
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

II Semestre 2022

Lecture 4: Timed Automata and Hybrid Automata

Ex: Parking Finite State Machine
Try to define the FSM of a car park, where a car can arrive or depart,
and you have a maximum number of slots equal to M.

Hint: the modes are the number of occupied slots

Parking Finite State Machine

0 1 2 M

…

…

arr ∧ ¬ dep
→ c= 1

arr ∧ ¬ dep
→ c= 2

arr ∧ ¬ dep
→ c= 3

arr ∧ ¬ dep
→ c= M

dep ∧ ¬ arr
→ c= M-1

dep ∧ ¬ arr
→ c= 2

dep ∧ ¬ arr
→ c= 1

dep ∧ ¬ arr
→ c= 0

Parking Finite State Machine

𝑐
bool arr

bool dep
0 1 2 M

…

…

arr ∧ ¬ dep
→ c= 1

arr ∧ ¬ dep
→ c= 2

arr ∧ ¬ dep
→ c= 3

arr ∧ ¬ dep
→ c= M

dep ∧ ¬ arr
→ c= M-1

dep ∧ ¬ arr
→ c= 2

dep ∧ ¬ arr
→ c= 1

dep ∧ ¬ arr
→ c= 0

Finite State Machine
A FSM is a tuple 𝑆, 𝑄$, 𝑄% , 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑠& where:
• 𝑆 is a finite set of states;
• 𝑄$ is a set of input valuations;
• 𝑄% is a set of output valuations;
• 𝑢𝑝𝑑𝑎𝑡𝑒: 𝑆 × 𝑄$ → 𝑆 × 𝑄% is an update function, mapping a state and
an input valuation to a next state and an output valuation;
• 𝑠& is the initial state.

The state machines we describe here are known as Mealy machines, named after
George H. Mealy, a Bell Labs engineer who published a description of these ma-
chines in 1955 (Mealy, 1955). Mealy machines are characterized by producing
outputs when a transition is taken.

An alternative, known as a Moore machine, produces outputs when the machine
is in a state, rather than when a transition is taken. That is, the output is defined
by the current state rather than by the current transition. Moore machines are
named after Edward F. Moore, another Bell Labs engineer who described them in
a 1956 paper (Moore, 1956).

Mealy machines and Moore machine

Parking Extended State Machine

(arr ∧ ¬ dep ∧ c<M)
→ s := s+1, c := s

(dep ∧ ¬ arr ∧ c>0)
→ s := s-1, c := s

s := 0

Consider a system that counts the number of cars that enter and leave a parking
garage in order to keep track of how many cars are in the garage at any time.

Time Trigger Machine

Non-deterministic Finite State Machine

A FSM is a tuple 𝑆, 𝑄$, 𝑄% , 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑈𝑝𝑑𝑎𝑡𝑒, 𝑠& where:
• 𝑆 is a finite set of states;
• 𝑄$ is a set of input valuations;
• 𝑄% is a set of output valuations;
• possible𝑈𝑝𝑑𝑎𝑡𝑒: 𝑆 × 𝑄$ → 2)×+! is an is an update relation, map-
ping a state and an input valuation to a set of possible (next state,
output valuation) pairs;
• is the initial state.

Thermostat FSM

cooling heating

Temp ≤ 18 → ℎ𝑒𝑎𝑡𝑂𝑁

Temp ≥ 22 → ℎ𝑒𝑎𝑡𝑂𝐹𝐹

It could be event triggered, like the garage counter, in which case it will react whenever a
temperature input is provided. Alternatively, it could be time triggered, meaning that it
reacts at regular time intervals

Actor Models
A box, where the inputs and the outputs are functions

𝑆

𝑆: 𝑢 → 𝑦

𝑢 𝑦

Actor models are composable. We can form a cascade composition

We have so far assumed that state machines operate in a sequence of discrete reactions.
We have assumed that inputs and outputs are absent between reactions.

Having continuous inputs

17

Input u(t) Output y

s1 s2
Guard/actionGuard/action

Guard/action

Guard/action

We will define a transition to occur when a guard on an outgoing transition from the cur-
rent state becomes enabled

Thermostat FSM with a continuous-time input signal

The outputs are present only at the times the transitions are taken

cooling heating

𝜏 𝑡 ≤ 18 → ℎ𝑒𝑎𝑡𝑂𝑁

𝜏 𝑡 ≥ 22 -> ℎ𝑒𝑎𝑡𝑂𝐹𝐹

𝜏
ℎ𝑒𝑎𝑡𝑂𝑁

ℎ𝑒𝑎𝑡𝑂𝐹𝐹

cooling heating

𝜏 𝑡 ≤ 18

𝜏(𝑡) ≥ 22

The current state of the state machine has a state refinement that gives the dynamic
behavior of the output as a function of the input.

