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Multiply in LEGv8

• To  produce  a  properly  signed  or  unsigned  128-bit  product,  LEGv8  has  three instructions: 
• multiply (MUL), 
• signed multiply high (SMULH) and 
• unsigned multiply high (UMULH). 

• To get the integer 64-bit product, the programmer use MUL. 
• To get the upper 64 bits of the 128-bit product, the programmer uses either SMULH or UMULH, 

depending on the types of multiplier and multiplicand.

• LEGv8 multiply instructions do not set the overflow condition code, so it is up to the software to check 
to see if the product is too big to fit in 64 bits. 
• There is no overflow if the upper 64 bits is 0 for UMULH or the replicated sign of the lower  64 

bits for SMULH.
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Divide in LEGv8

• To  handle  both  signed  integers  and  unsigned  integers,  LEGv8  has  two instructions: 
• signed divide (SDIV) and 
• unsigned divide (UDIV).

• The  common  hardware  support  for  multiply  and  divide  allows  LEGv8  to provide a single pair of 
64-bit registers that are used both for multiply and divide.

• LEGv8 divide instructions ignore overflow: software must determine whether the quotient is too large. 
• In addition to overflow, division can also result in an improper  calculation:  division  by  0. 
• LEGv8 software must check the divisor to discover division by 0 as well as overflow.
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Multiply  and Divide in LEGv8
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Floating Point

• Representation for non-integral numbers
• Including very small and very large numbers

• Like scientific notation
• –2.34 × 1056
• +0.002 × 10–4
• +987.02 × 109

• In binary 
• ±1.xxxxxxx2 × 2yyyy

• Types float and double in C
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Floating Point Standard IEEE Std 754-1985

• Two representations: Single precision (32-bit) and Double precision (64-bit) 

• S: sign bit (0  non-negative, 1  negative)
• Normalized significand: 1.0 ≤ |significand| < 2.0

• Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
• Significand is Fraction with the “1.” restored

• Exponent: excess representation: actual exponent + Bias
• Ensures exponent is unsigned
• Single: Bias = 127; Double: Bias = 1203
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S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −+−=



Single-Precision Range

• Exponents 00000000 and 11111111 reserved
• Smallest value

• Exponent: 00000001
 actual exponent = 1 – 127 = –126

• Fraction: 000…00  significand = 1.0
• ±1.0 × 2–126 ≈ ±1.2 × 10–38

• Largest value
• exponent: 11111110

 actual exponent = 254 – 127 = +127
• Fraction: 111…11  significand ≈ 2.0
• ±2.0 × 2+127 ≈ ±3.4 × 10+38
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Double-Precision Range

• Exponents 0000…00 and 1111…11 reserved
• Smallest value

• Exponent: 00000000001
 actual exponent = 1 – 1023 = –1022

• Fraction: 000…00  significand = 1.0
• ±1.0 × 2–1022 ≈ ±2.2 × 10–308

• Largest value
• exponent: 11111111110

 actual exponent = 2046 – 1023 = +1023
• Fraction: 111…11  significand ≈ 2.0
• ±2.0 × 2+1023 ≈ ±1.8 × 10+308
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Infinities and NaNs

• Exponent = 111...1, Fraction = 000...0
• ±Infinity
• Can be used in subsequent calculations, avoiding need for overflow check

• Exponent = 111...1, Fraction ≠ 000...0
• Not-a-Number (NaN)
• Indicates illegal or undefined result

• e.g., 0.0 / 0.0
• Can be used in subsequent calculations
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Denormalized Numbers

• Exponent = 000...0  hidden bit is 0

• Smaller than normal numbers
• allow for gradual underflow, with diminishing precision
• Denormal with fraction = 000...0
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Two representations 

of 0.0!

0.0=+−= −BiasS 20)(01)(x
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IEEE Std 754-1985 Summary
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Overflow and underflow

• As for integer operations, floating-point arithmetic operation can originate overflows.
• overflow here means that 

• the exponent is too large to be represented in the exponent field.

• Floating point offers a new kind of exceptional event as well: the nonzero fraction we are calculating 
could become so small that it cannot be represented.

• We call this event underflow: 
• it occurs when the negative exponent is too large to fit in the exponent field.

A. Carini – Digital System Architectures



Managing Overflows and underflows

• What should happen on an overflow or underflow to let the user know that a problem occurred?
• LEGv8  can  raise  an  exception,  also  called  an  interrupt  on many computers. 
• An exception or interrupt is essentially an unscheduled procedure call. 

• The address of the instruction that overflowed is saved in a register, and 
• the computer jumps to a predefined address to invoke the appropriate routine for that 

exception. 
• In some situations the program can continue after corrective code is executed.

