
Introduction to Artificial Intelligence

Local search

Instructor: Laura Nenzi

University of Trieste, Italy
[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

§ Local Search
§ In a discrete space
§ In a continuous space

Local search algorithms

§ In many optimization problems, path is irrelevant; the goal state is the solution
§ Then state space = set of “complete” configurations;

find configuration satisfying constraints, e.g., n-queens problem; or, find
optimal configuration, e.g., travelling salesperson problem

§ In such cases, can use iterative improvement algorithms: keep a single “current”
state, try to improve it

§ Constant space, suitable for online as well as offline search
§ More or less unavoidable if the “state” is yourself (i.e., learning)

Hill Climbing

§ Simple, general idea:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

Heuristic for n-queens problem

§ Goal: n queens on board with no conflicts, i.e., no queen attacking another
§ States: n queens on board, one per column
§ Actions: move a queen in its column
§ Heuristic value function: number of conflicts

Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
current ← make-node(problem.initial-state)
loop do

neighbor ← a highest-valued successor of current
if neighbor.value ≤ current.value then

return current.state
current ← neighbor

“Like climbing Everest in thick fog with amnesia”

Global and local maxima
Random restarts

§ find global optimum
§ duh

Random sideways moves
§ Escape from shoulders
§ Loop forever on flat

local maxima

Hill-climbing on the 8-queens problem
§ No sideways moves:

§ Succeeds w/ prob. 0.14
§ Average number of moves per trial:

§ 4 when succeeding, 3 when getting stuck
§ Expected total number of moves needed:

§ 4 + 3(1-p)/p =~ 22 moves

§ Allowing 100 sideways moves:
§ Succeeds w/ prob. 0.94
§ Average number of moves per trial:

§ 21 when succeeding, 65 when getting stuck
§ Expected total number of moves needed:

§ 21 + 65(1-p)/p =~ 25 moves

Moral: algorithms with knobs
to twiddle are irritating

Simulated annealing

§ Resembles the annealing process used to cool metals slowly to
reach an ordered (low-energy) state

§ Basic idea:
§ Allow “bad” moves occasionally, depending on “temperature”
§ High temperature => more bad moves allowed, shake the system out of

its local minimum
§ Gradually reduce temperature according to some schedule
§ Sounds pretty instable, doesn’t it?

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a state
current ← problem.initial-state
for t = 1 to ∞ do

T ←schedule(t)
if T = 0 then return current
next ← a randomly selected successor of current
∆E ← next.value – current.value
if ∆E > 0 then current ← next

else current ← next only with probability e∆E/T

Simulated Annealing

§ Theoretical guarantee:
§ Stationary distribution (Boltzmann): P(x) a eE(x)/T
§ If T decreased slowly enough, will converge to optimal state!

§ Proof sketch
§ Consider two adjacent states x, y with E(y) > E(x) [high is good]
§ Assume x®y and y®x and outdegrees D(x) = D(y) = D
§ Let P(x), P(y) be the equilibrium occupancy probabilities at T
§ Let P(x®y) be the probability that state x transitions to state y

x y

Occupation probability as a function of T

x

E(x)

Simulated Annealing

§ Is this convergence an interesting guarantee?

§ Sounds like magic, but reality is reality:
§ The more downhill steps you need to escape a local optimum,

the less likely you are to ever make them all in a row
§ “Slowly enough” may mean exponentially slowly
§ Random restart hillclimbing also converges to optimal state…

§ Simulated annealing and its relatives are a key workhorse
in VLSI layout and other optimal configuration problems

Local beam search

§ Basic idea:
§ K copies of a local search algorithm, initialized randomly
§ For each iteration

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

Or, K chosen randomly with
a bias towards good ones

Beam search example (K=4)

8

6

7

8

9

7

7

7

6

8

9

9

8

7

9

3

5

10

10

9

X
X

X

X
9

8

9

9

10

9

9

10

X

X

X

X

Local beam search

§ Why is this different from K local searches in parallel?
§ The searches communicate! “Come over here, the grass is greener!”

§ What other well-known algorithm does this remind you of?
§ Evolution!

Genetic algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety

Local search in continuous spaces

Example: Siting airports in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize
f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

Handling a continuous state/action space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing (decreasing d)

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Is this a local or global minimum of f?
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients

§ Constrained optimization
§ Most famous: linear programming problems

§ Many configuration and optimization problems can be
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary

