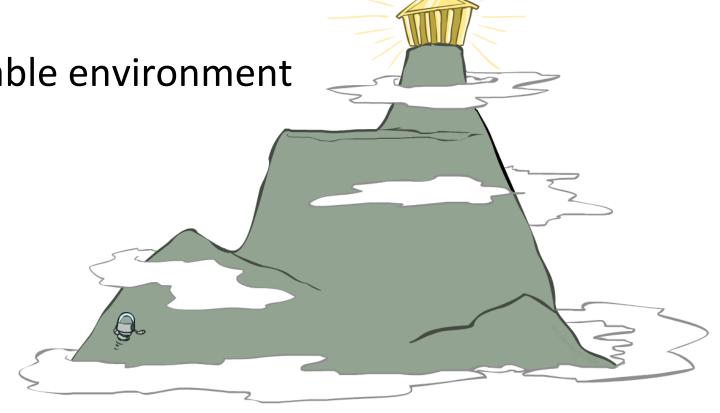
Introduction to Artificial Intelligence

Instructor: Laura Nenzi


University of Trieste, Italy

Today

Local Search

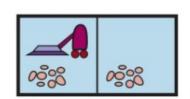
With non-determinism

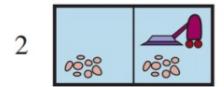
In a partially-observable environment

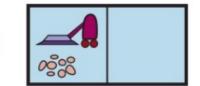
Search with Uncertainty

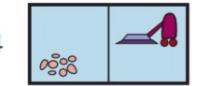
 When the environment is nondeterministic or partially-observable, the agent doesn't know what state it transitions to after taking an action

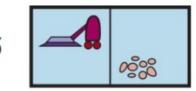
 Belief state = the set of physical states that the agent believes are possible

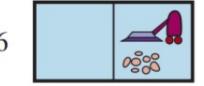

Search with Uncertainty

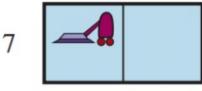

We cannot have as solution a sequence

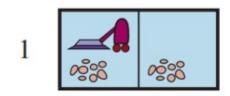

It has conditional plan (contingency plan or a strategy) that specifies what to do depending on what percepts agent receives while executing the plan.

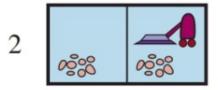

An erratic vacuum world

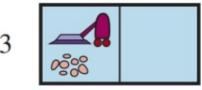

- Goal : clean up all the dirt (states 7 and 8)
- Three actions: Right, Left, and Suck
- In the erratic vacuum world, the Suck action works as follows:
 - When applied to a dirty square the action cleans the square and sometimes cleans up dirt in an adjacent square, too.
 - When applied to a clean square the action sometimes deposits dirt on the carpet

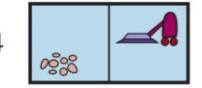


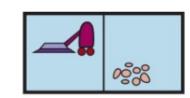


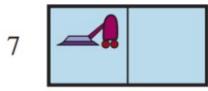


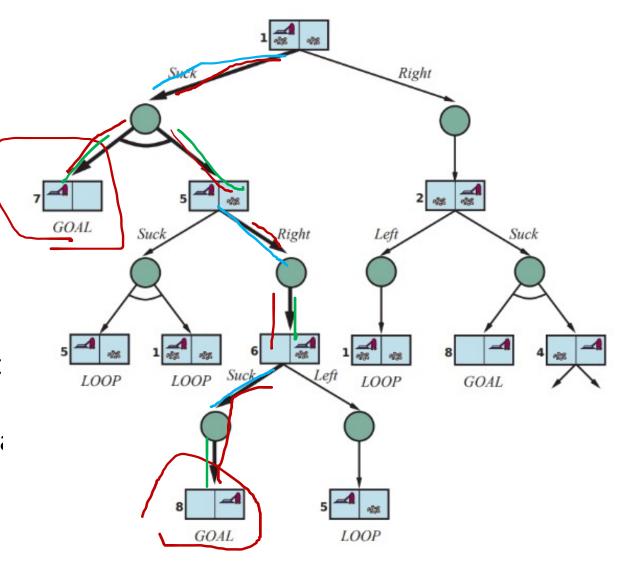





Belief State and Conditional Plan


- A RESULTS function that returns a set of possible outcome states
 - E.g., RESULTS(1, Suck) = {5,7}
- Conditional plan gives the condition to solve the problem
 - E.g. [Suck, if State=5 then [Right,Suck] else []]





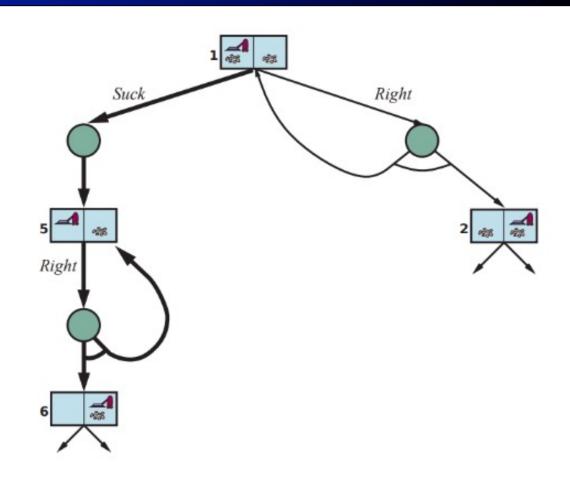
AND-OR search trees

- OR nodes: agent's choice
- AND nodes: environment's choice

- A solution is a subtree that:
 - has a goal node at every leaf
 - specifies one action at each of it OR nodes
 - includes every outcome branch a each of its AND nodes.

