

Instructor: Laura Nenzi

University of Trieste, Italy

[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

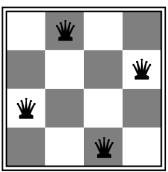
Today

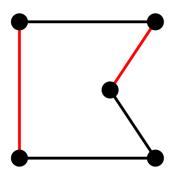
Local Search

- In a discrete space
- In a continuous space

Local search algorithms

- In many optimization problems, *path* is irrelevant; the goal state *is* the solution
- Then state space = set of "complete" configurations; find configuration satisfying constraints, e.g., n-queens problem; or, find optimal configuration, e.g., travelling salesperson problem

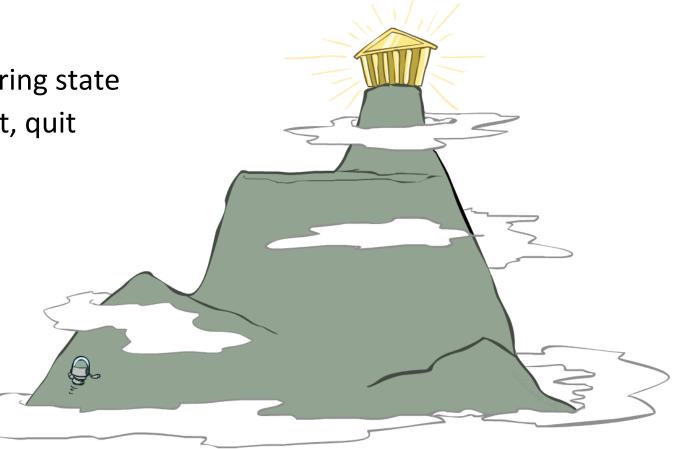




- In such cases, can use *iterative improvement* algorithms: keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search
- More or less unavoidable if the "state" is yourself (i.e., learning)

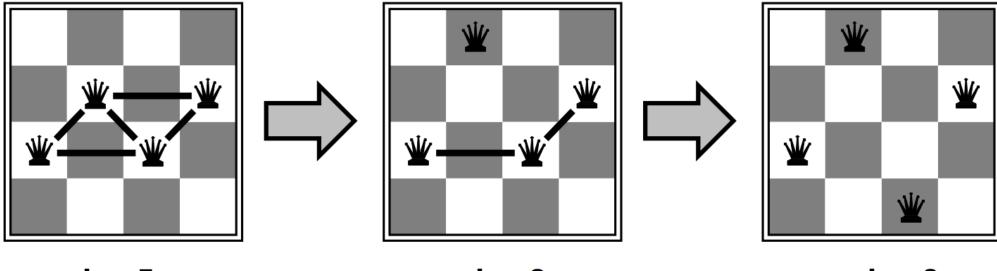
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit



Heuristic for *n*-queens problem

- Goal: n queens on board with no *conflicts*, i.e., no queen attacking another
- States: n queens on board, one per column
- Actions: move a queen in its column
- Heuristic value function: number of conflicts



h = 5

h = 0

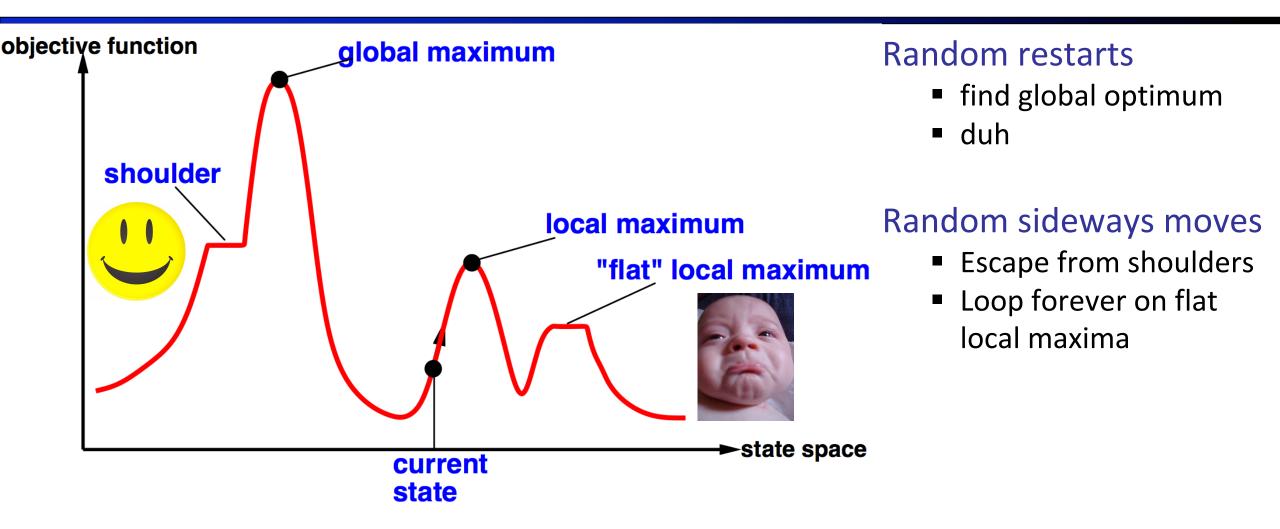
Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
 current ← make-node(problem.initial-state)
 loop do

