NIVERSITA . Dipartimento di
EGLI STUDI Ingegneria
ITRIESTE I a e Architettura

Arithmetic in LEGvS

A. Carini — Digital System Architectures

Multiply in LEGv8

* To produce a properly signed or unsigned 128-bit product, LEGv8 has three instructions:
* multiply (MUL),
* signed multiply high (SMULH) and
* unsigned multiply high (UMULH).
* To get the integer 64-bit product, the programmer use MUL.
* To get the upper 64 bits of the 128-bit product, the programmer uses either SMULH or UMULH,
depending on the types of multiplier and multiplicand.

* LEGv8 multiply instructions do not set the overflow condition code, so it is up to the software to check
to see if the product is too big to fit in 64 bits.

* There is no overflow if the upper 64 bits is 0 for UMULH or the replicated sign of the lower 64
bits for SMULH.

W BER [e ini - Dig |
@)j DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Divide in LEGvS

To handle both signed integers and unsigned integers, LEGv8 has two instructions:

* signed divide (SDIV) and

* unsigned divide (UDIV).
* The common hardware support for multiply and divide allows LEGv8 to provide a single pair of
64-bit registers that are used both for multiply and divide.

* LEGv8 divide instructions ignore overflow: software must determine whether the quotient is too large.

* In addition to overflow, division can also result in an improper calculation: division by 0.
* LEGvS8 software must check the divisor to discover division by 0 as well as overflow.

W BER [e ini - Dig |
@)j DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Multiply and Divide in LEGv8

multiply

MUL X1, X2, X3 X1 =X2x X3 Lower 64-bits of 128-bit product
signed multiply high SMULH X1, X2, X3 X1 =X2 x X3 Upper 64-bits of 128-bit signed
product
unsigned multiply high UMULH X1, X2, X3 X1 =X2xX3 Upper 64-bits of 128-bit unsigned
product
signed divide SDIV X1, X2, X3 X1 = X2 / X3 Divide, treating operands as signed
unsigned divide UDIV X1, X2, X3 X1 = X2 / X3 Divide, treating operands as unsigned

5% UNIVERSITA Diporinenio @
f_ “\\; DEGLI STUDI 1 Ingegneria
kﬁ:%" DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Floating Point

* Representation for non-integral numbers
* Including very small and very large numbers
* Like scientific notation
e -2.34x1056 <—— normalized

* +0.002 x 104
e +987.02 x 109 :> Not normalized

* Inbinary
o ELxxxxxxx, X 29V
* Types float and double in C

f—x\ UNIVERSITA - Dpetimento
@ AR (B3) Py A. Carini — Digital System Architectures

2= DITRIESTE e Architettura

Floating Point Standard IEEE Std 754-1985

* Two representations: Single precision (32-bit) and Double precision (64-bit)

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S Exponent Fraction

X = (—1)° x (1+ Fraction) x 2(&Penent-5ies)

* S:sign bit (0 = non-negative, 1 = negative)
* Normalized significand: 1.0 < |significand| < 2.0
* Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
* Significand is Fraction with the “1.” restored
* Exponent: excess representation: actual exponent + Bias
* Ensures exponent is unsigned
* Single: Bias = 127; Double: Bias = 1203

() BT | [b
| 5 Ingegneria f e Digh o
%= DITRIESTE 181) <arcnitettura A. Carini — Digital System Architectures

Single-Precision Range

* Exponents 00000000 and 11111111 reserved
* Smallest value
* Exponent: 00000001
= actual exponent =1-127 =-126
* Fraction: 000...00 = significand = 1.0
e +1.0x27126=+12x1038
* Largest value
* exponent: 11111110
=> actual exponent =254 - 127 = +127
* Fraction: 111...11 = significand = 2.0
e +2.0x2%127=+3.4x10%38

#2% UNIVERSITA Dptmerc
@ DEGLI STUDI 1 Ingegneria
‘sz DITRIESTE 181) <arcnitettura

A. Carini — Digital System Architectures

Double-Precision Range

* Exponents 0000...00 and 1111...11 reserved
* Smallest value
* Exponent: 00000000001
= actual exponent =1 —-1023 =-1022
* Fraction: 000...00 = significand = 1.0
e +1.0x27102=x 422 x 107308
* Largest value
* exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023
* Fraction: 111...11 = significand = 2.0
e +2.0x2t1023=x+1 8 x 10%308