Search Algorithms with non-determininsm

 AND—OR graphs can be explored with depth-first or breadth-first or best-first algorithms


 The concept of a heuristic function must be modified to estimate the cost of a contingent solution rather than a sequence

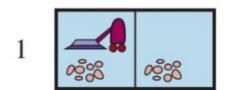
• The notion of admissibility carries over and there is an analog of the A^* algorithm for finding optimal solutions

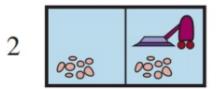
A slippery vacuum world

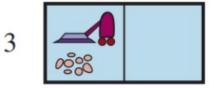
- E.g., RESULTS(5, Right) = {5,6}
- Solution: [Suck, while State=5 do Right, Suck]

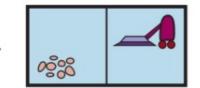
- When is a cyclic plan a solution?
 - every leaf is a goal state and that a leaf is reachable from every point in the plan
 - If random choice -> eventually it will work and the plan will succeed

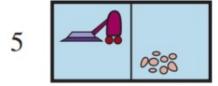
Search in Partially Observable Environments

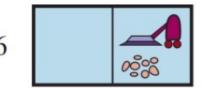

 A sensorless problem (or a conformant problem): when the agent's percepts provide no information at all

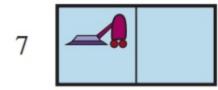

A sensorless version of the vacuum world.

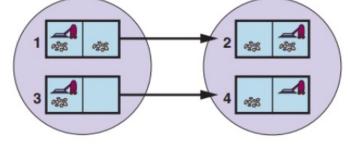

 Assume that the agent knows the geography of its world, but not its own location or the distribution of dirt.



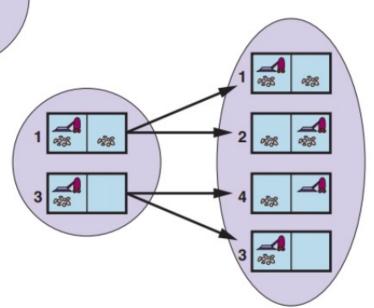

- Moving Right it will be in one of the states {2,4,6,8}
- After [Right,Suck] the agent will always end up in one of the states {4,8}
- [Right,Suck,Left,Suck] the agent is guaranteed to reach the goal state 7






The belief-state problem

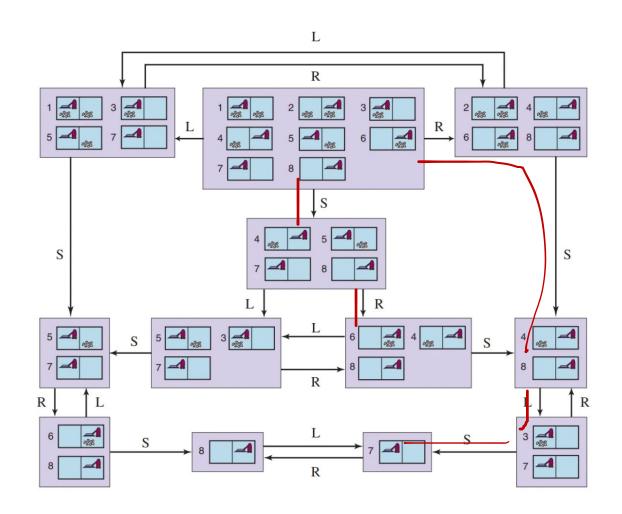
- States: 2^N belief states, if the original problem P has N states
- Initial state: typically all states in P
- Actions: $ACTIONS(b) = \bigcup_{s \in b} ACTIONS_P(s)$. If an illegal action might lead to catastrophe, it is safer to allow only the intersection
- Transition model: RESULT $(b, a) = \{s' : s' = RESULT_P(s, a) \text{ and } s \in b\}$
- Goal test: The agent necessarily achieves the goal if every state satisfies IS GOAL_P (s).
- Action cost: we assume that the cost of an action is the same in all states


The belief-state problem

$$b' = \text{RESULT}(b, a) = \{s' : s' = \text{RESULT}_P(s, a) \text{ and } s \in b\}$$

