

Corso di Laurea in Tecniche di Radiologia Medica per immagini e Radioterapia Sistemi Elettronici e informatici in ambito di Imaging I

1CFU - 10 ore

LA CODIFICA DELL'INFORMAZIONE

Prof. Sara Renata Francesca Marceglia

Rappresentazione dell'informazione

Rappresentare le informazioni significa operare

con un insieme limitato di simboli (detto *alfabeto* A) in modo non ambiguo (algoritmi di traduzione tra codifiche)

Esempio: numeri interi assoluti

Codifica decimale (in base dieci)

Alfabeto (A) = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

"sette" : 7

"ventitre" : 23

"centotrentotto" : 138

La notazione posizionale

```
Codifica decimale (in base dieci)

Alfabeto (A) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

"sette": 7 = 7*1

"ventitre": 23 = 20 + 3 = 2*10 + 3*1

"centotrentotto": 138 = 100 + 30 + 8 = 1*100 + 3*10 + 8*1
```

- ogni cifra corrisponde a una diversa potenza di dieci
- dalla cifra più significativa a quella meno significativa

$$N = c_{N-1}10^{N-1} + c_{N-2}10^{N-2} + ... + c_110^1 + c_0*10^0$$

$$B = 10 = base$$

La notazione posizionale: codifica binaria

Codifica in base B: $N = c_{N-1}B^{N-1} + c_{N-2}B^{N-2} + ... + c_1B^1 + c_0^*B^0$ $c_i \in \{0, 1, 2, ..., B-1\} \text{ per ogni } 1 \le i \le n$

B = 2

$$c_i \in \{0, 1\}$$
 $N = c_{N-1}2^{N-1} + c_{N-2}2^{N-2} + ... + c_12^1 + c_0*2^0$

BIT ("BInary digIT"): unità ELEMENTARE di informazione Dispositivi che assumono **due** stati Ad esempio due valori di tensione V_A e V_B

Codifica binaria dell'informazione

- Quanti oggetti diversi posso codificare con parole binarie composte da k bit?
 - 1 bit: $2^1 = 2$ stati $(0, 1) \Rightarrow 2$ oggetti
 - 2 bit: $2^2 = 4$ stati (00, 01, 10, 11) \Rightarrow 4 oggetti
 - 3 bit: 2^3 = 8 stati (000, 001, 010, 011, 100, 101, 110, 111) \Rightarrow 8 oggetti
 - ...
 - k bit: 2^k stati $\Rightarrow 2^k$ oggetti
- Se passiamo da una parola binaria di k bit ad una parola di k+1 bit si raddoppia il numero di oggetti che si possono rappresentare (2^{k+1})
- Quanti bit mi servono per codificare N oggetti?
 - $N \le 2^k \implies k \ge \log_2 N \implies k = \lceil \log_2 N \rceil$

Codifica binaria dell'informazione

- Ipotesi implicita
 - le parole di un codice hanno tutte la stessa lunghezza.
- Il calcolatore tratta diversi tipi di dati (numeri, caratteri, ecc.) tutti rappresentati con la codifica binaria
- **Problema:** assegnare un codice univoco a tutti gli oggetti compresi in un insieme predefinito.

Esempio

Problema:

assegnare un codice binario univoco a tutti i giorni della settimana

Giorni della settimana: $N = 7 \Rightarrow k \ge \log_2 7 \Rightarrow k = 3$

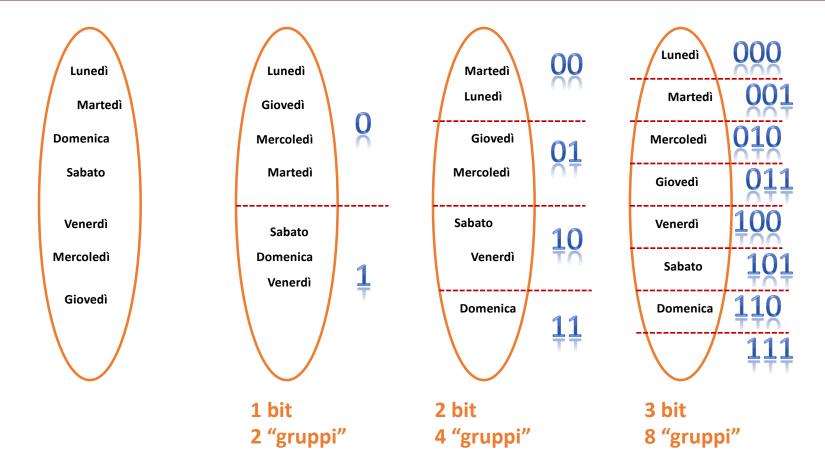
Con 3 bit possiamo ottenere 8 diverse configurazioni:

Ne servono 7, quali utilizziamo?