() s | FR v
Kl Ingegneria ini — o1 i
B0 BITRIESTE 1a facia A. Carini — Digital System Architectures

Infinities and NaNs

* Exponent=111...1, Fraction = 000...0

* ziInfinity

* Can be used in subsequent calculations, avoiding need for overflow check
* Exponent=111...1, Fraction # 000...0

* Not-a-Number (NaN)

* Indicates illegal or undefined result

* eg,00/0.0
* Can be used in subsequent calculations

) BB 13 s _— .
g,/y; DROLUSTAY 1a facia A. Carini — Digital System Architectures

Denormalized Numbers

* Exponent = 000...0 = hidden bitis 0

x =(—1)° x(0+Fraction)x2 >

e Smaller than normal numbers
* allow for gradual underflow, with diminishing precision
e Denormal with fraction = 000...0

X =(—1)°> x(0+0)x27°% =40.0
A

Two representations
of 0.0!

‘/-":"\%5 gg&\:-leglls’brél - Dosnmer
| 8! Ingegneria — '
S PITRIESTE Lol Jerzs A. Carini — Digital System Architectures

2

IEEE Std 754-1985 Summary

UNIVERSITA
DEGLI STUDI
DITRIESTE

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction
0 0 0 0 0
0 Nonzero 0 Nonzero *+ denormalized number
1-254 Anything 1-2046 Anything + floating-point number
255 0 2047 0 * infinity
255 Nonzero 2047 Nonzero NaN (Not a Number)

m

Dipartimento di
Ingegneria
e Architettura

A. Carini —

Digital System Architectures

Overflow and underflow

* As forinteger operations, floating-point arithmetic operation can originate overflows.
* overflow here means that
* the exponent is too large to be represented in the exponent field.

* Floating point offers a new kind of exceptional event as well: the nonzero fraction we are calculating
could become so small that it cannot be represented.
* We call this event underflow:
* it occurs when the negative exponent is too large to fit in the exponent field.

UNIVERSITA 5 Dipartimento - B |
gl%llss#ém Ia :‘gm:;:m A. Carini — Digital System Architectures

Managing Overflows and underflows

* What should happen on an overflow or underflow to let the user know that a problem occurred?
* LEGV8 can raise an exception, also called an interrupt on many computers.
* An exception or interrupt is essentially an unscheduled procedure call.
* The address of the instruction that overflowed is saved in a register, and
* the computer jumps to a predefined address to invoke the appropriate routine for that
exception.
* In some situations the program can continue after corrective code is executed.

) B [s ini - Dig i
kg}y} DEGLI STU Q) recmee A. Carini — Digital System Architectures

Floating-Point Instructions in LEGv8

LEGv8 supports the IEEE 754 single-precision and double-precision formats with these instructions:
* Floating-point addition, single (FADDS) and addition, double (FADDD)
* Floating-point subtraction, single (FSUBS) and subtraction, double (FSUBD)
* Floating-point multiplication, single (FMULS) and multiplication, double (FMULD)
* Floating-point division, single (FDIVS) and division, double (FDIVD)
* Floating-point comparison, single (FCMPS) and comparison, double (FCMPD)
Separate floating-point registers:
* called SO, S1, S2, ... for single precision and DO, D1, D2, . . . for double precision.
* Single precision registers are just the lower half of double-precision registers.
FP instructions operate only on FP registers
* Programs generally don’t do integer ops on FP data, or vice versa
* More registers with minimal code-size impact
FP load and store instructions
* LDURS, LDURD
* STURS, STURD

DITRIESTE e Architettura

=% UNIVERSITA P Cpartinonto &
@DEG”“”D' Ia R A. Carini — Digital System Architectures

LEGvS floating-point assembly language

oot _|_von ||t _|_commms_

FP add single FADDS FP add (single precision)

FP subtract single FSUBS 82 , 54, S6 S2 = 54 - S6 FP sub (single precision)

FP multiply single FMULS S2, S4, S6 S2 = S4 x S6 FP multiply (single precision)

