
Arithmetic in LEGv8

A. Carini – Digital System Architectures

Multiply in LEGv8

• To produce a properly signed or unsigned 128-bit product, LEGv8 has three instructions:
• multiply (MUL),
• signed multiply high (SMULH) and
• unsigned multiply high (UMULH).

• To get the integer 64-bit product, the programmer use MUL.
• To get the upper 64 bits of the 128-bit product, the programmer uses either SMULH or UMULH,

depending on the types of multiplier and multiplicand.

• LEGv8 multiply instructions do not set the overflow condition code, so it is up to the software to check
to see if the product is too big to fit in 64 bits.
• There is no overflow if the upper 64 bits is 0 for UMULH or the replicated sign of the lower 64

bits for SMULH.

A. Carini – Digital System Architectures

Divide in LEGv8

• To handle both signed integers and unsigned integers, LEGv8 has two instructions:
• signed divide (SDIV) and
• unsigned divide (UDIV).

• The common hardware support for multiply and divide allows LEGv8 to provide a single pair of
64-bit registers that are used both for multiply and divide.

• LEGv8 divide instructions ignore overflow: software must determine whether the quotient is too large.
• In addition to overflow, division can also result in an improper calculation: division by 0.
• LEGv8 software must check the divisor to discover division by 0 as well as overflow.

A. Carini – Digital System Architectures

Multiply and Divide in LEGv8

A. Carini – Digital System Architectures

Floating Point

• Representation for non-integral numbers
• Including very small and very large numbers

• Like scientific notation
• –2.34 × 1056
• +0.002 × 10–4
• +987.02 × 109

• In binary
• ±1.xxxxxxx2 × 2yyyy

• Types float and double in C

A. Carini – Digital System Architectures

normalized

Not normalized

Floating Point Standard IEEE Std 754-1985

• Two representations: Single precision (32-bit) and Double precision (64-bit)

• S: sign bit (0  non-negative, 1  negative)
• Normalized significand: 1.0 ≤ |significand| < 2.0

• Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
• Significand is Fraction with the “1.” restored

• Exponent: excess representation: actual exponent + Bias
• Ensures exponent is unsigned
• Single: Bias = 127; Double: Bias = 1203

A. Carini – Digital System Architectures

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −+−=

Single-Precision Range

• Exponents 00000000 and 11111111 reserved
• Smallest value

• Exponent: 00000001
 actual exponent = 1 – 127 = –126

• Fraction: 000…00  significand = 1.0
• ±1.0 × 2–126 ≈ ±1.2 × 10–38

• Largest value
• exponent: 11111110

 actual exponent = 254 – 127 = +127
• Fraction: 111…11  significand ≈ 2.0
• ±2.0 × 2+127 ≈ ±3.4 × 10+38

A. Carini – Digital System Architectures

Double-Precision Range

• Exponents 0000…00 and 1111…11 reserved
• Smallest value

• Exponent: 00000000001
 actual exponent = 1 – 1023 = –1022

• Fraction: 000…00  significand = 1.0
• ±1.0 × 2–1022 ≈ ±2.2 × 10–308

• Largest value
• exponent: 11111111110

 actual exponent = 2046 – 1023 = +1023
• Fraction: 111…11  significand ≈ 2.0
• ±2.0 × 2+1023 ≈ ±1.8 × 10+308

A. Carini – Digital System Architectures

Infinities and NaNs

• Exponent = 111...1, Fraction = 000...0
• ±Infinity
• Can be used in subsequent calculations, avoiding need for overflow check

• Exponent = 111...1, Fraction ≠ 000...0
• Not-a-Number (NaN)
• Indicates illegal or undefined result

• e.g., 0.0 / 0.0
• Can be used in subsequent calculations

A. Carini – Digital System Architectures

Denormalized Numbers

• Exponent = 000...0  hidden bit is 0

• Smaller than normal numbers
• allow for gradual underflow, with diminishing precision
• Denormal with fraction = 000...0

A. Carini – Digital System Architectures

Two representations

of 0.0!