A. Carini – Digital System Architectures



Floating-Point Instructions in LEGv8

• LEGv8 supports the IEEE 754 single-precision and double-precision formats with these instructions:
• Floating-point addition, single (FADDS) and addition, double (FADDD)
• Floating-point subtraction, single (FSUBS) and subtraction, double (FSUBD)
• Floating-point multiplication, single (FMULS) and multiplication, double (FMULD)
• Floating-point division, single (FDIVS) and division, double (FDIVD)
• Floating-point comparison, single (FCMPS) and comparison, double (FCMPD)

• Separate floating-point registers: 
• called S0, S1, S2, … for single precision and D0, D1, D2, . . . for double precision.
• Single precision registers are just the lower half of double-precision registers.

• FP instructions operate only on FP registers
• Programs generally don’t do integer ops on FP data, or vice versa
• More registers with minimal code-size impact

• FP load and store instructions
• LDURS, LDURD
• STURS, STURD
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LEGv8 floating-point assembly language
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LEGv8 floating-point machine language
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Example

• The LEGv8 code to load two single precision numbers from memory, add them, and then store the 
sum might look like this:

LDURS  S4, [X28,c]  //  Load 32-bit F.P. number into S4

LDURS  S6, [X28,a]  //  Load 32-bit F.P. number into S6

FADDS  S2, S4, S6  //  S2 = S4 + S6 single precision

STURS  S2, [X28,b]  //  Store 32-bit F.P. number from S2

A. Carini – Digital System Architectures



Example: °F to °C

• C code:
float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0));

}

• fahr in S12, result in S0, literals in global memory space

• Compiled LEGv8 code:

f2c:

LDURS S16, [X27,const5]   // S16 = 5.0 (5.0 in memory)

LDURS S18, [X27,const9]   // S18 = 9.0 (9.0 in memory)

FDIVS S16, S16, S18       // S16 = 5.0 / 9.0

LDURS S18, [X27,const32]  // S18 = 32.0

FSUBS S18, S12, S18       // S18 = fahr – 32.0

FMULS S0, S16, S18        // S0 = (5/9)*(fahr – 32.0)

BR LR                     // return
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Example: Array Multiplication 

• C = C + A × B
• All 32 × 32 matrices, 64-bit double-precision elements

• C code:
void mm (double c[][], double a[][], double b[][]) {

int i, j, k;

for (i = 0; i < 32; i = i + 1)

for (j = 0; j < 32; j = j + 1)

for (k = 0; k < 32; k = k + 1)

c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

• Addresses of x, y, z in X0, X1, X2, and i, j, k in X19, X20, X21
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Example: Array Multiplication 

• LEGv8 code:
mm:...

LDI X10, 32 // X10 = 32 (row size/loop end)

LDI X19, 0 // i = 0; initialize 1st for loop

L1: LDI X20, 0 // j = 0; restart 2nd for loop

L2: LDI X21, 0 // k = 0; restart 3rd for loop

LSL X11, X19, 5 // X11 = i * 2 5 (size of row of c)

ADD X11, X11, X20// X11 = i * size(row) + j

LSL X11, X11, 3 // X11 = byte offset of [i][j]

ADD X11, X0, X11 // X11 = byte address of c[i][j]

LDURD D4, [X11,#0] // D4 = 8 bytes of c[i][j]

L3: LSL X9, X21, 5 // X9 = k * 2 5 (size of row of b)

ADD X9, X9, X20 // X9 = k * size(row) + j

LSL X9, X9, 3 // X9 = byte offset of [k][j]

ADD X9, X2, X9 // X9 = byte address of b[k][j]

LDURD D16, [X9,#0] // D16 = 8 bytes of b[k][j]
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Example: Array Multiplication 

LSL X9, X19, 5 // X9 = i * 2 5 (size of row of a)

ADD X9, X9, X21 // X9 = i * size(row) + k

LSL X9, X9, 3 // X9 = byte offset of [i][k]

ADD X9, X1, X9 // X9 = byte address of a[i][k]

LDURD D18, [X9,#0] // D18 = 8 bytes of a[i][k]

FMULD D16, D18, D16 // D16 = a[i][k] * b[k][j]

FADDD D4, D4, D16 // f4 = c[i][j] + a[i][k] * b[k][j]

ADDI X21, X21, 1 // $k = k + 1

CMP X21, X10 // test k vs. 32

B.LT L3 // if (k < 32) go to L3

STURD D4, [X11,0] // c[i][j] = D4

ADDI X20, X20, #1 // $j = j + 1

CMP X20, X10 // test j vs. 32

B.LT L2 // if (j < 32) go to L2

ADDI X19, X19, #1 // $i = i + 1

CMP X19, X10 // test i vs. 32

B.LT L1 // if (i < 32) go to L1

…
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Accurate Arithmetic

• IEEE Std 754 specifies additional rounding control
• Extra bits of precision (guard, round, sticky)

• guard and round The first of two extra bits kept on the right during intermediate 
calculations of floating-point numbers; used to improve rounding accuracy.

• sticky bit A bit used in rounding in addition to guard and round that is set whenever 
there are nonzero bits to the right of the round bit.