FP divide single FDIVS S22, S4, S6 S2 = 5S4 / S6 FP divide (single precision)
Arithmetic FP add double FADDD D2, D4, D6 D2 = D4 + D6 FP add (double precision)

FP subtract double FSUBD D2, D4, D6 DZ2 = D4 - D6 FP sub (double precision)

FP multiply double FMULD D2, D4, D6 D2 = D4 x Db FP multiply (double precision)

FP divide double FDIVD D2, D4, D6 D2 = D4 / D6 FP divide (double precision)
Conditional branch FP compare single FCMPS S4, S6 Test S4 vs. S6 FP compare single precision

FP compare double | FCMPD D4, D6 Test D4 vs. D6 FP compare double precision

Load single FP LDURS S1, [X23,100]] S1 = Memory[X23 + 100] 32-bit data to FP register
Data transfer Load double FP LDURD D1, [X23,100]] D1 = Memory[X23 + 100] 64-bit data to FP register

Store single FP STURS ST, [X23,100] Memory[X23 + 100] = S1 32-bit data to memory

Store double FP STURD D1, [X23,100]] Memory[X23 + 100] = D1 64-bit data to memory

2% UNIVERSITA g Dipartnorto di . . .
. Blercé.llsssrTl.lEm Ia :‘xffr:;:ura A. Carini — Digital System Architectures

LEGvS8 floating-point machine language

" tame lromat| mampe | commems
10

FADDS R 241 6 4 2 FADDS S22, S4, S6
FSUBS R 241 6 14 4 2 FSUBS S22, 5S4, Sb
FMULS R 241 6 2 4 2 FMULS S22, S4, Sb
FDIVS R 241 6 6 4 2 FDIVS S22, S4, S6
FADDD R 243 6 10 2 2 FADDD D2, D4, D6
FSUBD R 243 6 14 4 2 FSUBD D2, D4, D6
FMULD R 243 6 2 4 2 FMULD D2, D4, D6
FDIVD R 243 6 6 4 2 FDIVD D2, D4, D6
FCMPS R 241 6 8 4 0 FCMPS S4, S6

FCMPD R 243 6 8 4 0 FCMPD D4, D6

LDURS D 1506 100 0 4 2 LDURS S22, [X23,100]
LDURD D 2018 100 0 4 2 LDURD S22, [X23,100]
STURS D 1504 100 0 4 2 STURS D2, [X23,100]
STURD D 2016 100 0 - 2 STURD D2, [X23,100]
Field size 11 bits |5 or 9 bits| 6 or 2 bits | 5bits | 5Sbits | All LEGvS instructions 32 bits

@ BEQ[,EE?.'_,TE,‘. 1 :);'D:::'::'?; A. Carini — Digital System Architectures
"53¢’ DITRIESTE |a e Architettura ' g

Example

* The LEGv8 code to load two single precision numbers from memory, add them, and then store the
sum might look like this:

LDURS S4, [X28,c] // Load 32-bit F.P. number into S4
LDURS S6, [X28,a] // Load 32-bit F.P. number into S6
FADDS S2, S4, S6 // S2 = S4 + S6 single precision

STURS S2, [X28,b] // Store 32-bit F.P. number from S2

W) s R e ini - Dig |
@i DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Example: °F to °C

e (Ccode:
float f2c
return

}

(float fahr) {
((5.0/9.0)* (fahr - 32.0));

* fahrin S12, result in SO, literals in global memory space

* Compiled LEGv8 code:

f2c:

LDURS S16,
LDURS S18,
FDIVS Slo,
LDURS S18,
FSUBS S18,
FMULS SO,
BR LR

2/ DITRIESTE Ia e Architettura

=5 UNIVERSITA Dipertimento &
(} DEGLI STUDI H Ingegneria
£

[X27,const5] // Sl6 =
[X27,const9] // S18 =
S16, S18 // S16 =
[X27,const32] // S18 =
S12, S18 // S18 =

// return

.0 in memory)
.0 in memory)

fahr - 32.0
Sle, S18 // SO0 = (5/9)* (fahr - 32.0)