0.0=+−= −BiasS 20)(01)(x

BiasS
2Fraction)(01)(x
−+−=

IEEE Std 754-1985 Summary

A. Carini – Digital System Architectures

Overflow and underflow

• As for integer operations, floating-point arithmetic operation can originate overflows.
• overflow here means that

• the exponent is too large to be represented in the exponent field.

• Floating point offers a new kind of exceptional event as well: the nonzero fraction we are calculating
could become so small that it cannot be represented.

• We call this event underflow:
• it occurs when the negative exponent is too large to fit in the exponent field.

A. Carini – Digital System Architectures

Managing Overflows and underflows

• What should happen on an overflow or underflow to let the user know that a problem occurred?
• LEGv8 can raise an exception, also called an interrupt on many computers.
• An exception or interrupt is essentially an unscheduled procedure call.

• The address of the instruction that overflowed is saved in a register, and
• the computer jumps to a predefined address to invoke the appropriate routine for that

exception.
• In some situations the program can continue after corrective code is executed.

A. Carini – Digital System Architectures

Floating-Point Instructions in LEGv8

• LEGv8 supports the IEEE 754 single-precision and double-precision formats with these instructions:
• Floating-point addition, single (FADDS) and addition, double (FADDD)
• Floating-point subtraction, single (FSUBS) and subtraction, double (FSUBD)
• Floating-point multiplication, single (FMULS) and multiplication, double (FMULD)
• Floating-point division, single (FDIVS) and division, double (FDIVD)
• Floating-point comparison, single (FCMPS) and comparison, double (FCMPD)

• Separate floating-point registers:
• called S0, S1, S2, … for single precision and D0, D1, D2, . . . for double precision.
• Single precision registers are just the lower half of double-precision registers.

• FP instructions operate only on FP registers
• Programs generally don’t do integer ops on FP data, or vice versa
• More registers with minimal code-size impact

• FP load and store instructions
• LDURS, LDURD
• STURS, STURD

A. Carini – Digital System Architectures

LEGv8 floating-point assembly language

A. Carini – Digital System Architectures

LEGv8 floating-point machine language

A. Carini – Digital System Architectures

Example

• The LEGv8 code to load two single precision numbers from memory, add them, and then store the
sum might look like this:

LDURS S4, [X28,c] // Load 32-bit F.P. number into S4

LDURS S6, [X28,a] // Load 32-bit F.P. number into S6

FADDS S2, S4, S6 // S2 = S4 + S6 single precision

STURS S2, [X28,b] // Store 32-bit F.P. number from S2

A. Carini – Digital System Architectures

Example: °F to °C

• C code:
float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0));

}

• fahr in S12, result in S0, literals in global memory space

• Compiled LEGv8 code:

f2c:

LDURS S16, [X27,const5] // S16 = 5.0 (5.0 in memory)

LDURS S18, [X27,const9] // S18 = 9.0 (9.0 in memory)

FDIVS S16, S16, S18 // S16 = 5.0 / 9.0

LDURS S18, [X27,const32] // S18 = 32.0

FSUBS S18, S12, S18 // S18 = fahr – 32.0

FMULS S0, S16, S18 // S0 = (5/9)*(fahr – 32.0)

BR LR // return

A. Carini – Digital System Architectures

Example: Array Multiplication

• C = C + A × B
• All 32 × 32 matrices, 64-bit double-precision elements

• C code:
void mm (double c[][], double a[][], double b[][]) {

int i, j, k;

for (i = 0; i < 32; i = i + 1)

for (j = 0; j < 32; j = j + 1)

for (k = 0; k < 32; k = k + 1)

c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

• Addresses of x, y, z in X0, X1, X2, and i, j, k in X19, X20, X21

A. Carini – Digital System Architectures

Example: Array Multiplication

• LEGv8 code:
mm:...