• Choice of rounding modes
• Allows programmer to fine-tune numerical behavior of a computation

• Not all FP units implement all options
• Most programming languages and FP libraries just use defaults
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The BIG Picture

• Bit patterns have no inherent meaning. 
• They may represent signed integers, unsigned integers, floating-point numbers, instructions, character 

strings, and so on. 
• What is represented depends on the instruction that operates on the bits in the word.

• The major difference between computer numbers and numbers in the real world is that computer 
numbers have limited size and hence limited precision; 

• it’s possible to calculate a number too big or too small to be represented  in  a  computer  word.  
• Programmers  must  remember  these limits and write programs accordingly.
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Subword Parallellism

• Many  graphics  systems  uses 8  bits  to  represent  each  of  the  three primary colors.
• Audio samples are often represented with 16 bits.
• Architects recognized that many graphics and audio applications would perform the same operation 

on vectors of these data. 
• Thus, graphics and audio applications can take advantage of performing simultaneous operations on 

short vectors.
• By  partitioning the  carry  chains  within  a  128-bit  adder, a  processor  could  use parallelism to 

perform simultaneous operations on shorter vectors:
• Sixteen 8-bit adds
• Eight 16-bit adds
• Four 32-bit adds

• Subword Parallelism is also called data-level parallelism, vector parallelism, or Single Instruction, 
Multiple Data (SIMD).
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ARMv8 SIMD

• ARMv8 added 32 128-bit registers (V0, V1, ..., V31) and more than 500 machine-language instructions 
to support subword parallelism.

• It supports all the subword data types you can imagine:
• 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit signed and unsigned integers
• 32-bit and 64-bit floating point numbers

• ARMv8 assembler  uses  different  suffixes  for  the  SIMD  registers  to  represent  different widths.
• The suffixes are B (byte) for 8-bit operands, H (half) for 16-bit operands, S (single) for 32-bit operands, 

D (double) for 64-bit operands, and Q (quad) for 128-bit operands.
• The programmer also specifies the number of subword operations for that data width with a number 

before the register name.
• Examples:

• 16 8-bit integer adds:
ADD V1.16B, V2.16B, V3.16B

• 4 32-bit FP adds:
FADD V1.4S, V2.4S, V3.4S
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SIMD example on x86: DGEMM

1.  void dgemm (size_t n, double* A, double* B, double* C)

2.  {

3.     for (size_t i = 0; i < n; ++i)

4.        for (size_t j = 0; j < n; ++j)

5.        {

6.           double cij = C[i+j*n]; /* cij = C[i][j] */

7.           for(size_t k = 0; k < n; k++ )

8.              cij += A[i+k*n] * B[k+j*n]; /*cij+=A[i][k]*B[k][j]*/

9.           C[i+j*n] = cij; /* C[i][j] = cij */

10.       }

11.}

• Notice that in reality it computes CT = BT * AT
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SIMD example on x86: DGEMM

1. //include <x86intrin.h>

2. void dgemm (size_t n, double* A, double* B, double* C)

3. {

4.   for ( size_t i = 0; i < n; i+=4 )

5.     for ( size_t j = 0; j < n; j++ ) {

6.        __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */

7.        for( size_t k = 0; k < n; k++ )

8.           c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

9.                  _mm256_mul_pd(_mm256_load_pd(A+i+k*n), 

10.                 _mm256_broadcast_sd(B+k+j*n)));

11.       _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12.       }

13.}

• The Advanced Vector Extensions (AVX) version is 3.85 times as fast the unoptimized code on one core 
of a 2.6 GHz Intel Core i7.
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ARMv8 SIMD
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Full ARMv8 Integer and Floating-point Arithmetic Instructions
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Full ARMv8 Integer and Floating-point Arithmetic Instructions
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Full ARMv8 Integer and Floating-point Arithmetic Instructions
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LEGv8 core instructions
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SPEC  CPU2006 integer and floating point 



Fallacies and Pitfalls

Fallacy:  Just as a left shift instruction can replace an integer multiply by a power of 2, a right shift is the 
same as an integer division by a power of 2.
• Right shift divides by 2i only for unsigned integers
• For signed integers, e.g., –5 / 4

• With logic shift: 
• 111110112 >>> 2 = 001111102 = +62

• Arithmetic right shift: replicate the sign bit
• 111110112 >> 2 = 111111102 = –2
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Fallacies and Pitfalls

Pitfall:  Floating-point addition is not associative.

Fallacy:  Parallel execution strategies that work for integer data types also work for 
floating-point data types.
• Parallel programs may interleave operations in unexpected orders
• Assumptions of associativity may fail
• Need to validate parallel programs under varying degrees of parallelism
• Programmers who write  parallel  code  with  floating-point numbers need to verify whether the 

results are credible, even if they don’t give the exact same answer as the sequential code.
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(x+y)+z x+(y+z)

x -1.50E+38 -1.50E+38

y 1.50E+38

z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00

1.50E+38
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