A. Carini — Digital System Architectures

Example: Array Multiplication

* C=C+AxB
* All 32 x 32 matrices, 64-bit double-precision elements

e Ccode:
volid mm (double c[][], double al[]l[], double b[][]) {
int i, J, k;

for (1 = 0; 1 < 32; 1 =1 + 1)
for (jJ = 0; 7 < 32; 73 =73 + 1)
for (k = 0; k < 32; k =%k + 1)
c[i1[3] = cl[il[j] + alil[k] * blk][j];

* Addresses of x,y, zin X0, X1, X2, and i, j, k in X19, X20, X21

F2% UNIVERSITA - Diparinerto
@ DEGLISTUCE I| a’ JCsEie A. Carini — Digital System Architectures

S e Architettura

Example: Array Multiplication

e LEGvS8 code:

mm: ...
LDI X10, 32 // X10 = 32 (row size/loop end)
LDI X19, O // 1 = 0; initialize 1lst for loop
Ll: LDI X20, O // j = 0; restart 2nd for loop
L2: LDI X21, O // k = 0; restart 3rd for loop
LSL X11, X19, 5 // X11 =1 * 2 5 (size of row of c)
ADD X11, X11, X20// X11 = i * size(row) + j
LSL X11, X111, 3 // X11 = byte offset of [1][]]
ADD X11, X0, X11 // X11 = byte address of c[i][7]
LDURD D4, [X11,#0] // D4 = 8 bytes of c[i][]]
L3: LSL X9, X21, 5 // X9 =%k * 2 5 (size of row of Db)
ADD X9, X9, X20 // X9 = k * size(row) +]
LSL X9, X9, 3 // X9 = byte offset of [k][]]
ADD X9, X2, X9 // X9 = byte address of bl[k][]]
LDURD D16, [X9,#0] // D16 = 8 bytes of b[k][]]

@ s |) = - |
DITRIESTE e Areturs A. Carini — Digital System Architectures

UNIVERSITA vuanmu .
(J\ DEGLI STUDI '

Example: Array Multiplication

LSL X9, X19, 5

ADD X9, X9, X21

LSL X9, X9, 3

ADD X9, X1, X9
LDURD D18, [X9,#0]
FMULD D16, D18, D16
FADDD D4, D4, D16
ADDI X21, X21, 1
CMP X21, X10

B.LT L3
STURD D4,
ADDI X20,
CMP X20,
B.LT L2
ADDI X109,
CMP X109,
B.LT L1

[X11,0]
X20, #1
X10

X19, #1
X10

lqs

7 DITRIESTE o Architetiur

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

X9 =1 * 2 5
X9 = 1 * size(row)
X9 = byte offset of

X9 =
D18 =
D16

8 bytes of ali
ali] [k]
f4 = cl[1][J]
Sk = k + 1
test k vs. 32
if (k < 32) go to L3

c[i][J] = D4
$3] =3 + 1
test j vs. 32

(

+ afli

if (J < 32) go to L2
$i =1 +1

test 1 vs. 32

if (1 < 32) go to L1

byte address of a

* blk][]
1 [k]

(size of row of a)
+ k

k]
]

[
1] [k]
]

* blk][]]

A. Carini — Digital System Architectures

Accurate Arithmetic

* |EEE Std 754 specifies additional rounding control
* Extra bits of precision (guard, round, sticky)
* guard and round The first of two extra bits kept on the right during intermediate
calculations of floating-point numbers; used to improve rounding accuracy.
* sticky bit A bit used in rounding in addition to guard and round that is set whenever
there are nonzero bits to the right of the round bit.
* Choice of rounding modes
* Allows programmer to fine-tune numerical behavior of a computation
* Not all FP units implement all options
* Most programming languages and FP libraries just use defaults

“2’ DITRIESTE e Architettura

=% UNIVERSITA P Cpartinonto &
@DEG”“”D' Ia X A. Carini — Digital System Architectures

The BIG Picture

* Bit patterns have no inherent meaning.

* They may represent signed integers, unsigned integers, floating-point numbers, instructions, character
strings, and so on.

* What is represented depends on the instruction that operates on the bits in the word.

* The major difference between computer numbers and numbers in the real world is that computer
numbers have limited size and hence limited precision;

* it’s possible to calculate a number too big or too small to be represented in a computer word.

