the destination register are set to ZERO;
• Right shifts/rotates inject at bit 31, instead of bit 63;
• The condition flags, where set by the instruction, are computed from the lower 32 bits.

ARMv8 Integer Arithmetic Logic Instructions

A. Carini – Digital System Architectures

Bold means the instruction is also in LEGv8, italic means it is a
pseudoinstruction, and bold italic means it is a
pseudoinstruction that is also in LEGv8.

ARMv8 Integer Arithmetic Logic Instructions

A. Carini – Digital System Architectures

ARMv8 Integer Arithmetic Logic Instructions

A. Carini – Digital System Architectures

• The second register of all arithmetic and logical processing operations has the option of being shifted
before being operated on.
• The shift options are shift left logical, shift right logical, shift right arithmetic, and rotate right.
• Although the assembler has explicit instructions with these names (LSL, LSR, SRA, and ROR),

these are really just pseudoinstructions.
• To support arithmetic on narrower data types, there are instructions that let you mix data sizes of the

second operand by either sign extending it or zero extending it to the full width.
• The extended-register instructions work with bytes, halfwords, or words.

• To support add and subtract operations on operands larger than one doubleword, ARM includes
instructions to add or subtract the carry from a previous operation.

• ASR does arithmetic shift right, which replicates the sign bit during the shift, and ROR rotates the bits
to the right; that is, the bits shift off to the right are inserted on the left.

• There are versions of all the shift instructions that determine the amount to be shifted based on a
value in a register rather than as an immediate within the instruction.

• To manipulate fields of bits, the full ARMv8 instruction set includes instructions that can extract
a bit field from a register and insert it into another.

ARMv8 Integer Data Transfer Instructions

A. Carini – Digital System Architectures

• We did not see all of the addressing modes available, only the unscaled signed immediate offset.
• Here are five more:

1. Base plus a scaled 12-bit unsigned immediate offset.
2. Base plus a 64-bit register offset, optionally scaled.
3. Base plus a 32-bit extended register offset, optionally scaled.

• The scaling options of the first three addressing modes multiply or scale the address in the immediate
field or in the register by the size of the data being transferred in bytes.
• Thus, if X11 contains 100,000ten

• will load the double word (8 bytes) at address 100,128ten (100,000 + 8*16) into register X10.
• The address of the second addressing mode is simply the sum of two registers, with the option of

shifting the second operand by 1, 2, or 3 bits
• if X11 contains 100,000ten and X12 contains 1,000ten

• will load the double at address 108,000ten (100,000 + 2<<3 *1000) into register X10.
• The third addressing mode simply uses a 32-bit register (e.g., W12) instead of a 64-bit register

ARMv8 Integer Data Transfer Instructions

A. Carini – Digital System Architectures

4. Pre-indexed by an unscaled 9-bit signed immediate offset.
5. Post-indexed by an unscaled 9-bit signed immediate offset.

• These last two addressing modes change the base register as part of the address calculation.
• Thus, if X11 contains 100,000ten

• will load the double word at address 100,016ten into register X10 and change X11 to 100,016ten.

• will load the double word at address 100,000ten into register X10 and change X11 to 100,016ten.

• Among other things, to accelerate data transfers, ARMv8 includes three load pair and store pair
instructions (LDP, LDPSW, STP), which transfer two doublewords at a time.

ARMv8 Integer Data Transfer Instructions

A. Carini – Digital System Architectures

ARMv8 Branch Instructions

A. Carini – Digital System Architectures

ARMv8 Branch Instructions

A. Carini – Digital System Architectures

• There are two more unconditional branches:
• The first is a variation of branch and link that uses a register for the branch address (BLR).
• The second is return from subroutine (RET), which sounds a lot like branch register (BR);

• The reason ARMv8 has different opcodes for the same operation is so that hardware
branch predictors can know whether it is really return from a subroutine (RET), which is
easy to predict, or being used in a branch table (BR), which is much harder to predict.

• There are instructions that store a value into a register based on the condition codes.
• The idea behind condition select instructions is to replace conditional branches, which can cause

problems in pipelined execution if they can’t be predicted.

Fallacies

A. Carini – Digital System Architectures

• Powerful instruction  higher performance
• Fewer instructions required
• But complex instructions are hard to implement

• May slow down all instructions, including simple ones
• Compilers are good at making fast code from simple instructions

• Use assembly code for high performance
• But modern compilers are better at dealing with modern processors
• More lines of code more errors and less productivity

Fallacies

A. Carini – Digital System Architectures

• Backward compatibility  instruction set doesn’t change
• But they do accrete more instructions

x86 instruction set

Pitfalls

A. Carini – Digital System Architectures

• Sequential words are not at sequential addresses
• Increment by 4, not by 1!

• Keeping a pointer to an automatic variable after procedure returns
• e.g., passing pointer back via an argument
• Pointer becomes invalid when stack popped

References

• David A. Patterson and John L. Hennessy, “Computer organization and design ARM edition: the
hardware software interface,” Morgan Kaufmann, 2016.

• Chapter 2
• Sections 2.1-2.3, 2.5-2.14, 2.17, 2.19, 2.20

A. Carini – Digital System Architectures

Most of the text has been taken and adapted from “Computer Organization and Design ARM Edition: The
Hardware Software Interface”.
If not differently indicated, all figures have been taken from the book or the material in the companion
website of “Computer Organization and Design ARM Edition: The Hardware Software Interface”.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102