LDI X10, 32 // X10 = 32 (row size/loop end)

LDI X19, 0 // i = 0; initialize 1st for loop

L1: LDI X20, 0 // j = 0; restart 2nd for loop

L2: LDI X21, 0 // k = 0; restart 3rd for loop

LSL X11, X19, 5 // X11 = i * 2 5 (size of row of c)

ADD X11, X11, X20// X11 = i * size(row) + j

LSL X11, X11, 3 // X11 = byte offset of [i][j]

ADD X11, X0, X11 // X11 = byte address of c[i][j]

LDURD D4, [X11,#0] // D4 = 8 bytes of c[i][j]

L3: LSL X9, X21, 5 // X9 = k * 2 5 (size of row of b)

ADD X9, X9, X20 // X9 = k * size(row) + j

LSL X9, X9, 3 // X9 = byte offset of [k][j]

ADD X9, X2, X9 // X9 = byte address of b[k][j]

LDURD D16, [X9,#0] // D16 = 8 bytes of b[k][j]

A. Carini – Digital System Architectures

Example: Array Multiplication

LSL X9, X19, 5 // X9 = i * 2 5 (size of row of a)

ADD X9, X9, X21 // X9 = i * size(row) + k

LSL X9, X9, 3 // X9 = byte offset of [i][k]

ADD X9, X1, X9 // X9 = byte address of a[i][k]

LDURD D18, [X9,#0] // D18 = 8 bytes of a[i][k]

FMULD D16, D18, D16 // D16 = a[i][k] * b[k][j]

FADDD D4, D4, D16 // f4 = c[i][j] + a[i][k] * b[k][j]

ADDI X21, X21, 1 // $k = k + 1

CMP X21, X10 // test k vs. 32

B.LT L3 // if (k < 32) go to L3

STURD D4, [X11,0] // c[i][j] = D4

ADDI X20, X20, #1 // $j = j + 1

CMP X20, X10 // test j vs. 32

B.LT L2 // if (j < 32) go to L2

ADDI X19, X19, #1 // $i = i + 1

CMP X19, X10 // test i vs. 32

B.LT L1 // if (i < 32) go to L1

…
A. Carini – Digital System Architectures

Accurate Arithmetic

• IEEE Std 754 specifies additional rounding control
• Extra bits of precision (guard, round, sticky)

• guard and round The first of two extra bits kept on the right during intermediate
calculations of floating-point numbers; used to improve rounding accuracy.

• sticky bit A bit used in rounding in addition to guard and round that is set whenever
there are nonzero bits to the right of the round bit.

• Choice of rounding modes
• Allows programmer to fine-tune numerical behavior of a computation

• Not all FP units implement all options
• Most programming languages and FP libraries just use defaults

A. Carini – Digital System Architectures

The BIG Picture

• Bit patterns have no inherent meaning.
• They may represent signed integers, unsigned integers, floating-point numbers, instructions, character

strings, and so on.
• What is represented depends on the instruction that operates on the bits in the word.

• The major difference between computer numbers and numbers in the real world is that computer
numbers have limited size and hence limited precision;

• it’s possible to calculate a number too big or too small to be represented in a computer word.
• Programmers must remember these limits and write programs accordingly.

A. Carini – Digital System Architectures

Subword Parallellism

• Many graphics systems uses 8 bits to represent each of the three primary colors.
• Audio samples are often represented with 16 bits.
• Architects recognized that many graphics and audio applications would perform the same operation

on vectors of these data.
• Thus, graphics and audio applications can take advantage of performing simultaneous operations on

short vectors.
• By partitioning the carry chains within a 128-bit adder, a processor could use parallelism to

perform simultaneous operations on shorter vectors:
• Sixteen 8-bit adds
• Eight 16-bit adds
• Four 32-bit adds

• Subword Parallelism is also called data-level parallelism, vector parallelism, or Single Instruction,
Multiple Data (SIMD).

A. Carini – Digital System Architectures

ARMv8 SIMD

• ARMv8 added 32 128-bit registers (V0, V1, ..., V31) and more than 500 machine-language instructions
to support subword parallelism.