* Programmers must remember these limits and write programs accordingly.

=% UNIVERSITA P —
@EF%IESS%M 1a < Aeniars A. Carini — Digital System Architectures

Subword Parallellism

* Many graphics systems uses 8 bits to represent each of the three primary colors.
* Audio samples are often represented with 16 bits.
* Architects recognized that many graphics and audio applications would perform the same operation
on vectors of these data.
* Thus, graphics and audio applications can take advantage of performing simultaneous operations on
short vectors.
* By partitioning the carry chains within a 128-bit adder, a processor could use parallelism to
perform simultaneous operations on shorter vectors:
* Sixteen 8-bit adds
* Eight 16-bit adds
* Four 32-bit adds
* Subword Parallelism is also called data-level parallelism, vector parallelism, or Single Instruction,
Multiple Data (SIMD).

W) st i) e D .
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

ARMvS8 SIMD

* ARMvS8 added 32 128-bit registers (VO, V1, ..., V31) and more than 500 machine-language instructions
to support subword parallelism.
* It supports all the subword data types you can imagine:
* 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit signed and unsigned integers
* 32-bit and 64-bit floating point numbers

* ARMvV8 assembler uses different suffixes for the SIMD registers to represent different widths.
* The suffixes are B (byte) for 8-bit operands, H (half) for 16-bit operands, S (single) for 32-bit operands,
D (double) for 64-bit operands, and Q (quad) for 128-bit operands.
* The programmer also specifies the number of subword operations for that data width with a number
before the register name.
* Examples:
* 16 8-bit integer adds:
ADD V1.16B, V2.16B, V3.16B

e 4 32-bit FP adds:
FADD V1.4S, V2.4S3, V3.4S

() BB [reo inl— Dig .
&;’:/j;j DROLUSTAY 1a facia A. Carini — Digital System Architectures

SIMD example on x86: DGEMM

1 void dgemm (size t n, double* A, double* B, double* C)
2 {

3 for (size t 1 = 0; 1 < n; ++1)

4 for (size t j = 0; jJ < n; ++3)

5 {

6. double cij = C[i+j*n]; /* cij = C[i]1[]j] */

7 for(size t k = 0; k < n; k++)

8 cij += A[i+k*n] * B[k+j*n]; /*cij+=A[i][k]*B[k][]]*/
9. Cli+j*n] = cij; /* C[1i][]J] = cij */

10. }

11.}

* Notice that in reality it computes CT = B" * AT

/—\\ UNIVERSITA n B - .
(B} DEGLISTUDI Ingegneria _
@ A 1) < aenetiura A. Carini — Digital System Architectures

SIMD example on x86: DGEMM

1. //include <x86intrin.h>

2. void dgemm (size t n, double* A, double* B, double* C)

3. {

4 for (size t 1 = 0; 1 < n; 1+=4)

5. for (size t j = 0; J < n; J++) {

6 ~ m256d c0 = mm256 load pd(C+i+j*n); /* cO0 = C[i][3j] */
7 for(size t k = 0; k < n; k++)

8. cO = mm256 add pd(cO0, /* cO += A[i][k]*B[k][j] */
9. ~mm256 mul pd(mm256 load pd(A+i+k*n),

10. ~mm256 broadcast sd(B+k+j*n)));

11. ~mm256 store pd(C+i+j*n, c0); /* C[i][J] = cO */

12. }

13.}

* The Advanced Vector Extensions (AVX) version is 3.85 times as fast the unoptimized code on one core
of a 2.6 GHz Intel Core i7.

DITRIESTE e Architettura

=% UNIVERSITA P Cpartinonto &
@DEG”“”D' Ia R A. Carini — Digital System Architectures

