Binary Search Trees
Chapter 12 of Cormen’s book

Giulia Bernardini
giulia.bernardini@units. it

Algorithmic Design
a.y. 2022/2023

mailto:giulia.bernardini@units.it

Binary Search

Binary search is an efficient algorithm using a divide-and-conquer
strategy. Its running time is O(log n).

Algorithm 3 Binary Search

1: INPUT: A sorted sequence s = s|1]s[2]... s[n] of items from a set X and an
item z € X.

2: OUTPUT: Anindex ¢ € [1,n] such that s[i| = x; or FAIL if no such index exists.
3: start < 1, end < n;
4: while start < end do
5; mid < |(start + end)/2];
6: if si/mid] = = then
7: return : mid;
8: else if simid] < x then
9: start < mid + 1;
10: else if s[mid] > z then
11: end <+ mid — 1;
12: return: FAIL,

Binary Search Trees

BSTs have the following property:

For every node x in the tree, for every node y in the left subtree of
X, then key(x) < key(y); for every node z in the right subtree of x,

key(z) > key(x).

ITERATIVE-TREE-SEARCH (X, k)

1 while x # NIL and £ # x.key
2 if k£ < x.key

3 X = x.left
4

S

else x = x.right
return x

Binary Search Trees

TREE-INSERT(T, 2)

1 y = NIL

2 x = T.root

3 while x # NIL

4 y =X

S5 if z.key < x.key
6 x = x.left
7 else x = x.right
8 Z.p=1Y

9 if y ==NIL
10 T.root = £ // tree T was empty
11 elseif z.key < y.key
12 y.left = 7

13 else y.right = 7

Binary Search Trees

INORDER-TREE-WALK (Xx)

1 if x # NIL

2 INORDER-TREE-WALK (x. left)
3 print x. key

4 INORDER-TREE-WALK (Xx.right)

Binary Search Trees

TREE-MINIMUM (x)

1 while x.left # NIL
2 x = Xx.left
3 return x

TREE-MAXIMUM (x)

1 while x.right # NIL
2 X = Xx.right
3 return x

Binary Search Trees

TREE-SUCCESSOR ()

1
2
3
4

S
6
7

if x.right # NIL
return TREE-MINIMUM (x.right)

y = X.p

while y £ NIL and x == y.right
X =Yy
y=Xy.p

return y

Binary Search Trees

TRANSPLANT(T, u, v)

1 ifu.p==NIL

2 I.root = v

3 elseif u ==u.p.left
4 u.p.left = v
S elseu.p.right = v
6 ifv # NIL

7 V.p = U.p

Binary Search Trees

TREE-DELETE(T, 2)
1 1if z.left == NIL

2 TRANSPLANT(T, z, z.right)
3 elseif z.right == NIL
4 TRANSPLANT(T, z, z.left)
5 else y = TREE-SUCCESSOR(Z)
6 if y.p # 2
7 TRANSPLANT(T, y, y.right)
3 y.right = z.right
9 y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left

12 y.left.p =y

Red-Black Irees

Chapter 13 of Cormen’s book

Giulia Bernardini
giulia.bernardini@units. it

Algorithmic Design
a.y. 2022/2023

mailto:giulia.bernardini@units.it

Rotations

LEFT-ROTATE(T,, x)

k.

V= ol // sety
Y oy e // turn y’s left subtree into x’s right subtree
if y.left # T.nil
Vlefin — X
vy = D // link x’s parent to y
if x.p ==T.nil
T.root = y
elseif x == x.p.left
x.p.left =y
else x.p.right = y
yler = 1 // put x on y’s left

X.p =Y

) & o 60 10 R U

Exercises

Cormen Problem 12-1. Equal keys pose a problem for the
implementation of binary search trees.

a. What is the asymptotic performance of TREE-INSERT when

used to insert n items with identical keys into an initially empty
binary search tree?

Exercises

Cormen Problem 12-1. We propose to improve TREE-INSERT by testing
before line 5 to determine whether z.key = x.key and by testing before line 11
to determine whether z.key = y.key.

TREE-INSERT(T, 2) If equality holds, we implement one of the following
1 y = NIL strategies. For each strategy, find the asymptotic
2 x = T.root performance of inserting n items with identical keys
3 while x # NIL into an initially empty binary search tree. (The
4 y =X strategies are described for line 5, in which we
5 if z.key < x.key compare the keys of z and x. Substitute y for x to
6 x = x.left grrive at the strategies for line 11.)
7 else x = x.right
8 zZ.p=Yy
0 if y == NIL b.. Keep a boolea.n flag x.b at node x, and set x to |
10 T root = 7 either x.left or x.right based on the value of x.b, which
11 elseif z.key < y.key alternates between FALSE and TRUE each time we
12 y.left = 7 visit x while inserting a node with the same key as x.

13 else y.right = 7

Exercises

Cormen Problem 12-1. We propose to improve TREE-INSERT by
testing before line 5 to determine whether z.key = x.key and by testing
before line 11 to determine whether z.key = y.key.

TREE-INSERT(7, 2)

1 y = NIL
2 x = T.root

If equality holds, we implement one of the
following strategies. For each strategy, find the
asymptotic performance of inserting n items with

3 while x # NIL
4 y = x identical keys into an initially empty binary search
5 if z.key < x.key tree. (The strategies are described for line 5, in
6 x = x.left which we compare the keys of z and x. Substitute
;] else x = x.right for x to arrive at the strategies for line 11.)
9 iffz ==)N;IL
10 T root = 7 c. Keep a list of nodes with equal keys at x, and
11 elseif z.key < y.key insert z into the list.
12 y.left = 7
13

else y.right = 2

Exercises

Cormen Problem 12-1. We propose to improve TREE-INSERT by
testing before line 5 to determine whether z.key = x.key and by
testing before line 11 to determine whether z.key = y.key.

TREE-INSERT(7, . -
(T.2) If equality holds, we implement one of the

1 y= . . .
’ i _ 1;.1’%0“ following strategies. For each strategy, find the
3 while x # NIL asymptotic performance of inserting n items
4 y =X with identical keys into an initially empty binary
5 if z.key < x.key gsearch tree. (The strategies are described for
g elsei z iif?ht line 5, in which we compare the keys of z and x.
8 z.p =y | Substitute y for x to arrive at the strategies for
9 if y ==NIL line 11.)
10 T.root = 7
E clseit <]]‘cfyfzy k&Y d. Randomly set x to either x.left or x.right. (Give
13 else ?right_ _ the worst-case performance and informally

derive the expected running time.)

Exercises

A preorder traversal of a tree is given by the following procedure:
- Visit (print) the root node

* Traverse the left sub-tree in pre-order

* Traverse the right sub-tree in pre-order

A postorder traversal of a tree is given by the following procedure:

» Traverse the left subtree by calling the postorder function recursively.

* Traverse the right subtree by calling the postorder function recursively.
- Visit (print) the current node.

EX. Given a BST in pre-order as {13,5,3,2,11,7,19,23}, draw this BST
and determine if this BST is the same as one described in post-order
as {2,3,5,7,11,23,19,13}.