Quale configurazione associamo a quale giorno?

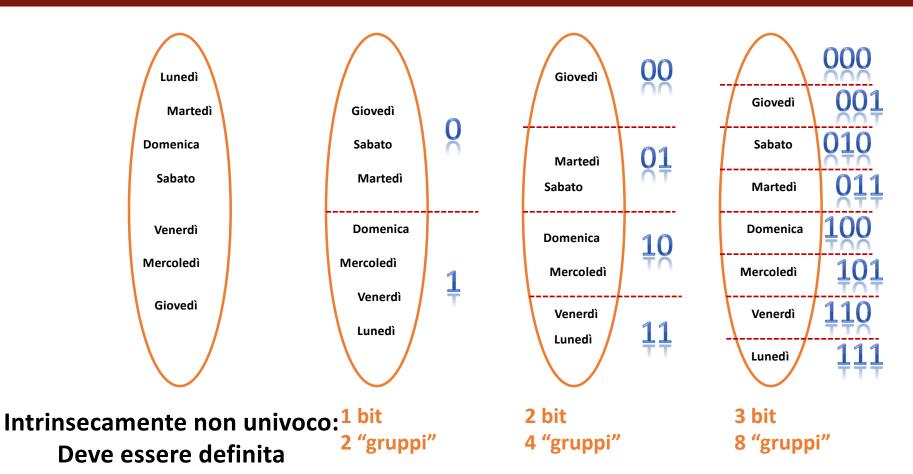
- 1 Identificare due insiemi:
 - Insieme delle **configurazioni ammissibili**; Insieme degli **oggetti da rappresentare**.
- 2 Associare gli elementi dei due insiemi

Esempio: codifica 1



Esempio: codifica 2

l'assegnazione dei codici



Codifica binaria dei numeri naturali

- Con n bit codifichiamo 2ⁿ numeri: da 0 a 2ⁿ-1
- Con 1 Byte (cioè una sequenza di 8 bit):

$$\begin{split} 00000000_{bin} &= 0_{dec} \\ 00001000_{bin} &= 1 \times 2^3 = 8_{dec} \\ 00101011_{bin} &= 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 43_{dec} \\ 11111111_{bin} &= \sum_{n=1,2,3,4,5,6,7,8} 1 \times 2^{n-1} = 255_{dec} \end{split}$$

- Conversione bin/dec e dec/bin
 - bin/dec $\Sigma_i 2^i$: 11101_{bin} = $(2^4 + 2^3 + 2^2 + 2^0)$ = 29_{dec}
 - dec/bin *metodo dei resti*

Il metodo dei resti

Si calcolano i resti delle divisioni per due

In pratica basta:

- 1. Decidere se il numero sia pari (resto 0) oppure dispari (resto 1), e annotare il resto
- 2. Dimezzare il numero (trascurando il resto)
- 3. Ripartire dal punto 1. fino a ottenere 1 oppure 0 come risultato della divisione
- 4. Leggere il risultato all'inverso

$$19_{dec} = 10011_{bin}$$
 $19: 2 \rightarrow 1$
 $9: 2 \rightarrow 1$
 $4: 2 \rightarrow 0$
 $2: 2 \rightarrow 0$
 $1: 2 \rightarrow 1$
Leggo

all'inverso

si ottiene 1: fine

La notazione posizionale: codifica binaria

$$29_{dec} = 11101_{bin}$$

$$76_{dec} = 1001100_{bin}$$

76 si poteva ottenere anche come 76 = 19x4 = 1001100

Per raddoppiare, in base due, si aggiunge uno zero in coda, così come si fa in base dieci per decuplicare

Casi notevoli

In binario si definisce una *notazione abbreviata*, sulla falsariga del sistema metrico-decimale:

