

Introduction to ROOT: part 4

Mirco Dorigo mirco.dorigo@ts.infn.it

LACD 2022-2023 March 29th, 2023

Previous lesson

- Accessing the data from a TTree in a ROOT file
- Inspect the data looking at distributions, make a selection, in macros and live (also in 2 dimensions)
- Making a graph to display data pairs.
- Manipulating histograms (use of Sum2w(), and treatment of bin-content errors).

What's this shoulder?

root [7] simTree->Draw("B_de","bkg_killer>0.92");

Background from other B decays

- bkg_killer is built to suppress events that are *not* $\Upsilon(4S) \rightarrow B\overline{B}$.
- Among $\Upsilon(4S) \rightarrow B\overline{B}$ events, there are *B* decays that are not signal, but that can be mis-reconstructed as our signal.
- For instance a pion in $B^0\to\pi^+\pi^-$ decays can be mis-identified as kaon and be reconstructed as $B^0\to K^+\pi^-$
- Let's check in simulation. We have a variable that flag real $B^0 \to K^+ \pi^-$ signal candidates only.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

```
//define an histogram to look at deltaE distribution
TH1D* h_de_tot = new TH1D("h_de_tot",";m(B) [GeV]; Entries",40,-0.15,0.15);
//very very important to rember when manipulating histograms!!!
                                                                  IMPORTANT!!!
h_de_tot->Sumw2();
//clone the same histogram structure for signal, bkg, and unknown bkg
TH1D* h_de_sig = (TH1D*) h_de_tot->Clone("h_de_sig");
TH1D* h_de_bkg = (TH1D*) h_de_tot->Clone("h_de_bkg");
TH1D* h_de_unknown = (TH1D*) h_de_tot->Clone("h_de_unknown");
//loop over the entries
for(int iEntry; iEntry<tot_entries; ++iEntry){</pre>
    tree->GetEntry(iEntry);
    //skip all candidates below the optimal cut point
    if(bkg_killer<0.92) continue;</pre>
    //fill the histograms
    h_de_tot->Fill(B_de);
    if(isBkg) h_de_bkg->Fill(B_de);
    else if(isSig) h_de_sig->Fill(B_de);
```


83

//subtract the background from the total
h_de_tot->Add(h_de_bkg,-1);

//subtract the signal

h_de_unknown->Add(h_de_tot, h_de_sig, 1, -1);

//draw the histograms

- TCanvas* c1 = new TCanvas("c1","c1",1200,400);
- 2 c1->Divide(2,1);
- c1->cd(1);
- h_de_tot->Draw();
- 5 h_de_sig->SetLineColor(kRed);
- h_de_sig->SetMarkerColor(kRed);

```
h_de_sig->Draw("same");
```

c1->cd(2);

```
h_de_unknown->Draw();
```

//compare signal and unkown background shapes
TCanvas* c2 = new TCanvas("c2","c2",600,400);
h_de_unknown->DrawNormalized("histo");
h_de_sig->DrawNormalized("histo same");

//put a legend

```
TLegend* leg = new TLegend(0.2,0.65,0.5,0.8);
```

```
leg->AddEntry(h_de_sig,"Signal","L");
```

```
leg->AddEntry(h_de_unknown,"Unknown backgr.","L");
```

```
leg->Draw();
```

```
cout << "Integral from signal: " << h_de_sig->Integral() << endl;
cout << "Integral from unkn. back.: " << h_de_unknown->Integral() << endl;</pre>
```

We are manipulating the bin contents

of the histograms here.

Only with Sumw2 () the uncertainty

on the bin content is properly calculated

The output

<u>File Edit View Options Tools</u> Entries Entries 1500 400 1000 200 500 -0.10 0.1 -0.1 0.1 0 $\Delta E [GeV]$ $\Delta E [GeV]$ c2 <u>File Edit View Options Tools</u> root [0]

Processing inspectB.C... Total entries in the tree: 283056 Integral from signal: 8798 Integral from unkn. back.: 2352

<u>H</u>elp

<u>H</u>elp

Misidentified background

- Indeed, this is given by pion-to-kaon misidentification. If you calculate the shift in ΔE due to the different pion-kaon mass, you will find about $+40 \,\mathrm{MeV}$.
- We can use a variable, built from PID detectors, to suppress this background.