ARMvS8 SIMD

[we | oscriotion | Name| s Gits)
8 16 32 64 SP DP

128
Integer add ADD v v v v v
Add/ FP add FADD v v
Subtract | |nteger subtract SUB v v v/ v v
FP subtract FSUB v v
Unsigned integer multiply UMUL v v 4 v v
Multiply Signed integer multiply SMUL v v v v v
FP multiply FMUL 4 v
Compare Integer compare equal CMEQ v v v v v
FP compare equal FCMEQ ' v
Unsigned integer minmum | UMIN v v 4 4 v
Signed integer minmum SMIN v v v v 4
Min/Max FP minmum FMIN v v
Unsigned integer maximum | UMAX v v v v v
Signed integer maximum SMAX v v v v v
FP maximum FMAX v v
Integer shift left SHL v v v v v
Shift Unsigned integer shift right | USHR v v v v v
Signed integer shift right SSHR v v v v v
Bitwise AND AND v v v 4 v
Logical Bitwise OR ORR v v v v v
Bitwise exclusive OR EOR v v 4 v v
Data Load register LDR v v 4 4 v 4 v
Transfer | store register STR v v v v v v v

5% UNIVERSITA n_ parerto
@ BiRIESTe Ia At A. Carini — Digital System Architectures

DITRIESTE e Architettura

Full ARMvS Integer and Floating-point Arithmetic Instructions

MUL Multiply FADDS Floating-point add single
® SMULH Signed multiply high FSUBS Floating-point subtract single
E UMULH Unsigned multiply high FMULS Floating-point multiply single
3 SDIV Signed divide @ FDIVS Floating-point divide single
z UDIV Unsigned divide E FADDD Floating-point add double
£ SMULL Signed multiply long qg’_ FSUBD Floating-point subtract double
i UMULL Unsigned multiply long Q FNMU L Floating-point scalar multiply-negate
1320 MNEG Multiply-negate g FMULD Floating-point multiply double
S [UMNEGL Unsigned multiplynegate long § FDIVD Floating-point divide double
SMNEGL Signed multiply-negate long = FCMPS Floating-point compare single (quiet)
= FCMPD Floating-point compare double (quiet)
FCMPE Floating-point signaling compare
FCCMP Floating-point conditional quiet compare
FCCMPE Floating-point conditional signaling compare
@ EFTEE_IFEEETE& ﬁa E"D%c;:i‘:;z‘;m A. Carini — Digital System Architectures

Full ARMvS Integer and Floating-point Arithmetic Instructions

o o | FABS Floating-point scalar absolute value | < MADD Multiply-add
o g FNEG Floating-point scalar negate E MSUB Multiply-subtract
& & | FSarT Floating-point scalar square root ;’ SMADDL Signed multiply-add long
FMAX Floating-point scalar maximum E)n SMSUBL Signed multiply-subtract long
p FMIN Floating-point scalar minimum | PC_’» UMADDL Unsigned multiply-add long
% EMAXNM Floating-point scalar maximum number UMSUBL Unsigned multiply-subtract long
= (NaN = —Inf) o FMADD Floating-point fused multiply-add
& EMTNNM Floating-point scalar minimum number g FMSUB Floating-point fused multiply-subtract
(NaN = +Inf) = FNMADD Floating-point negated fused multiply-add
f FNMSUB Floating-point negated fused multiply-subtract
B g FMOV Floating-point move to/from integer or FP register
£ FMOVI Floating-point move immediate
E FCSEL Floating-point conditional select
L

/—"\\ UNIVERSITA g peausiod) o — e
@f prrmesres | 1AL st A. Carini — Digital System Architecture

Full ARMvS Integer and Floating-point Arithmetic Instructions

| FRINTA Floating-point round to nearest with ties to odd
FRINTI Floating-point round using current rounding mode
| e FRINTM Floating-point round toward -infinity
| 5 FRINTN Floating-point round to nearest with ties to even
: g FRINTP Floating-point round toward +infinity
| FRINTX Floating-pointl exact using current rounding mode
FRINTZ Floating-point round toward O
FCVTAS FP convert to signed integer, rounding to nearest odd
| FCVTAU FP convert to unsigned integer, rounding to nearest odd
| FCVTMS FP convert to signed integer, rounding toward -infinity
FCVTMU FP convert to unsigned integer, rounding toward -infinity
| FCVTNS FP convert to signed integer, rounding to nearest even
: FCVTNU FP convert to unsigned integer, rounding to nearest even
| § FCVTPS FP convert to signed integer, rounding toward +infinity
| § FCVTPU FP convert to unsigned integer, rounding toward +infinity
& FCVTZS FP convert to signed integer, rounding toward O
FCVTZU FP convert to unsigned integer, rounding toward O
| SCVTF Signed integer convert to FP, current rounding mode
UCVTF Unsigned integer convert to FP, current rounding mode
@ EFTEE_IFEEETE& ﬁa E"D%c;:i‘:;z‘;m A. Carini — Digital System Architectures