neighbor ← a highest-valued successor of current
if neighbor.value ≤ current.value then
 return current.state
current ← neighbor

"Like climbing Everest in thick fog with amnesia"

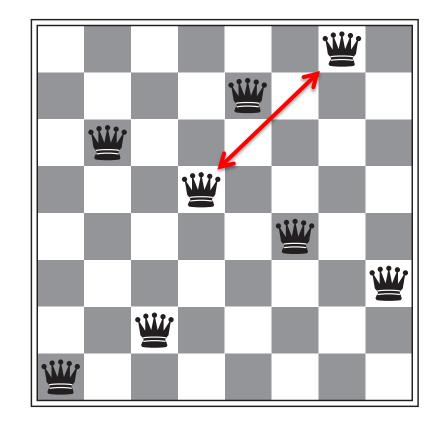
Global and local maxima



Hill-climbing on the 8-queens problem

No sideways moves:

- Succeeds w/ prob. 0.14
- Average number of moves per trial:
 - 4 when succeeding, 3 when getting stuck
- Expected total number of moves needed:
 - 4 + 3(1-p)/p =~ 22 moves
- Allowing 100 sideways moves:
 - Succeeds w/ prob. 0.94
 - Average number of moves per trial:
 - 21 when succeeding, 65 when getting stuck
 - Expected total number of moves needed:
 - 21 + 65(1-p)/p =~ 25 moves



Simulated annealing

- Resembles the annealing process used to cool metals slowly to reach an ordered (low-energy) state
- Basic idea:
 - Allow "bad" moves occasionally, depending on "temperature"
 - High temperature => more bad moves allowed, shake the system out of its local minimum
 - Gradually reduce temperature according to some schedule
 - Sounds pretty instable, doesn't it?

Simulated annealing algorithm

- function SIMULATED-ANNEALING(problem, schedule) returns a state
- current ← problem.initial-state
- for t = 1 to ∞ do
 - $T \leftarrow schedule(t)$
 - if T = 0 then return current
 - $\mathsf{next} \leftarrow \mathsf{a} \text{ randomly selected successor of } \mathsf{current}$
 - $\Delta E \leftarrow next.value current.value$

ᢇ᠉ᡷᢩᢓᢆᢧ᠄᠆ᡗ

if $\Delta E > 0$ **then** current \leftarrow next

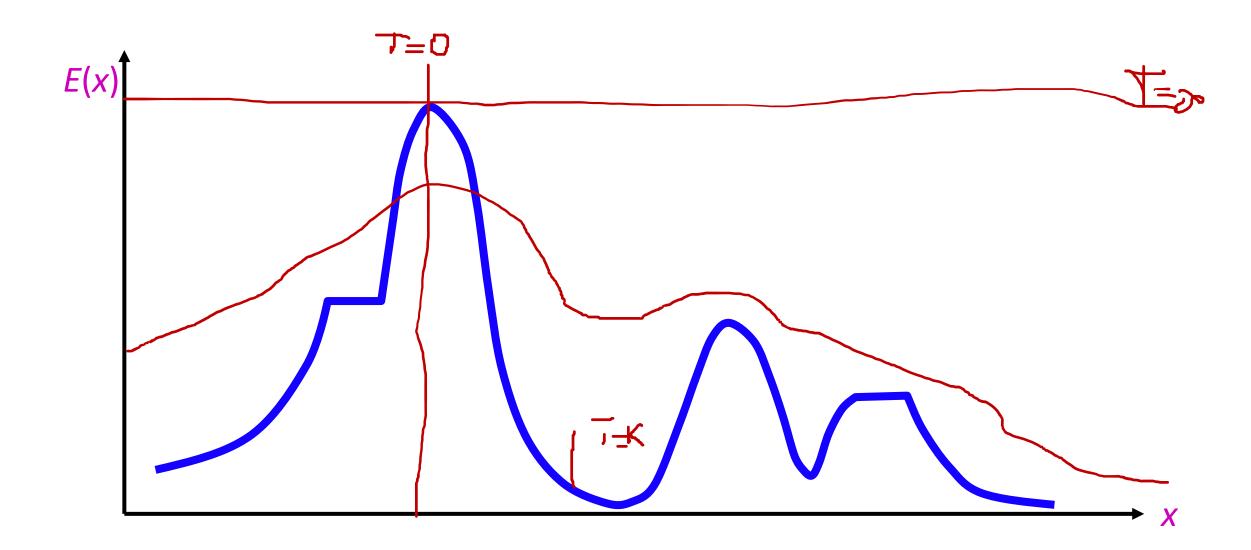
else current \leftarrow next only with probability $e^{\Delta E/T}$

Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution (Boltzmann): $P(x) \propto e^{E(x)/T}$
 - If T decreased slowly enough, will converge to optimal state!
- Proof sketch
 - Consider two adjacent states x, y with E(y) > E(x) [high is good]
 - Assume $x \rightarrow y$ and $y \rightarrow x$ and outdegrees D(x) = D(y) = D
 - Let P(x), P(y) be the equilibrium occupancy probabilities at T
 - Let $P(x \rightarrow y)$ be the probability that state x transitions to state y

$$\frac{P(\tau)P(\tau \rightarrow \tau) - P(\tau)P(\tau \rightarrow \tau)}{P(\tau) - P(\tau) - P(\tau)} = \frac{P(\tau)}{P(\tau)} = \frac{P(\tau)}$$

Occupation probability as a function of *T*



Simulated Annealing

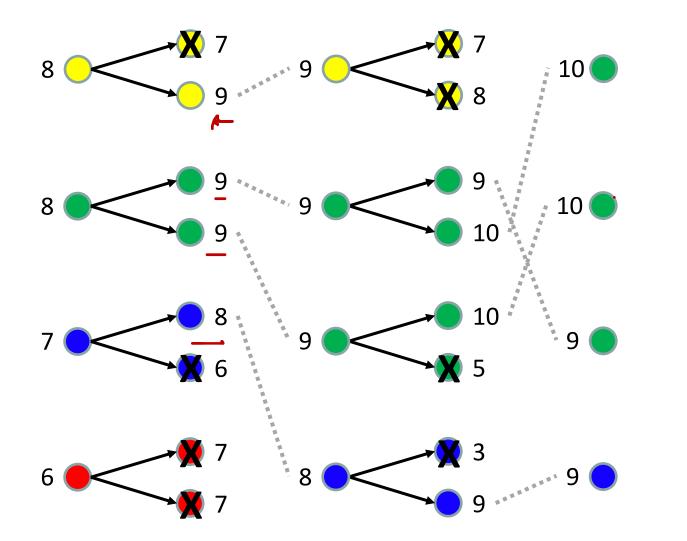
- Is this convergence an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - "Slowly enough" may mean exponentially slowly
 - Random restart hillclimbing also converges to optimal state...
- Simulated annealing and its relatives are a key workhorse in VLSI layout and other optimal configuration problems

Local beam search

Or, K chosen randomly with

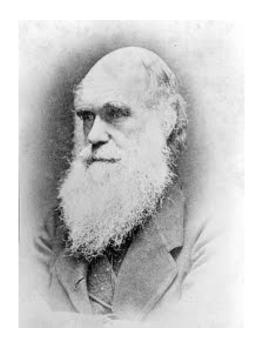
- Basic idea:
 - K copies of a local search algorithm, initialized randomly
 - For each iteration
 - a bias towards good ones
 Generate ALL successors from K current states
 - Choose best K of these to be the new current states

Beam search example (K=4)