 $\{b'\}^\# > \{b\}^\#$ only with nondeterministic actions

• RESULT($\{1,3\}$, right) = $\{2,4\}$


• RESULT($\{1,3\}$, right) = $\{1,2,3,4\}$ in the slippery version

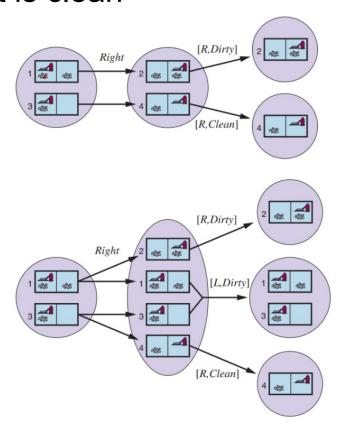
Reachable belief-state space for the det world

There are only 12 reachable belief states out of 28=256 possible belief states

 we can solve sensorless problems with any of the ordinary search algorithms

Decreasing the number of states

- Compact description
 - E.g. "nothing", "Not in the rightmost column"
- Incremental belief-state search: finding a solution that works for state 1; then we check if it works for state 2, ...
 - Single solution
 - Detect failure quickly


Searching in partially observable environments

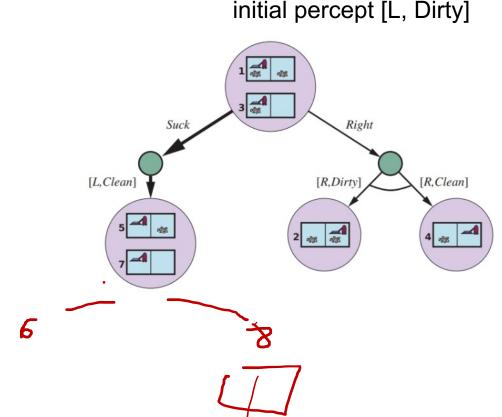
Many problems cannot be solved without sensing.

- A PERCEPT(s) function that returns the percept received by the agent in a given state.
 - PERCEPT(s)={possible percepts.}, non-deterministic problems
 - PERCEPT(s)=s, fully observable problems
 - PERCEPT(s)= Ø for sensorless problem

Local-sensing vacuum worlds

- A position sensor that yields the percept L in the left square, and R in the right square
- A dirt sensor that yields Dirty when the current square is dirty and Clean when it is clean

- In the deterministic world
 - PERCEPT(1)=[L,Dirty]


In the slippery world

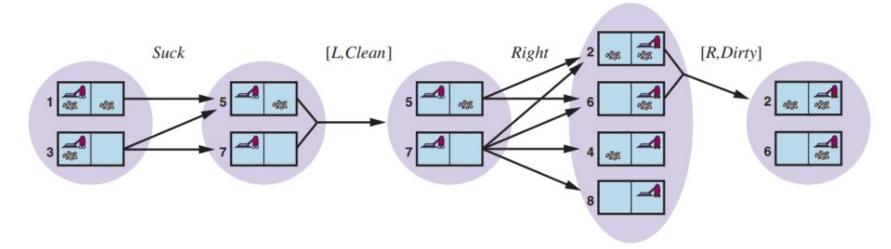
Solving partially observable problems

- Direct way to redefine the RESULT function considering the PERCEPT fcn
- We can apply directly the AND-OR search algorithm

Solution is:

[Suck,Right, if R_state={6} then Suck else []]

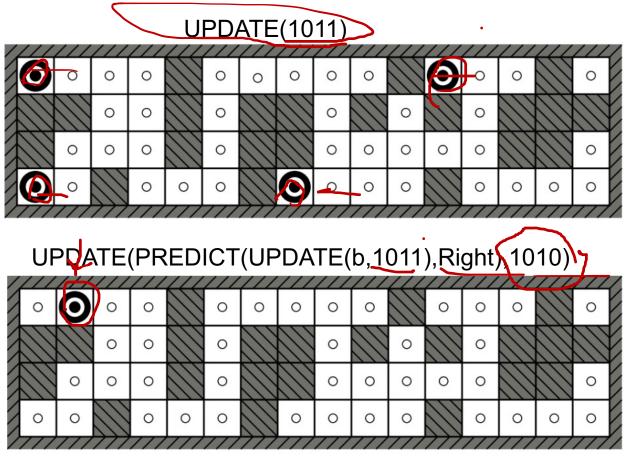
An agent for partially observable environments


An agent for partially observable environments formulates a problem, calls a search algorithm (such as AND-OR-SEARCH) to solve it, and executes the solution

Two differences between this agent and the one for fully observable deterministic environments:

- 1. The solution will be a conditional plan rather than a sequence
- The agent will need to maintain its belief state as it performs actions and receives percepts

Kindergarten vacuum world


- Agents sense only the state of their current square
- Any square may become dirty at any time unless the agent is actively cleaning it at that moment

Localization

Problem: given a map of the world and a sequence of percepts and actions working out where it is

- 4 sonar sensors that tell whether there is an obstacle
- Percept is in the form of a bit vector
- Right random action
- Initial belief state ={all states}