State Refinements

h 𝑡 = 0 h 𝑡 = 1

𝜏 ℎ

Modal Models

A hybrid system is sometimes called a modal model because it has a finite
number of modes, one for each state of the FSM, and when it is in a mode, it
has dynamics specified by the state refinement.

Timed Automata

• Introduced by Alur and Dill (A theory of timed Automata, TCS,1994)

• They are the simplest non-trivial hybrid systems

• All they do is measuring the passage of time

• A clock 𝑠 𝑡 is modeled by a first-ODE: 𝑠̇ = 𝑎 ∀𝑡 ∈ 𝑇!
where 𝑠 ∶ ℝ → ℝ is a continuous-time signal,
𝑠(𝑡) is the value of the clock at time 𝑡, and
𝑇! ⊂ ℝ is the subset of time during which the hybrid system is in mode𝑚.
The rate of the clock, 𝑎, is a constant while the system is in this mode.

Timed Automata

cooling heating

𝜏 𝑡 < 20 ∧ 𝑠 𝑡 ≥ 𝑇,/
𝑠 𝑡 ≔ 0

𝜏 𝑡 ≥ 20 ∧ 𝑠 𝑡 ≥ 𝑇-/
𝑠 𝑡 ≔ 0

h 𝑡 = 0 h 𝑡 = 1

𝜏 ℎ

s 𝑡 : = 𝑇"

𝑠̇ = 1 𝑠̇ = 1

This is an assignment, not a predicate

cooling and heating are discrete states, s is a continuous state

Timed Automata

cooling heating

𝜏 𝑡 < 20 ∧ 𝑠 𝑡 ≥ 𝑇,
𝑠 𝑡 ≔ 0

𝜏 𝑡 ≥ 20 ∧ 𝑠 𝑡 ≥ 𝑇-
𝑠 𝑡 ≔ 0

h 𝑡 = 0 h 𝑡 = 1

𝜏 ℎ

s 𝑡 : = 𝑇"

𝑠̇ = 1 𝑠̇ = 1

This is an assignment, not a predicate

cooling and heating are discrete states, s is a continuous state

Temperature input 𝜏 𝑡

The output ℎ

The refinement state 𝑠.

Hybrid Automata

cooling heating

𝜏 ≤ 18

𝜏 ≥ 22

𝜏̇ = −𝛼 𝜏

ℎ

𝜏̇ = −𝛼 𝜏 + 𝑘

𝜏# ≥ 18

ℎ = 0 ℎ = 1
𝜏

Hybrid Automata

𝜏 ≤ 18

cooling heating

𝜏 ≤ 18 ?

𝜏 ≥ 22 ?

𝜏̇ = −𝛼 𝜏

ℎ

𝜏̇ = −𝛼 𝜏 + 𝑘

𝜏# ≥ 18

ℎ = 0 ℎ = 1 𝜏
𝜏 > 18

• Ball dropped from an initial height of ℎ& with
an initial velocity of 𝑣&

• Velocity changes according to 𝑣̇ = −𝑔
• When ball hits the ground, i.e. when ℎ 𝑡 = 0,

velocity changes discretely from negative
(downward) to positive (upward)
• I.e. 𝑣 𝑡 ≔ −𝑎𝑣(𝑡) , where 𝑎 is a damping constant

• we can model it as a hybrid system!

Modeling a bouncing ball

28

Hybrid Process for Bouncing ball

29

ℎ̇ = 𝑣
𝑣̇ = −𝑔 ℎ == 0

𝑣 ≔ −𝑎𝑣
ℎ = ℎ#
𝑣 = 0

Hybrid Process for Bouncing ball

30

ℎ̇ = 𝑣
𝑣̇ = −𝑔
ℎ ≥ 0

ℎ == 0
𝑣 ≔ −𝑎𝑣

ℎ = ℎ#
𝑣 = 0

Non-Zeno hybrid process for bouncing ball

31

ℎ̇ = 𝑣
𝑣̇ = −𝑔 ℎ = 0 →

𝑣 ≔ −𝑎𝑣ℎ = ℎ#, 𝑣 = 0

ℎ = 0 ∧ 𝑣 < 𝜖 →
𝑣 ≔ 0

halt

faling

Hybrid Process for Bouncing ball

32
What happens as ℎ → 0?

ℎ(𝑡)

ℎ̇ = 𝑣
𝑣̇ = −𝑔

ℎ == 0
𝑣 ≔ −𝑎𝑣

ℎ = ℎ#
𝑣 = 0 ℎ̇(𝑡)