LEGvVS8 core instructions

LEGvS core instructions m| LEGvS core instructions m LEGvS8 arithmetic core m

add ADD R move wide with keep MOVK M multiply MUL R
subtract SUB R and AND R signed multiply high SMULH R
add immediate ADDI I inclusive or ORR R unsigned multiply high UMULH R
subtract immediate SUBI 1 exclusive or EOR R signed divide SDIV R
add and set flags ADDS R and immediate ANDI I unsigned divide UDIV R
subtract and set flags SUBS R inclusive or immediate ORRI I floating-point add single FADDS R
add immediate and set flags ADDIS I exclusive or immediate EORI I floating-point subtract single FSUBS R
subtract immediate and set flags SUBIS I logical shift left LSL R floating-point multiply single FMULS R
load register LDUR D logical shift right LSR R floating-point divide single FDIVS R
store register STUR D compare and branch on equal 0 CBZ CB floating-point add double FADDD R
load signed word LDURSW D compare and branch on not equal O CBNZ CB floating-point subtract double FSUBD R
store word STURW D branch conditionally B _cond B floating-point multiply double FMULD R
load half LDURH D branch B 5 floating-point divide double FDIVD R
store half STURH D branch to register oh P floating-point compare single FCMPS R
load byte LDURB D floating-point compare double FCMPD R
store byte STURB D branch with link BL B load single floating-point LDURS D
load exclusive register LDXR D load double floating-point LDURD D
store exclusive register STXR D store single floating-point STURS D
move wide with zero MOVZ M store double floating-point STURD D
Instruction subset Integer Fl. pt.
LEGv8 core 98% 31%
SPEC CPU2006 integer and floating point = | LEGvS arithmetic core 2% 66%
Remaining ARMv8 0% 3%

) BT [s ini - Digital System Archi
= DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Fallacies and Pitfalls

Fallacy: Just as a left shift instruction can replace an integer multiply by a power of 2, a right shift is the
same as an integer division by a power of 2.
* Right shift divides by 2' only for unsigned integers
* Forsigned integers, e.g.,-5/ 4
* With logic shift:
11111011, >>>2=00111110, = +62
* Arithmetic right shift: replicate the sign bit
¢ 11111011, >>2=11111110,=-2

) Sersss | FN
] Ingegneria 2 (B .
Qg&; DITRIESTE |a Sk A. Carini — Digital System Architectures

Fallacies and Pitfalls

Pitfall: Floating-point addition is not associative.

(xty)tz x+(y+2)

x| -1.50E+38 -1.50E+38
y| 1.50E+38 0.00E+00
z 1.0 1.0 1.50E+38

1.00E+00 0.00E+00

Fallacy: Parallel execution strategies that work for integer data types also work for

floating-point data types.

* Parallel programs may interleave operations in unexpected orders

* Assumptions of associativity may fail

* Need to validate parallel programs under varying degrees of parallelism

* Programmers who write parallel code with floating-point numbers need to verify whether the
results are credible, even if they don’t give the exact same answer as the sequential code.

Rt e . .
Kil ingegneria —_—
[\g:/yy DITRIESTE 1a) i< A. Carini — Digital System Architectures

e Architettura

References

* David A. Patterson and John L. Hennessy, “Computer organization and design ARM edition: the
hardware software interface,” Morgan Kaufmann, 2016.
* Chapter (3.2, 3.3, 3.4 solo LEGv8), (3.5: formato floating point e LEGv8), 3.6, 3.8, 3.9, 3.10

Most of the text has been taken and adapted from “Computer Organization and Design ARM Edition: The
Hardware Software Interface”.

If not differently indicated, all figures have been taken from the book or the material in the companion
website of “Computer Organization and Design ARM Edition: The Hardware Software Interface”.

#H5% UNIVERSITA - Doarireno o - |
@j srwieste | HlAL) e A. Carini — Digital System Architectures