• It supports all the subword data types you can imagine:
• 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit signed and unsigned integers
• 32-bit and 64-bit floating point numbers

• ARMv8 assembler uses different suffixes for the SIMD registers to represent different widths.
• The suffixes are B (byte) for 8-bit operands, H (half) for 16-bit operands, S (single) for 32-bit operands,

D (double) for 64-bit operands, and Q (quad) for 128-bit operands.
• The programmer also specifies the number of subword operations for that data width with a number

before the register name.
• Examples:

• 16 8-bit integer adds:
ADD V1.16B, V2.16B, V3.16B

• 4 32-bit FP adds:
FADD V1.4S, V2.4S, V3.4S

A. Carini – Digital System Architectures

SIMD example on x86: DGEMM

1. void dgemm (size_t n, double* A, double* B, double* C)

2. {

3. for (size_t i = 0; i < n; ++i)

4. for (size_t j = 0; j < n; ++j)

5. {

6. double cij = C[i+j*n]; /* cij = C[i][j] */

7. for(size_t k = 0; k < n; k++)

8. cij += A[i+k*n] * B[k+j*n]; /*cij+=A[i][k]*B[k][j]*/

9. C[i+j*n] = cij; /* C[i][j] = cij */

10. }

11.}

• Notice that in reality it computes CT = BT * AT

A. Carini – Digital System Architectures

SIMD example on x86: DGEMM

1. //include <x86intrin.h>

2. void dgemm (size_t n, double* A, double* B, double* C)

3. {

4. for (size_t i = 0; i < n; i+=4)

5. for (size_t j = 0; j < n; j++) {

6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */

7. for(size_t k = 0; k < n; k++)

8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n),

10. _mm256_broadcast_sd(B+k+j*n)));

11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12. }

13.}

• The Advanced Vector Extensions (AVX) version is 3.85 times as fast the unoptimized code on one core
of a 2.6 GHz Intel Core i7.

A. Carini – Digital System Architectures

ARMv8 SIMD

A. Carini – Digital System Architectures

Full ARMv8 Integer and Floating-point Arithmetic Instructions

A. Carini – Digital System Architectures

Full ARMv8 Integer and Floating-point Arithmetic Instructions

A. Carini – Digital System Architectures

Full ARMv8 Integer and Floating-point Arithmetic Instructions

A. Carini – Digital System Architectures

LEGv8 core instructions

A. Carini – Digital System Architectures

SPEC CPU2006 integer and floating point

Fallacies and Pitfalls

Fallacy: Just as a left shift instruction can replace an integer multiply by a power of 2, a right shift is the
same as an integer division by a power of 2.
• Right shift divides by 2i only for unsigned integers
• For signed integers, e.g., –5 / 4

• With logic shift:
• 111110112 >>> 2 = 001111102 = +62

• Arithmetic right shift: replicate the sign bit
• 111110112 >> 2 = 111111102 = –2

A. Carini – Digital System Architectures

Fallacies and Pitfalls

Pitfall: Floating-point addition is not associative.

Fallacy: Parallel execution strategies that work for integer data types also work for
floating-point data types.
• Parallel programs may interleave operations in unexpected orders
• Assumptions of associativity may fail
• Need to validate parallel programs under varying degrees of parallelism
• Programmers who write parallel code with floating-point numbers need to verify whether the

results are credible, even if they don’t give the exact same answer as the sequential code.

A. Carini – Digital System Architectures

(x+y)+z x+(y+z)

x -1.50E+38 -1.50E+38

y 1.50E+38

z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00

1.50E+38

References

• David A. Patterson and John L. Hennessy, “Computer organization and design ARM edition: the
hardware software interface,” Morgan Kaufmann, 2016.

• Chapter (3.2, 3.3, 3.4 solo LEGv8), (3.5: formato floating point e LEGv8), 3.6, 3.8, 3.9, 3.10

A. Carini – Digital System Architectures

Most of the text has been taken and adapted from “Computer Organization and Design ARM Edition: The
Hardware Software Interface”.
If not differently indicated, all figures have been taken from the book or the material in the companion
website of “Computer Organization and Design ARM Edition: The Hardware Software Interface”.