Hybrid Time Set
A hybrid time set is a finite or infinite sequence of intervals

𝜏 = { 𝐼), 𝑖 = 0,… ,𝑀}:
• 𝐼) = 𝜏), 𝜏)* 𝑓𝑜𝑟 𝑖 < 𝑀
• 𝐼+ = 𝜏+, 𝜏+* or 𝐼+ = [𝜏+, 𝜏+*) if M<∞
• 𝜏)* = 𝜏),-
• 𝜏) ≤ 𝜏)*

Hybrid Time Set: Length
Two notions of length for a hybrid time set 𝜏 = { 𝐼), 𝑖 = 0,… ,𝑀}:

• Discrete extent: < 𝜏 > = 𝑀 + 1 number of discrete transition
• Continuous extent: 𝜏 = ∑).#+ 𝜏)* − 𝜏) total duration of interval in 𝜏

Hybrid Time Set: Classification

• Finite: if < 𝜏 > is finite and I+ = [𝜏+, 𝜏+*]
• Infinite:if ||𝜏|| is infinite
• Zeno: if < 𝜏 > is infinite but ||𝜏|| is finite

A hybrid set 𝜏 = { 𝐼), 𝑖 = 0,… ,𝑀} is :

u Described by Greek philosopher Zeno in context of a race between Achilles and a
tortoise

u Tortoise has a head start over Achilles, but is much slower
u In each discrete round, suppose Achilles is d meters behind at the beginning of the

round
u During the round, Achilles runs d meters, but by then, tortoise has moved a little

bit further
u At the beginning of the next round, Achilles is still behind, by a distance of 𝑎×𝑑

meters, where 𝑎 is a fraction 0<𝑎<1
u By induction, if we repeat this for infinitely many rounds, Achilles will never catch

up!

Zeno’s Paradox

36

(Linear) Hybrid Automata

c!"(𝑥)

𝑞# 𝑞-

c&. 𝑥
𝑥 ≔ 𝐴&.𝑥

𝑥̇ = 𝐴#𝑥 + 𝐵# 𝑢 𝑥̇ = 𝐴-𝑥 + 𝐵- 𝑢

c3(𝑥)

c#(𝑥) c-(𝑥)

c.& 𝑥
𝑥 ≔ 𝐴.&𝑥

(Linear) Hybrid Automata

cooling heating

𝜏 ≤ 18

𝜏 ≥ 22

𝜏̇ = −𝛼 𝜏 𝜏̇ = −𝛼 𝜏 + 𝑘

𝜏# ∈ 20,21
𝑡 = 0

𝑡̇ = 1 𝑡̇ = 1

u Continuous action/transition:

Hybrid actions/transitions

39

• Discrete mode 𝑚 does not change

• 𝐱𝝉 = 𝐱(0)

•
0𝐱 2
02

satisfies the given dynamical equation for mode 𝑚

• Output 𝐲 satisfies the output equation for mode 𝑚: 𝐲 𝑡 = ℎ3(𝐱 𝑡 , 𝐮 𝑡)
• At all times 𝑡 ∈ 0, 𝛿 , the state 𝐱 𝑡 satisfies the invariant for mode 𝑚

(𝑞, 𝐱 4) 𝑞, 𝐱 t + 𝛿𝛿
𝐮(𝑡)/𝐲(𝑡)

u Discrete action/transition:

• Happens instantaneously

• Changes discrete mode 𝑞 to 𝑞!

• Can execute only if 𝑔(𝐱") evaluates to true

• Changes state variable value from 𝐱" to 𝑟 𝐱"
• 𝑟 𝐱" should satisfy mode invariant of q′Output will change from ℎ# 𝐱" to ℎ## 𝑟 𝐱"

Hybrid actions/transitions

40

(𝑞, 𝐱 4) 𝑞′, 𝑟 𝐱4
𝑔(𝐱)/𝐱 ≔ 𝑟 𝐱

u Most material that follows is from this paper:
Z. Jiang, M. Pajic, S. Moarref, R. Alur, R. Mangharam, Modeling and
Verification of a Dual Chamber Implantable Pacemaker, In Proceedings
of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2012.
u The textbook has detailed descriptions of some other pacemaker

components

Pacemaker Modeling as a Timed Process

41

u SA node (controlled by nervous system)
periodically generates an electric pulse

u This pulse causes both atria to contract
pushing blood into the ventricles

u Conduction is delayed at the AV node
allowing ventricles to fill

u Finally the His-Pukinje system spreads
electric activation through ventricles
causing them both to contract, pumping
blood out of the heart

How does a healthy heart work?