Exercises (3rd lesson)

- **1.** Compute the signal efficiency, $\epsilon = S(\text{selected})/S(\text{total})$, for each cut bkg_killer. Draw a graph to show the efficiency as a function of the cut value, drawing also the error on the efficiency (that you need to calculate): use the class <u>TGraphErrors</u>.
- 2. What do you expect for the M distribution of the mis-id background? Draw it, by subtracting from the total distribution the signal and that of the non-B background (like we did for ΔE). Compare its distribution with that of the signal.
- 3. There is a variable K_pid in the tuples that gives the probability of a candidate kaon to be a real kaon. Draw its distribution: compare that of the signal (isSig==1) with that of the mis-id background (isSig!=1 && isBkg!=1).
- 4. Instead of using DrawNormalized(), scale to 1 the histogram integral using the <u>Scale()</u> method of TH1 (check the integral value) and normal Draw() method.

Exercises (3rd lesson)

- 5. Find a cut value for K_pid, by maximising the $S/\sqrt{S+B}$, where S and B are the signal and mis-id background in the ΔE region [-60,60] MeV.
- 6. Apply the full selection to the simulation and data samples (data.root), and draw the resulting distributions of M and ΔE .

NB: make sure all numbers and text in plots is well visible, by adjusting size of fonts, labels...

Optimised selection

Look at data

- Our original goal was to measure the signal yield in data.
- Let's take a look at data: check out M and ΔE distributions in data.root, after the cut bkg_killer>0.92.
- Put them in a ROOT file.

Let's make a fit of our data sample

- We will fit the ΔE distribution (why?).
- Of course, we cannot just select only signal as in simulation.
 We can "statistically disentangle" the components that make up the observed distribution. We will do a fit to get the sample composition.
- We can model the fit function (probability density function, pdf) from simulation, studying each component.
- Then we will apply our model to fit the data.

A note...

- Fitting methods are a very large topic that would require several lessons.
- I'm sure you have some background from the statistic lessons, and that you have seen already topics like parameter estimation, χ^2 , likelihood, pdf, and so on...
- Here we will see very simple fits to histograms (i.e. binned data), but that enables us to achieve already some good results.
- Bear in mind that's not the full story, at all! It's just the tip of the iceberg...

Model the components using the FitPanel

Model the components using the FitPanel

Model the components using the FitPanel

Let's make the fit of the data

- We have seen the possible function to fit each component
- In data, we have 10% of the statistic of the simulation: we can afford also simpler model.
 We will use just one Gaussian function to model the signal and the mis-id component
- We will build a model that is the sum of the 3 components
- We will do it in a macro (although we could do it online too!)

```
#inciuae "ilegena.n
   #include "TStyle.h"
                             First part pretty standard now...
   using namespace std;
11
   void fitDeltaE(){
12
13
       const double min_de = -0.15;
       const double max_de = 0.15;
       //define an histogram to look at deltaE distribution
       TH1D* h_data = new TH1D("h_data",";#DeltaE [GeV]; Entries",40,min_de,max_de);
       //open file and take the tree
19
       TFile* file = TFile::Open("data.root");
       TTree* tree = (TTree*) file->Get("treeData");
21
22
       int tot_entries = tree->GetEntries();
       cout << "Total entries in the tree: " << tot_entries << endl;</pre>
24
       //link the variables with tree banches
       double B_de;
       double bkg_killer;
28
       tree->SetBranchAddress("B_de",&B_de);
29
       tree->SetBranchAddress("bkg_killer",&bkg_killer);
       //loop over the entries
       for(int iEntry; iEntry<tot_entries; ++iEntry){</pre>
34
           tree->GetEntry(iEntry);
           //skip all candidates below the optimal cut point
           if(bkg_killer<0.92) continue;</pre>
           //fill the histograms
           h_data->Fill(B_de);
42
```