K =
$$2^{10} = 1.024 \approx 10^3$$
 (Kilo)
M = $2^{20} = 1.048.576 \approx 10^6$ (Mega)
G = $2^{30} = 1.073.741.824 \approx 10^9$ (Giga)
T = $2^{40} = 1.099.511.627.776 \approx 10^{12}$ (Tera)

Esercizi

Che numero intero decimale è rappresentato da 100101 011001 1101010 0110010

Qual è la codifica binaria dei numeri decimali

Bit e Byte

```
bit = solo due stati, "0" oppure "1".

Byte = 8 bit, quindi 2^8 = 256 stati

KiloByte [KB] = 2^{10} Byte = 1024 Byte ~ 10^3 Byte

MegaByte [MB] = 2^{20} Byte = 1'048'576 Byte ~ 10^6 Byte

GigaByte [GB] = 2^{30} Byte ~ 10^9 Byte

TeraByte [TB] = 2^{40} Byte ~ 10^{12} Byte

PetaByte [PB] = 2^{50} Byte ~ 10^{15} Byte

ExaByte [EB] = 2^{60} Byte ~ 10^{18} Byte
```

Numeri naturali: codifica con modulo e segno

- Il primo bit a sinistra rappresenta il segno del numero (bit di segno), i bit rimanenti rappresentano il valore
 - 0 per il segno positivo, 1 per il segno negativo
- Il bit di segno è applicato al numero rappresentato, ma non fa propriamente parte del numero
 - il bit di segno non ha significato numerico
 - Inefficiente: due codifiche per lo 0
- Esempi con n = 9 (8 bit + un bit per il segno) $00000000_{m\&s} = +0 = 000001000_{m\&s} = +1 \times 2^3 = 8_{dec} = 100001000_{m\&s} = -1 \times 2^3 = -8_{dec} = così via ...$

Numeri interi: complemento a 2

Numeri interi in complemento a 2: il C_2 è un sistema binario, ma il primo bit (quello a sinistra, il più significativo) ha peso negativo, mentre tutti gli altri bit hanno peso positivo

$$b_n \times (-2^{n-1}) + b_{n-1} \times 2^{n-2} + ... + b_1 \times 2^0$$
PESO
NEGATIVO

Il bit più a sinistra è ancora chiamato bit di segno

Complemento a 2: Esempio

$$\begin{array}{lll} 000_{\text{C2}} = -0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = & 0_{\text{dec}} \\ 001_{\text{C2}} = -0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = & 1_{\text{dec}} \\ 010_{\text{C2}} = -0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = & 2_{\text{dec}} \\ 011_{\text{C2}} = -0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = & 2+1 = 3_{\text{dec}} \\ 100_{\text{C2}} = -1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = -4_{\text{dec}} \\ 101_{\text{C2}} = -1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = -4+1 = -3_{\text{dec}} \\ 110_{\text{C2}} = -1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = -4+2 = -2_{\text{dec}} \\ 111_{\text{C2}} = -1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = -4+2+1 = -1_{\text{dec}} \end{array}$$

N.B.: in base al bit di segno lo zero è considerato positivo

Numeri decimali in virgola fissa

- La sequenza di bit rappresentante un numero frazionario consta di due parti di lunghezza prefissata
 - I bit a sinistra della virgola rappresentano la parte intera (moltiplicata per 2^E, con E>0)
 - I bit a destra della virgola rappresentano la parte frazionaria (moltiplicata per 2^E, con E<0)
 - Il numero di bit a sinistra e a destra della virgola è stabilito a priori, anche se alcuni bit restassero nulli
- È un sistema di rappresentazione semplice, ma poco flessibile, e può condurre a sprechi di bit
- Per rappresentare in virgola fissa numeri molto grandi (oppure molto precisi) occorrono molti bit

Esempio rappresentazione in virgola fissa

0,1011_{bin} (in binario)
0,1011_{bin} =
$$1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} = 1/2 + 1/8 + 1/16 =$$

= 0,5 + 0,125 + 0,0625 = 0,6875_{dec}

$$19,6875_{dec} = 10011,1011_{virgola\ fissa}$$
 poiché si ha: $19_{dec} = 10011_{bin}\ e\ 0,6875_{dec} = 0,1011_{bin}$

proporzione fissa:

5 bit per la parte intera, 4 bit per quella frazionaria

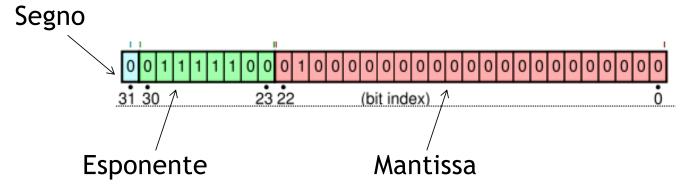
Numeri decimali in virgola mobile

La rappresentazione in *virgola mobile* (o *floating point*) è usata spesso in base 10 (si chiama allora *notazione scientifica*):

 $0,137 \times 10^8$ notazione scientifica per intendere $13.700.000_{dec}$

La rappresentazione binaria si basa sulla relazione

$$R_{\text{virgola mobile}} = M \times 2^{E}$$

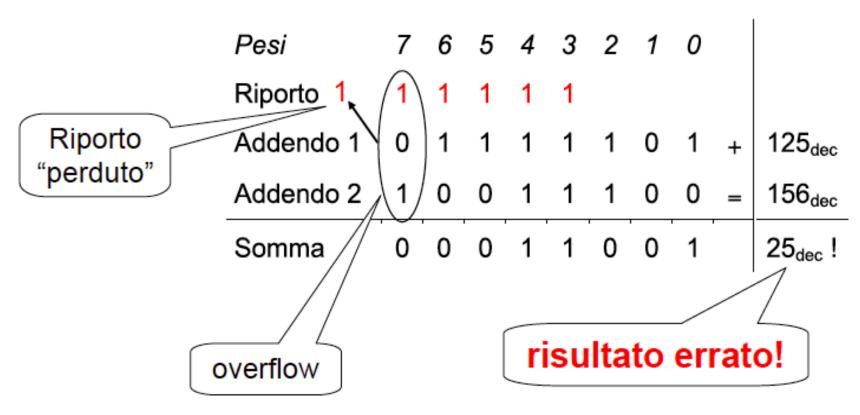


La mantissa e' sempre 1.X, per cui si salva solo X.

Addizione naturale: algoritmo a propagazione dei riporti

Pesi	7	6	5	4	3	2	1	0		
Riporto			1	1	1					
Addendo 1	0	1	0	0	1	1	0	1	+	77 _{dec}
Addendo 2	1	0	0	1	1	1	0	0	=	156 _{dec}
Somma	1	1	1	0	1	0	0	1		233 _{dec}

Overflow



addizione **naturale** con overflow

Codifica esadecimale

Codifica in base B:

$$N = c_{N-1}B^{N-1} + c_{N-2}B^{N-2} + ... + c_1B^1 + c_0^*B^0$$

$$c_i \in \{0, 1, 2, ..., B-1\} \text{ per ogni } 1 \le i \le n$$

B = 16

$$c_i \in \{ 0, 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F \}$$

$$N = c_{N-1}16^{N-1} + c_{N-2}16^{N-2} + ... + c_116^1 + c_0*16^0$$

ATTENZIONE!

IL NUMERO 312 IN BASE ESADECIMALE è $(312)_{16} = 3*16^2 + 1*16^1 + 2*16^0 = 786$

Codifica esadecimale: Il metodo dei resti

Si calcolano i resti delle divisioni per 16

In pratica basta:

- 1. Dividere il numero decimale per 16 e annotare quoziente e resto
- 2. Dividere il quoziente per 16 e annotare il resto
- 3. Ripartire dal punto 1 fino a ottenere 0 come risultato della divisione
- 4. Sostituire i resti da 10 a 15 con le lettere A-F
- 5. Leggere il risultato all'inverso

$$(7335)_{10} = ???_{16}$$

7335:16 =
$$458 \rightarrow 7$$

 $458: 16 = 28 \rightarrow 10$ A
 $28: 16 = 1 \rightarrow 12$ C
 $1: 16 = 0 \rightarrow 1$

si ottiene 0: fine

Leggo all'inverso:

ESERCIZI

BASE 16

 $(164)_{16} \rightarrow 164 \rightarrow$

 $(A17C)_{16} \rightarrow 325 \rightarrow$

 $(1024)_{16} \rightarrow 1024 \rightarrow$

BASE 2

1011

11010010

21

173

Codifica binaria dei caratteri

- Quanti sono gli oggetti da rappresentare?
 - 26 lettere maiuscole
 - 26 lettere minuscole •
 - 10 cifre
 - Circa 30 simboli d'interpunzione (, ; ...)
 - Circa 30 caratteri di controllo (EOF, CR, ...)
- Totale circa 120 oggetti complessivi

$$\Rightarrow$$
 k = $\lceil \log_2 120 \rceil$ = 7.