42

Electrical Conduction System of the Heart

u Aging and/or diseases cause conduction
properties of heart tissue to change leading to
changes in heart rhythm

u Tachycardia: faster than desirable heart rate
impairing hemo-dynamics (blood flow
dynamics)

u Bradycardia: slower heart rate leading to
insufficient blood supply

u Pacemakers can be used to treat bradycardia by
providing pulses when heart rate is low

What do pacemakers do?

43

Implantable Pacemaker modeling

44

u Two fixed leads on wall of right atrium and ventricle respectively
u Activation of local tissue sensed by the leads (giving rise to events Atrial

Sense (AS) and Ventricular Sense (VS))
u Atrial Pacing (AP) or Ventricular Pacing (VP) are delivered if no sensed

events occur within deadlines

How dual-chamber pacemakers work

45

Heart Pacemaker

AS

VS

AP

VP

The Lower Rate Interval (LRI) mode

46

u Measures the longest interval
between ventricular events

u Clock reset when VS or VP received
u No AS received ⇒ LRI outputs AP

after K time units

LRI component keeps heart rate above minimum level

The Lower Rate Interval (LRI) mode

47

ASed
LRI

c ≤ K
VP? → c:=0

VS? → c:=0

AS?
VP? → c:=0

VP? → c:=0

c ≥ K → AP!; c:=0

K= 850ms

u Measures the longest interval
between ventricular events

u Clock reset when VS or VP received
u No AS received ⇒ LRI outputs AP

after K time units

LRI component keeps heart rate above minimum level

48

Translated into Stateflow charts in Simulink for test generation and
code generation :

Pajic, M., Jiang, Z., Sokolsky, O., Lee, I., Mangharam, R.: From
Verification to Implementation: A Model Translation Tool and a
Pacemaker Case Study. In: 18th IEEE Real-Time and Embedded
Technology and Applications Symposium, IEEE RTAS (2012).

u Objective: Steer vehicle to follow a given track
u Control inputs: linear speed 𝑣 , angular speed (𝜔), start/stop
u Constraints on control inputs:

� 𝑣 ∈ 𝑣678, 𝑣678/2,0
� 𝜔 ∈ {−𝜋, 0, 𝜋}

u Designer choice: 𝑣 = 𝑣678 only if 𝜔 = 0, otherwise 𝑣 = 9!"#
:

Design Application: Autonomous Guided Vehicle

49

𝜃

𝑦

𝑑

Track

When 𝑑 ∈ −𝜖,+𝜖 , controller decides that
vehicle goes straight, otherwise executes a
turn command to bring error back in the
interval

𝑥

On/Off control for Path following

50

𝜃
𝑥

𝑦

𝑑

Track

𝑥̇ = (𝑣!"#/2) cos 𝜃
𝑦̇ = ⁄𝑣!"# 2 sin 𝜃

𝜃̇ = −𝜋
𝑑 ≥ 𝜖

𝑥̇ = 0
𝑦̇ = 0
𝜃̇ = 0

𝑥̇ = (𝑣!"#/2) cos 𝜃
𝑦̇ = ⁄𝑣!"# 2 sin 𝜃

𝜃̇ = 𝜋
𝑑 ≤ −𝜖

𝑥̇ = 𝑣!"# cos 𝜃
𝑦̇ = 𝑣!"# sin 𝜃

𝜃̇ = 0
−𝜖 ≤ 𝑑 ≤ 𝜖

𝑑 ≤ 𝜖?

𝑑 ≤ −𝜖? 𝑑 ≥ −𝜖?

𝑑 ≥ 𝜖?

𝑠𝑠? 𝑠𝑡𝑎𝑟𝑡 ∧
𝑑 ≥ 𝜖?

𝑠𝑠? 𝑠𝑡𝑜𝑝 𝑠𝑠?
𝑠𝑡𝑜
𝑝

𝑠𝑠?
𝑠𝑡𝑎
𝑟𝑡 ∧

−𝜖
≤ 𝑑

≤ 𝜖
?

𝑠𝑠? 𝑠𝑡𝑜𝑝

𝑠𝑠? 𝑠𝑡𝑎𝑟𝑡 ∧
𝑑 ≤ −𝜖?

Inputs: ss ∈ 𝑠𝑡𝑜𝑝, 𝑠𝑡𝑎𝑟𝑡 , 𝑑 ∈ ℝ

Turn right

Turn left

Go straight

Stationary

𝑥 ≔ 𝑥!
𝑦 ≔ 𝑦!
𝜃 ≔ 𝜃!