45	//Let's define the PDF for the fit, using T	
46 47	<pre>//https://root.cern.ch/doc/master/classTF1.</pre>	html
47 48 49 50	<pre>//The total function that describes our obs TF1* pdf = new TF1("pdf","gaus(0)+gaus(3)+p</pre>	
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	<pre>//signal gauss, normalisation constant pdf->SetParName (0, "N_{sig}"); pdf->SetParameter(0, 100); //signal gauss, mean fixed pdf->SetParName (1, "#mu_{sig}"); pdf->FixParameter(1, 0.); //signal gauss, std dev fixed pdf->SetParName (2, "#sigma_{sig}"); pdf->FixParameter(2,0.015); //mis-id gauss, normalisation constant pdf->SetParName (3, "N_{misid}"); pdf->SetParName (3, "N_{misid}"); pdf->SetParName (4, "#mu_{misid}"); pdf->FixParameter(4,0.042); //mis-id gauss, std dev fixed pdf->SetParName (5, "#sigma_{misid}"); pdf->FixParameter(5,0.015); //background intercept and slope pdf->SetParName (6, "p_{0}^{bkg}"); pdf->SetParName (7, "p_{1}^{bkg}");</pre>	All settings on parameters. We fix parameters that we know already (from physics or simulation) to ease the work of the fit. The simplest the model, the better.

• It's all happening here with a very simple line!

76 //and now fit, in the range definined by the histogram (option R)	
77 //option N = not draw (otherwise it draws a canvas with a plot by defa	ult)
<pre>78 cout << "\n First fit, fixing all possible parameters: \n\n";</pre>	
79 h_data->Fit("pdf","RN");	

- But plenty of options to do whatever we need...
- See the method Fit() in the reference guide.
- Note: Fit () works also for TGraph (Errors).

Value of the fit function (x² here)

Algorithm used to obtain the results

First	fit, fixir	ng ll possible	parameters:	mportant t	o check this!
FCN=2	27.8948 FROM	MIGRAD STAT EDM=9.01287	US=CONVERGED e-23 STRATE		80 TOTAL ROR MATRIX ACCURATE
EXT	PARAMETER	, and a state of the desired states and the state of the st	ومرتبع والمتفاق المتحدر ومتعمله فالمراجع المحاور فستركز والمتعاد	STEP	FIRST
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	N_{sig}	1.69595e+02	7.30230e+00	1.84336e-02	9.63651e-13
2	#mu_{sig}	0.00000e+00	fixed		
3	<pre>#sigma_{sigma_</pre>	} 1.50000e-02	fixed		
4	N_{misid}	4.55419e+01	5.18582e+00	1.26809e-02	-7.00404e-13
5	#mu_{misid	4.20000e-02	fixed		
6	#sigma_{mi	id} 1.50000e-	02 fixed	Î	
7	p_{0}^{bkg	4.17642e+01	1.24868e+00	2.98156e-03	8.93671e-12
8	p_{1}^{bkg	-7.71166e+01	1.19357e+01	3.07475e-02	-1.15545e-13
			a a brian de la complete de la comp La complete de la comp		

The fit results

Can play with parameters, to obtain more information from data

• Can try also different fit methods, so in the last iteration we ask to fit with a binned-likelihood function, instead of the default χ^2