Codifica binaria dei caratteri

- Codice ASCII (American Standard Code for Information Interchange) utilizza 7 bit
 - \Rightarrow può rappresentare $2^7 = 128$ caratteri detti caratteri ASCII Standard.
- Codice ASCII esteso utilizza 8 bit (1 Byte)
 - \Rightarrow può rappresentare 2^8 = 256 caratteri detti caratteri ASCII estesi.
 - Tale codice comprende i caratteri ASCII standard e alcuni caratteri semigrafici (cornici, lettere nazionali, simboli matematici, ecc.)
- Codice UNICODE utilizza 16 bit (2 Byte)
 - Utile nel caso di alfabeti particolarmente complessi quale quello cinese

Codifica binaria dei caratteri

Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
00000000	0	Null	00100000	32	Spc	01000000	64	@	01100000	96	S
00000001	1	Start of heading	00100001	33	1	01000001	65	$\overset{\smile}{\mathbf{A}}$	01100001	97	a
00000010	2	Start of text	00100010	34	"	01000010	66	В	01100010	98	b
00000011	3	End of text	00100011	35	#	01000011	67	С	01100011	99	С
00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
00000101	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	е
00000110	6	Acknowledge	00100110	38	&	01000110	70	F	01100110	102	f
00000111	7	Audible bell	00100111	39	,	01000111	71	G	01100111	103	g
00001000	8	Backspace	00101000	40	(01001000	72	Н	01101000	104	ĥ
00001001	9	Horizontal tab	00101001	41	\mathbf{j}	01001001	73	I	01101001	105	i
00001010	10	Line feed	00101010	42	*	01001010	74	J	01101010	106	j
00001011	11	Vertical tab	00101011	43	+	01001011	75	K	01101011	107	k
00001100	12	Form Feed	00101100	44	,	01001100	76	L	01101100	108	ı
00001101	13	Carriage return	00101101	45		01001101	77	M	01101101	109	m
00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	n
00001111	15	Shift in	00101111	47	1	01001111	79	О	01101111	111	0
00010000	16	Data link escape	00110000	48	0	01010000	80	P	01110000	112	р
00010001	17	Device control 1	00110001	49	1	01010001	81	Q	01110001	113	q
00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	r
00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	s
00010100	20	Device control 4	00110100	52	4	01010100	84	T	01110100	116	t
00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	U	01110101	117	u
00010110	22	Synchronous idle	00110110	54	6	01010110	86	v	01110110	118	v
00010111	23	End trans, block	00110111	55	7	01010111	87	W	01110111	119	w
00011000	24	Cancel	00111000	56	8	01011000	88	X	01111000	120	x
00011001	25	End of medium	00111001	57	9	01011001	89	Y	01111001	121	y
00011010	26	Substitution	00111010	58		01011010	90	Z	01111010	122	Z
00011011	27	Escape	00111011	59	;	01011011	91	[01111011	123	{
00011100	28	File separator	00111100	60	, <	01011100	92	Ň	01111100	124	Ĭ
00011101	29	Group separator	00111101	61	=	01011101	93	1	01111101	125	}
00011110	30	Record Separator	00111110	62	>	01011110	94	٨	01111110	126	~
00011111	31	Unit separator	00111111	63	?	01011111	95	_	01111111	127	Del

Codice ASCII standard 7 bit

Esempio

Un testo può essere convertito in una successione di numeri grazie al Codice ASCII: spazio \rightarrow 32; 'A' \rightarrow 65; 'B' \rightarrow 66; ...; 'a' \rightarrow 97; 'b' \rightarrow 98; ...

e quindi: "ciao mondo" → 99 105 97 111 32 109 111 110 100 111

Data questa codifica, un problema come:

<u>trasformare una frase scrivendo con l'iniziale maiuscola tutte le parole che la compongono</u>

(per cui "ciao mondo" dovrebbe diventare "Ciao Mondo")

è effettivamente un problema di calcolo → equivale a sostituire le lettere «c» e «m» in «C» e

«M»