
Announcements

§ Project 1 is due Thursday, April 6th, 11:59 PM PT
§ Please follow the announcements at the Teams chat, the class

times will have some changes in the coming weeks

272SM: Introduction to Artificial Intelligence
Constraint Satisfaction Problems II

Instructor: Tatjana Petrov

University of Trieste, Italy

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

Exercise: Formulating a CSP

Can you phrase the problem of Hamiltonian tour as a CSP (given a network of cities
connected by roads, choose an order to visit all cities in a country without repeating any)?

Exercise: Reduction to binary constraints

§ Show how a single ternary constraint such as “A+B = C” can be turned into three binary
constraints by using an auxiliary variable. You may assume finite domains.

Today

§ Efficient Solution of CSPs

§ Iterative Improvement

Review: CSPs

§ CSPs:
§ Variables
§ Domains
§ Constraints

§ Implicit (provide code to compute)
§ Explicit (provide a list of the legal tuples)
§ Unary / Binary / N-ary

§ Goals:
§ Here: find any solution
§ Also: find all, find best, etc.

K-Consistency

K-Consistency

§ Increasing degrees of consistency

§ 1-Consistency (Node Consistency): Each single node’s domain has a

value which meets that node’s unary constraints

§ 2-Consistency (Arc Consistency): For each pair of nodes, any

consistent assignment to one can be extended to the other

§ K-Consistency: For each k nodes, any consistent assignment to k-1

can be extended to the kth node.

§ Higher k more expensive to compute

§ (You need to know the k=2 case: arc consistency)

Strong K-Consistency

§ Strong k-consistency: also k-1, k-2, … 1 consistent

§ Claim: strong n-consistency means we can solve without backtracking!

§ Why?
§ Choose any assignment to any variable
§ Choose a new variable

§ By 2-consistency, there is a choice consistent with the first
§ Choose a new variable

§ By 3-consistency, there is a choice consistent with the first 2
§ …

§ Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Ordering

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain

§ Why min rather than max?
§ Also called “most constrained variable”
§ “Fail-fast” ordering

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

§ Why least rather than most?

§ Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]

Structure

Problem Structure

§ Extreme case: independent subproblems
§ Example: Tasmania and mainland do not interact

§ Independent subproblems are identifiable as
connected components of constraint graph

§ Suppose a graph of n variables can be broken into
subproblems of only c variables:
§ Worst-case solution cost is O((n/c)(dc)), linear in n
§ E.g., n = 80, d = 2, c =20
§ 280 = 4 billion years at 10 million nodes/sec
§ (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

§ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
§ Compare to general CSPs, where worst-case time is O(dn)

§ This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

§ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

§ Runtime: O(n d2)

Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent
§ Proof: Each X®Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

§ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
§ Proof: Induction on position

§ Why doesn’t this algorithm work with cycles in the constraint graph?

§ Note: this basic idea is also used in Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

§ Conditioning: instantiate a variable, prune its neighbors' domains

§ Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

§ Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

§ Find the smallest cutset for the graph below.

Exercise: Cutset

Consider a CSP with a constraint graph consisting of n variables arranged in a circle,
where each variable has two constraints, one with each neighbor on either side. Explain
how to solve this class of CSPs efficiently, in time O(n).

Tree Decomposition*
§ Idea: create a tree-structured graph of mega-variables
§ Each mega-variable encodes part of the original CSP
§ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) Î
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

Agree on shared vars

NT

SA

¹
WA

¹ ¹

Q

SA

¹
NT

¹ ¹

Agree on shared vars

NS
W

SA

¹
Q

¹ ¹

Agree on shared vars

V

SA

¹NS
W

¹ ¹

Iterative Improvement

Iterative Algorithms (Local search) for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned

§ To apply to CSPs:
§ Take an assignment with unsatisfied constraints
§ Operators reassign variable values
§ No fringe! Live on the edge.

§ Algorithm: While not solved,
§ Variable selection: randomly select any conflicted variable
§ Value selection: min-conflicts heuristic:

§ Choose a value that violates the fewest constraints
§ I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

How does Min-conflicts work in practice?

Performance of Min-Conflicts

§ Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

§ The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

(your own illustration within Project 2)

Completeness of local search

§ Hill climbing with random restart, simulated annealing, genetic algorithms

Summary: CSPs

§ CSPs are a special kind of search problem:
§ States are partial assignments
§ Goal test defined by constraints

§ Basic solution: backtracking search

§ Speed-ups:
§ Ordering
§ Filtering
§ Structure

§ Iterative min-conflicts is often effective in practice

HW: map coloring / performance

Generate random instances of map-coloring problems as follows: scatter n points on the
unit square; select a point X at random, connect X by a straight line to the nearest point
Y such that X is not already connected to Y and the line crosses no other line; repeat the
previous step until no more connections are possible. The points represent regions on the
map and the lines connect neighbors. Now try to find k-colorings of each map, for both
k=3 and k=4, using min-conflicts, backtracking, backtracking with forward checking, and
backtracking with MAC. Construct a table of average run times for each algorithm for
values of n up to the largest you can manage. Comment on your results.

HW: Critical ratio

Using a CSP solver program and another program to generate random problem instances
of CSPs, report on the time to solve the problem as a function of the ratio of the number
of constraints to the number of variables.

Next Time: Adversarial Search!

