Introduction to Artificial Intelligence

Local search

>

Instructor: Laura Nenzi

University of Trieste, Italy

[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

" Local Search
" |n a discrete space
" [n a continuous space

Local search algorithms

In many optimization problems, path is irrelevant; the goal state is the solution

Then state space = set of “complete” configurations;
find configuration satisfying constraints, e.g., n-queens problem; or, find
optimal configuration, e.g., travelling salesperson problem

In such cases, can use iterative improvement algorithms: keep a single “current”
state, try to improve it

Constant space, suitable for online as well as offline search
More or less unavoidable if the “state” is yourself (i.e., learning)

Hill Climbing

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
" |If no neighbors better than current, quit

Heuristic for n-queens problem

= Goal: n queens on board with no conflicts, i.e., no queen attacking another
= States: n queens on board, one per column

= Actions: move a queen in its column

= Heuristic value function: number of conflicts

=

=

Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
current < make-node(problem.initial-state)
loop do
neighbor < a highest-valued successor of current
if neighbor.value < current.value then
return current.state
current < neighbor

“Like climbing Everest in thick fog with amnesia”

Global and local maxima

objectixe function

shoulder

TN

e’

lobal maximum Random restarts
= find global optimum
= duh
local maximum Random sideways moves

"flat" local maximum = Escape from shoulders
| = Loop forever on flat
local maxima

»State space
current P

state

Hill-climbing on the 8-queens problem

= No sideways moves:

= Succeeds w/ prob. 0.14

" Average number of moves per trial:
= 4 when succeeding, 3 when getting stuck

" Expected total number of moves needed:

= 4 +3(1-p)/p =~ 22 moves
= Allowing 100 sideways moves:

= Succeeds w/ prob. 0.94

" Average number of moves per trial:
= 21 when succeeding, 65 when getting stuck

" Expected total number of moves needed:

= 21 + 65(1-p)/p =~ 25 moves

Moral: algorithms with knobs
to twiddle are irritating

Simulated annealing

" Resembles the annealing process used to cool metals slowly to
reach an ordered (low-energy) state

" Basic idea:

= Allow “bad” moves occasionally, depending on “temperature”

" High temperature => more bad moves allowed, shake the system out of
its local minimum

® Gradually reduce temperature according to some schedule
" Sounds pretty instable, doesn’t it?

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a state
current & problem.initial-state
fort=1to-~do

T &schedule(t)
if T=0 then return current
next < a randomly selected successor of current

AE & next.value — current.value T E;‘é/ =
if AE > 0 then current & next

else current & next only with probability e2E/T

Simulated Annealing

" Theoretical guarantee:
= Stationary distribution (Boltzmann): P(x) o efX/T
= |f T decreased slowly enough, will converge to optimal state!

" Proof sketch
= Consider two adjacent states x, y with E(y) > E(x) [high is good]

= Assume x—>y and y—x and outdegrees D(x) = D(y) = D
= Let P(x), P(y) be the equilibrium occupancy probabilities at T
= Let P(x—y) be the probability that state x transitions to state y

47@31’(;(_7—7‘):?(7)}3(,_3;9
b ()
Pcv«j\é :PC‘/3& — (7:) P

B P4y @=M)4

i[ﬂ/r

E(x)

Occupation probability as a function of T

T=0

A

_ —J=

Simulated Annealing

" |s this convergence an interesting guarantee?

= Sounds like magic, but reality is reality:

®= The more downhill steps you need to escape a local optimum,
the less likely you are to ever make them all in a row

= “Slowly enough” may mean exponentially slowly
= Random restart hillclimbing also converges to optimal state...

= Simulated annealing and its relatives are a key workhorse
in VLSI layout and other optimal configuration problems

Local beam search

= Basic idea:

= K copies of a local search algorithm, initialized randomly

Or, K chosen randomly with

a bias towards good ones
current states

= For each iteration
= Generate ALL succe

= Choosd best Klof these to be the new current states

Beam search example (K=4)

9 <:)):; 100

Local beam search

" Why is this different from K local searches in parallel?

" The searches communicate! “Come over here, the grass is greener!”

* What other well-known algorithm does this remind you of?

= Evolution!

Genetic algorithms

24748552 |24 31% 327§52411 32748552 3274802
32752411 %ﬁ: 247@48552 >—< 24752411 24752411
24415124 20\26%‘ 327.52§411 32752124 3252124
32543213 | 11 14% 244155124 >_< 24415411 2441541[7]

Fithess Selection

Pairs

Cross—Over

= Genetic algorithms use a natural selection metaphor

= Resample K individuals at each step (selection) weighted by fitness function
= Combine by pairwise crossover operators, plus mutation to give variety

Local search in continuous spaces

Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Oradea

Airport locations

Neamt X= (X1;y1); (XZIyZ)r (X31y3)
| 87
' _ A 1asi City locations (x_y.)
Arad 7
' e
_ -8z 92
; = g9 Fagaras == SSsao C, = cities closest to airport a
118 === = ;
| 1 —
) Y, - eipa
Fimidhty ~=~ ..\ Rimnicu Vilcea Objective: minimize
\ R
\ _ _ 2 _ 2

11 \\ X Lugoj pitesti \!! . flx) =2, ZCEC&? (Xa = %)* + (Vo - Yol

1 ugoj

\

“}Q \\ %8 Hirsova

\ M Mehadia lbk\ ¢ Urziceni» =

-

7‘5 138 3 -~ 56

DrObeta 120 _____———_—— -, -------------
Craiova g Eforie

Giurgiu

Handling a continuous state/action space

1. Discretize it!

= Define a grid with increment o, use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state

b. Simulated annealing (decreasing o)

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

Gradient vector Vf(x) = (0f/0x,, 0f/0y,, Of/0x,, ...)"
For the airports, f(x) =X, Z..c_ (X5 - X)* + (V5 - Vc)?
Of/0x1=Zcc, 2(X; - X,)

At an extremum, Vf(x) =0

Is this a local or global minimum of f?

Gradient descent: x <« x - aVf(x)
" Huge range of algorithms for finding extrema using gradients

Constrained optimization

= Most famous: linear programming problems

Summary

" Many configuration and optimization problems can be
formulated as local search
= General families of algorithms:
= Hill-climbing, continuous optimization
* Simulated annealing (and other stochastic methods)
" Local beam search: multiple interaction searches

" Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