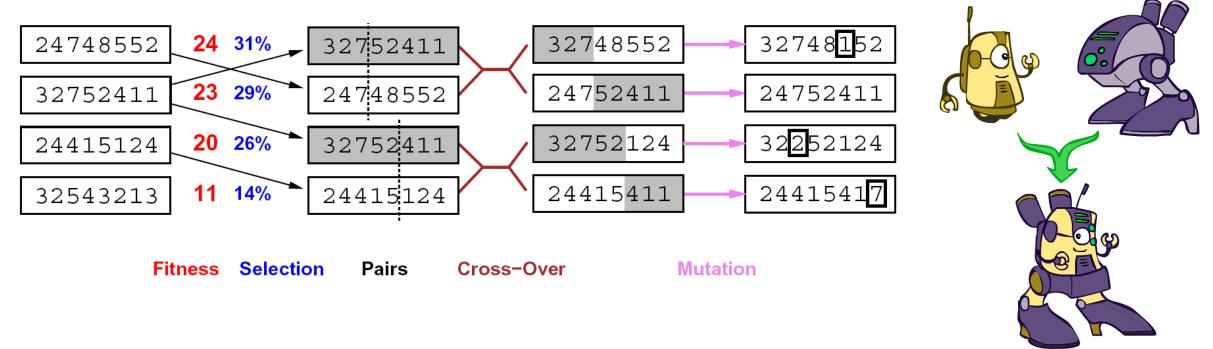


Local beam search

- Why is this different from *K* local searches in parallel?
 - The searches communicate! "Come over here, the grass is greener!"
- What other well-known algorithm does this remind you of?
 - Evolution!



Genetic algorithms

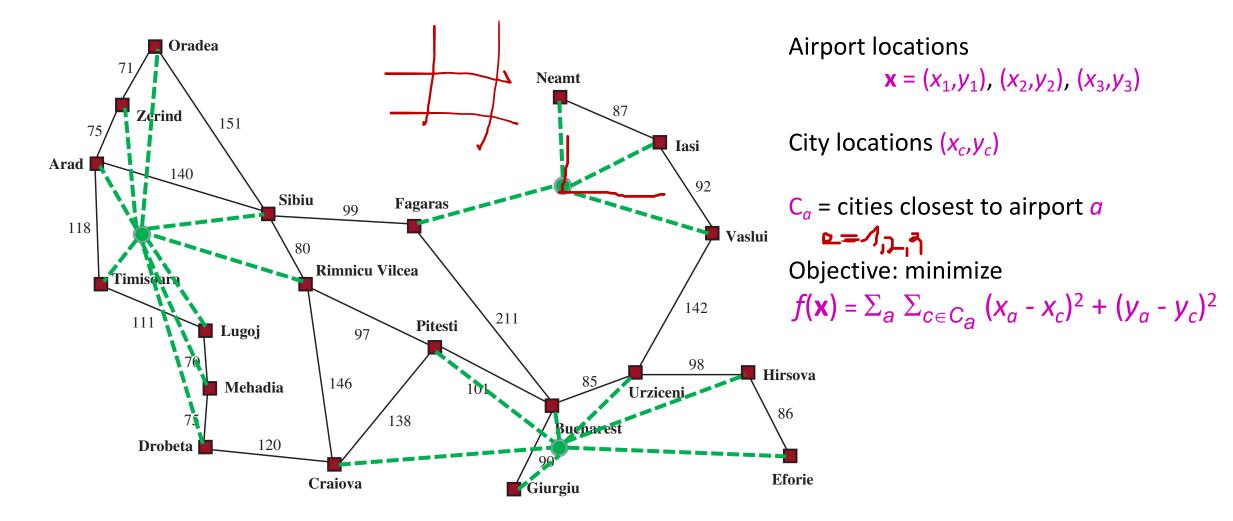


- Genetic algorithms use a natural selection metaphor
 - Resample K individuals at each step (selection) weighted by fitness function
 - Combine by pairwise crossover operators, plus mutation to give variety

Local search in continuous spaces

Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport



Handling a continuous state/action space

1. Discretize it!

• Define a grid with increment δ , use any of the discrete algorithms

2. Choose random perturbations to the state

- a. First-choice hill-climbing: keep trying until something improves the state
- b. Simulated annealing (decreasing δ)
- 3. Compute gradient of $f(\mathbf{x})$ analytically

Finding extrema in continuous space

- Gradient vector $\nabla f(\mathbf{x}) = (\partial f/\partial x_1, \partial f/\partial y_1, \partial f/\partial x_2, ...)^{\mathsf{T}}$
- For the airports, $f(\mathbf{x}) = \sum_{a} \sum_{c \in C_a} (x_a x_c)^2 + (y_a y_c)^2$
- $\partial f/\partial x_1 = \sum_{c \in C_1} 2(x_1 x_c)$
- At an extremum, $\nabla f(\mathbf{x}) = 0$
- Is this a local or global minimum of f?
- Gradient descent: $\mathbf{x} \leftarrow \mathbf{x} \alpha \nabla f(\mathbf{x})$
 - Huge range of algorithms for finding extrema using gradients
- Constrained optimization
 - Most famous: linear programming problems

Summary

- Many configuration and optimization problems can be formulated as local search
- General families of algorithms:
 - Hill-climbing, continuous optimization
 - Simulated annealing (and other stochastic methods)
 - Local beam search: multiple interaction searches
 - Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches