Sistemi Dinamici Discreti

Michele Cirafici

 $\begin{array}{c} \mathit{DMG} \,\, \& \,\, \mathit{INFN} \,\, \& \,\, \mathit{IGAP}, \,\, \mathit{Trieste}, \,\, \mathit{Italy} \\ \text{Email: } \,\, \mathsf{mcirafici@units.it} \end{array}$

Dispense per uso interno - da ricontrollare 23 marzo 2023

Indice

1	Sistemi dinamici discreti	1
2	L'esponente di Liapunov	5
3	Dinamica simbolica	7
4	L'insieme di Cantor	10

1 Sistemi dinamici discreti

Consideriamo una funzione reale C^{∞} data da $f: \mathbb{R} \longrightarrow \mathbb{R}$. Denotiamo con $f^n = f \circ \cdots \circ f$ la sua iterazione n-esima. In generale possiamo pensare ad f come ad un processo che prende uno stato inziale $x_0 \in \mathbb{R}$ e lo trasforma in un nuovo stato $x_1 \in \mathbb{R}$. Denotiamo con $x_n = f^n(x_0)$. L'orbita (in avanti, o forward) di f è definita come $\mathcal{O}^+ = \{x_n\}_{n \in \mathbb{N}}$. Se la mappa f è invertibile possiamo definire l'orbita completa $\mathcal{O}^+ = \{x_n\}_{n \in \mathbb{Z}}$.

Un punto x_0 si dice punto fisso se $f(x_0) = x_0$. In questo caso la sua orbita è data dalla sequenza x_0, x_0, x_0, \dots . Può capitare che un punto non sia fissato dalla mappa f, ma che il suo valore ritorni dopo n iterazioni, cioé $f^n(x_0) = x_0$. In questo caso parliamo di un punto periodico di periodo n, o un n-ciclo. In questo caso è spesso utile specificare quando il punto x_0 ha periodo minimo n, cioé n è il numero intero più piccolo per cui $f^n(x_0) = x_0$. La sequenza x_0, x_1, \dots, x_n si ripete sotto l'iterazione di f, e forma l'analogo di una orbita chiusa.

Esempio 1.1. Consideriamo la funzione $g(x) = -x^3$. Ha un punto fisso in g(0) = 0, mentre $g(\pm 1) = \mp 1$, quindi ± 1 sono punti periodici di periodo 2, $g^2(\pm 1) = \pm 1$. Per un dato iniziale, ad esempio 3, le iterazioni prendono valori 3, -27, 19683,

Per sistemi unidimensionali possiamo visualizzare le orbite usando il metodo dell'iterazione grafica. Sul piano (x, y) disegnamo il grafico della funzione y = f(x), e la diagonale y = x. Partendo dal punto (x_0, x_0) sulla diagonale disegnamo una linea verticale fino a raggiungere il punto $(x_0, f(x_0)) = (x_0, x_1)$. Quindi disegnamo una linea orizzontale per trovare il punto (x_1, x_1) . Un'altra linea verticale ci porta a $(x_1, f(x_1)) = (x_1, x_2)$, e così via.

Un punto x_0 è detto un pozzo (sink) o un punto fisso attrattivo se possiamo trovare un intorno $U \ni x_0$ tale che se $y_0 \in U$ allora $f^n(y_0) \in U \ \forall n$, e $f^n(y_0) \longrightarrow x_0$ per $n \longrightarrow \infty$. Viceversa un punto fisso repulsivo, o sorgente (source) ha la proprietà che tutte le orbite, eccetto x_0 stesso, lasciano U dopo abbastanza iterazioni della mappa f. Vale il seguente

Teorema 1.2. Consideriamo $f : \mathbb{R} \longrightarrow \mathbb{R}$ e assumiamo che x_0 sia un punto fisso. Allora

- 1. Se $|f'(x_0)| < 1$ allora x_0 è un punto fisso attrattivo.
- 2. Se $|f'(x_0)| > 1$ allora x_0 è un punto fisso repulsivo.
- 3. Se $|f'(x_0)| = 1$ questo non ci dà nessuna informazione sul carattere di x_0

Dimostrazione. Proveremo il caso 1). Denotiamo $|f'(x_0)| = \nu < 1$. Scegliamo un K tale che $\nu < K < 1$. Siccome f' è una funzione continua, possiamo trovare un δ tale che |f'(x)| < K

 $\forall x \in I \equiv [x_0 - \delta, x_0 + \delta]$. Allora per il teorema di Lagrange (o del valor medio), preso $x \in I$, possiamo trovare un c tra $x \in x_0$ tale che

$$f'(c) = \frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x) - x_0}{x - x_0}$$
(1.3)

Siccome $c \in I$, abbiamo che |f'(c)| < K e quindi $|f(x) - x_0| < K|x - x_0|$. Siccome K < 1 questo implica che $f(x) \in I$. Possiamo quindi iterare l'argomento, usando adesso f(x) al posto di x. Applicando questo argomento n volte troviamo

$$|f^n(x) - x_0| < K^n|x - x_0| \tag{1.4}$$

che implica $f^n(x) \longrightarrow x_0$ per $n \longrightarrow \infty$. La dimostrazione nel caso 2) è simile

Per quanto riguarda 3), basta considerare le tre seguenti funzioni, che hanno un punto fisso in 0 con $f'_i(0) = 1$

$$f_1(x) = x + x^3$$

 $f_2(x) = x - x^3$
 $f_3(x) = x + x^2$ (1.5)

Nel primo caso 0 è una sorgente, nel secondo un pozzo e nel terzo è attrattivo da un lato e repulsivo dall'altro.

