Do the following exercises of the book David A. Patterson and John L. Hennessy, “Computer
organization and design ARM edition: the hardware software interface:”

3.20,3.22,3.23,3.24,3.27,3.41, 3.42, 3.43, 3.47

3.20 [5] <$§3.5> What decimal number does the bit pattern 0 X 0C000000
represent if it is a two's complement integer? An unsigned integer?

3.22 [10] <$3.5> What decimal number does the bit pattern 0 X 0C000000
represent if it is a floating point number? Use the IEEE 754 standard.

3.23 [10] <$3.5> Write down the binary representation of the decimal number
63.25 assuming the IEEE 754 single precision format.

3.24 [10] <$§3.5> Write down the binary representation of the decimal number
63.25 assuming the IEEE 754 double precision format.

3.27 [20] <$3.5> IEEE 754-2008 contains a half precision that is only 16 bits wide.
The leftmost bit is still the sign bit, the exponent is 5 bits wide and has a bias of 15,
and the mantissa is 10 bits long. A hidden 1 is assumed. Write down the bit pattern to
represent —1.5625 X 107" assuming a version of this format, which uses an excess-16
format to store the exponent. Comment on how the range and accuracy of this 16-bit
floating point format compares to the single precision IEEE 754 standard.

3.41 [10] <$3.5> Using the IEEE 754 floating point format, write down the bit
pattern that would represent —1/4. Can you represent —1/4 exactly?

3.42 [10] <§3.5> What do you get if you add —1/4 to itself four times? What is
—1/4 X 42 Are they the same? What should they be?

3.43 [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming
a floating point format that uses binary numbers in the fraction. Assume there are
24 bits, and you do not need to normalize. Is this representation exact?

3.47 [45] <§§3.6, 3.7> The following C code implements a four-tap FIR filter on
input array sig_1in. Assume that all arrays are 16-bit fixed-point values.

for (i = 3;i< 128;i+ +)
sig.outlCild = sig_.inli — 31 * «fL0] + sTg_inli — 21 * f£[1]
+ sig inki — 1] ¥ f[2] +siginlid * fL3]3

Assume you are to write an optimized implementation of this code in assembly
language on a processor that has SIMD instructions and 128-bit registers. Without
knowing the details of the instruction set, briefly describe how you would
implement this code, maximizing the use of sub-word operations and minimizing
the amount of data that is transferred between registers and memory. State all your
assumptions about the instructions you use.

Implementare il codice C dell’ultimo esercizio usando le istruzioni del LEG V8.

Assumere che X0 abbia I'indirizzo di sig_in, X1 I'indirizzo di sig_out, X2 I'indirizzo di f.