On/Off control for Path following

51

u Autonomous mobile robots in a room, goal for each robot:
� Reach a target at a known location
� Avoid obstacles (positions not known in advance)
� Minimize distance travelled

u Design Problems:
� Cameras/vision systems can provide estimates of obstacle positions

�When should a robot update its estimate of the obstacle position?
� Robots can communicate with each other

�How often and what information can they communicate?
� High-level motion planning

�What path in the speed/direction-space should the robots traverse?

Design Application: Robot Coordination

52

Path planning with obstacle avoidance

53

Goal

𝑥

𝑦

𝑝% = 𝑥%, 𝑦%

𝑝& = 𝑥&, 𝑦&

𝑣, 𝜃&

𝑣, 𝜃%

𝑥', 𝑦'

u Assumptions:
� Two-dimensional world
� Robots are just points
� Each robot travels with a fixed speed

u Dynamics for Robot 𝑅):
� ̇𝑥) = 𝑣 cos 𝜃); ̇𝑦) = 𝑣 sin 𝜃)

u Design objectives:
� Eventually reach 𝑥A, 𝑦A
� Always avoid Obstacle1 and Obstacle 2
� Minimize distance travelled

𝑅"

𝑅$

Obstacle 1
𝑝(% = 𝑥(%, 𝑦(%

Obstacle 2
𝑝(& = 𝑥(&, 𝑦(&

1. Computer vision tasks
2. Actual path planning task

u Assume computer vision algorithm identifies obstacles, and labels them with
some easy-to-represent geometric shape (such as a bounding boxes)
� In this example, we will assume a sonar-based sensor, so we will use circles

u Assuming the vision algorithm is correct, do path planning based on the estimated
shapes of obstacles

u Design challenge:
� Estimate of obstacle shape is not the smallest shape containing the obstacle
� Shape estimate varies based on distance from obstacle

Divide path/motion planning into two parts

54

u Robot 𝑅. maintains radii 𝑒 and 𝑒′ that are
estimates of obstacle sizes

u Every 𝜏 seconds, 𝑅. executes following
update to get estimates of shapes of each
obstacle:

𝑒 ≔ min 𝑒, 𝑟! + 𝑎 𝑝! − 𝑝"! − 𝑟!
𝑒′ ≔ min 𝑒′, 𝑟# + 𝑎 𝑝! − 𝑝"# − 𝑟#

u Computation of 𝑅: is symmetric

Estimation error

55

𝑒′𝑒

𝑟"

Estimated shape
from distance 𝑑

Estimated shape
from distance 𝑑′

Smallest shape
bounding obstacle

Estimated radius (from current distance d)
𝑒 = 𝑟 + 𝑎(𝑑 − 𝑟),
where 𝑎 ∈ [0,1] is a constant

𝑝(% = 𝑥(%, 𝑦(%

u Choose shortest path 𝜌H to target (to minimize
time)

u If estimate of obstacle 1 intersects 𝜌H, calculate
two paths that are tangent to obstacle 1
estimate

u If estimate of obstacle 2 intersects 𝜌H, or
obstacle 1, calculate tangent paths

u Plausible paths: 𝜌. and 𝜌I
u Calculate shorter one as the planned path

Path planning

56

𝜌"

𝜌$
𝜌%

𝜌&

𝑥

𝑦

𝑝"

𝑝"#

𝑝"$

(𝑥$, 𝑦$)

𝜃

u Path planning inputs:
� Current position of robot
� Target position
� Position of obstacles and estimates

u Output:
� Direction for motion assuming obstacle estimates are correct

u May be useful to execute planning algorithm again as robot moves!
� Because estimates will improve closer to the obstacles
� Invoke planning algorithm every 𝜏 seconds

Dynamic path planning

57

u Every robot has its own estimate of the obstacle
u 𝑅I’s estimate of obstacle might be better than 𝑅.’s
u Strategy: every 𝜏 seconds, send estimates to other robot, and receive

estimates
u For estimate 𝑒J, use final estimate = min 𝑒J , 𝑒JKL,M

u Re-run path planner

Communication improves planning

58

Improved path planning through communication

59

𝜌"

𝜌$
𝜌%

𝜌&

𝑥

𝑦

𝑝"

𝑝"#

𝑝"$

(𝑥$, 𝑦$)
𝜌"

𝜌$
𝜌%

𝜌&'

𝑥

𝑦

𝑝%(0)

𝑝"#

𝑝"$

(𝑥$, 𝑦$)

𝑝%(𝜏) Old path

New path available
because estimate of
obstacle 1 improved
after receiving estimate
from 𝑅%

Hybrid State Machine for Communicating Robot

60