Let's try to release the si	ignal std dev				
	STATUS=CONVERGED 110 CALLS 111 TOTAL				
EXT PARAMETER NO. NAME VALUE 1 N_{sig} 1.66753e- 2 #mu_{sig} 0.00000e-	0e-02 8.09241e-04 1.50628e-06 -3.72362e-01 +01 5.52977e+00 1.26128e-02 -3.30067e-06 e-02 fixed 000e-02 fixed e+01 1.26990e+00 2.96553e-03 -8.98781e-05				
Update the mis-id std dev And release also the mis-id mean and do a binned-likelihood fit, instead of a chi2					
Info_in_ <tcanvas::makedefca FCN=13.7672 FROM MIGRAD</tcanvas::makedefca 					
	36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE				
EDM=5. EXT PARAMETER	STEP FIRST				
EDM=5. EXT PARAMETER NO. NAME VALUE	STEP FIRST ERROR SIZE DERIVATIVE				
EDM=5. EXT PARAMETER NO. NAME VALUE	STEP FIRST ERROR SIZE DERIVATIVE +02 8.69389e+00 1.78671e-02 -3.46486e-06				
EDM=5. EXT PARAMETER NO. NAME VALUE 1 N_{sig} 1.66476e 2 #mu_{sig} 0.0000e 3 #sigma_{sig} 1.5604	STEPFIRSTERRORSIZEDERIVATIVE+028.69389e+001.78671e-02-3.46486e-06+00fixed+4e-028.92083e-041.50313e-063.01092e-02				
EDM=5. EXT PARAMETER NO. NAME VALUE 1 N_{sig} 1.66476e 2 #mu_{sig} 0.0000e 3 #sigma_{sig} 1.5604 4 N_{misid} 4.26560e	STEPFIRSTERRORSIZEDERIVATIVE+028.69389e+001.78671e-02-3.46486e-06+00fixed-4e-028.92083e-041.50313e-063.01092e-02+015.59930e+001.22986e-021.88504e-05				
EDM=5. EXT PARAMETER NO. NAME VALUE 1 N_{sig} 1.66476e 2 #mu_{sig} 0.00000e 3 #sigma_{sig} 1.5604 4 N_{misid} 4.26560e 5 #mu_{misid} 4.37828	STEPFIRSTERRORSIZEDERIVATIVE+028.69389e+001.78671e-02-3.46486e-06+00fixed4e-028.92083e-041.50313e-063.01092e-02+015.59930e+001.22986e-021.88504e-05e-022.89346e-036.25797e-066.01764e-02				
EDM=5. EXT PARAMETER NO. NAME VALUE 1 N_{sig} 1.66476e 2 #mu_{sig} 0.00000e 3 #sigma_{sig} 1.5604 4 N_{misid} 4.26560e 5 #mu_{misid} 4.37828 6 #sigma_{misid} 1.54	STEPFIRSTERRORSIZEDERIVATIVE+028.69389e+001.78671e-02-3.46486e-06+00fixed-4e-028.92083e-041.50313e-063.01092e-02+015.59930e+001.22986e-021.88504e-05e-022.89346e-036.25797e-066.01764e-02440e-02fixed5.59930e+005.59930e+00				
EDM=5. EXT PARAMETER NO. NAME VALUE 1 N_{sig} 1.66476e 2 #mu_{sig} 0.00000e 3 #sigma_{sig} 1.5604 4 N_{misid} 4.26560e 5 #mu_{misid} 4.37828	STEPFIRSTERRORSIZEDERIVATIVE+028.69389e+001.78671e-02-3.46486e-06+00fixed+028.92083e-041.50313e-063.01092e-02+015.59930e+001.22986e-021.88504e-05e-022.89346e-036.25797e-066.01764e-02440e-02fixed				

2nd fit results, releasing the sigma for the signal

3rd fit results, releasing also mis-id mean. Use the binned likelihood here.

```
//draw the result
93
        gStyle->SetOptStat(0);
94
        gStyle->SetOptFit(1111);
95
        TCanvas* c1 = new TCanvas("c1", "c1", 600, 600);
96
97
        h_data->SetMinimum(0);
98
        h_data->SetMarkerColor(kBlack);
99
        h_data->SetMarkerStyle(8);
100
        h_data->SetMarkerSize(0.8);
101
        h_data->SetLineColor(kBlack);
102
03
        h_data->Draw("err");
104
        //just to draw each component separately...
06
        //the signal
107
        TF1* pdf_sig = new TF1("pdf_sig","gaus",min_de,max_de);
08
        pdf_sig->SetParameters(pdf->GetParameter(0),
109
                                pdf->GetParameter(1),
110
                                pdf->GetParameter(2));
111
        pdf_sig->SetLineColor(kRed);
12
        pdf_sig->SetLineWidth(2);
13
        pdf_sig->Draw("same");
114
15
        //the mis-id B->pipi
116
        TF1* pdf_misid = new TF1("pdf_misid","gaus",min_de,max_de);
117
        pdf_misid->SetParameters(pdf->GetParameter(3),
18
                                  pdf->GetParameter(4),
19
                                    df_{Co+Doromo+or(5)}
```

Just nice drawing of the results...

We made it!

Exercises

- Write a macro that fit each single component of the sample (signal, mis-id, background).
- Try to fit also the M distribution of each component separately using simulation. Note: the background model is not easy, can discard it at the moment.
- If you were to fit the M distribution in data, do you think you can determine both signal and mis-id separately?