Esattamente come nel caso continuo, anche i modelli discreti presentano biforcazioni. Per questo consideriamo una famiglia di funzioni f_{λ} che dipendono da un parametro. Il seguente risultato implica che f_{λ} può avere biforcazioni che cambiano il numero di punti fissi solamente quando ha un punto fisso con derivata uguale ad uno.

Teorema 1.6. Sia f_{λ} una famiglia di funzioni dipendenti in maniera differenziabile (liscia) da λ . Sia x_0 un punto fisso per il valore λ_0 , $f_{\lambda_0} = x_0$ e supponiamo che $f'_{\lambda_0}(x_0) \neq 1$. Allora esistono due intervalli, I intorno ad x_0 e J intorno a λ_0 , ed una funzione differenziabile $p: J \longrightarrow I$ tale che $p(\lambda_0) = \lambda_0$ e $f_{\lambda}(p(\lambda)) = p(\lambda)$. Inoltre f_{λ} non ha nessun altro punto fisso in I.

Dimostrazione. Il teorema segue dall'applicazione del teorema della funzione implicita. Definiamo $G(x,\lambda)=f_{\lambda}(x)-x$. Sappiamo della ipotesi del teorema che $G(x_0,\lambda_0)=0$ e che $\frac{\partial G}{\partial x}(x_0,\lambda_0)=f'_{\lambda_0}(x_0)-1\neq 0$. Possiamo quindi applicare il teorema della funzione implicita per concludere l'esistenza della funzione p con le proprietà richieste; $p(\lambda_0)=x_0$ e $G(p(\lambda),\lambda)=0$. Inoltre $G(x,\lambda)=0$ solo per $x=p(\lambda)$.

Vediamo alcuni esempio di biforcazioni. Prendiamo $f_c(x) = x^2 + c$, con c parametro. I punti fissi sono per $x_{\pm} = \frac{1}{2} \pm \frac{\sqrt{1-4c}}{2}$. Quindi: no punti fissi per $c > \frac{1}{4}$, un punto fisso per $c = \frac{1}{4}$ e due punti fissi per $c < \frac{1}{4}$.

Un altro caso è quando f' = -1; in questo caso ci può essere una biforcazione in cui cambia il carattere di un punto fisso. Ad esempio per $f_{\lambda}(x) = \lambda x$, passando attraverso $\lambda = -1$ il carattere del punto fisso 0 passa da attrattivo a repulsivo. Notiamo anche l'apparire di una famiglia di due cicli (

 $f_{-1}(2) = -2$, $f_{-1}(-2) = 2...$). Questo fenomeno in cui un punto fisso passa da stabile a instabile e al suo posto appare un 2-ciclo, viene anche detto period-doubling bifurcation.

Il modello logistico discreto. Consideriamo come esempio il modello logistico discreto

$$x_{n+1} = \lambda x_n (1 - x_n) \tag{1.7}$$

con $\lambda > 0$. Per semplicità limitiamoci a variabili a valori nell'intervallo unitario I. La mappa $f_{\lambda}(x) = \lambda x(1-x)$ ha due punti fissi $f(x_n) = x_n$ per $x_n = 0$ e $x_n = (\lambda - 1)/\lambda$. Siccome $f'(x_n) = \lambda(1-2x_n)$, il punto fisso $x_n = 0$ è attrattivo per $0 < \lambda < 1$ e repulsivo per $\lambda > 1$. Il secondo punto fisso è attrattivo per $1 < \lambda < 3$ e repulsivo per $\lambda > 3$, con una biforcazione a $\lambda = 3$. Inoltre il punto 1 è un due ciclo, visto che $f_{\lambda}(1) = 0$.

Prendiamo in particolare il caso $\lambda=4$. Per questo valore la dinamica ha un andamento molto complicato. In questo caso $f_4(1/2)=1$. Quindi $f_4([0,1/2])=f_4([1/2,1])=I$, entrambi gli intervalli vengono mappati sull'intero I. In particolare esistono $y_0\in [0,1/2]$ e $y_1\in [1/2,1]$ tali che $f_4(y_0)=f_4(y_1)=1/2$. Andiamo a vedere la seconda iterazione: $f_4^2(1/2)=0$, $f_4^2(y_0)=1$ e $f_4^2(y_1)=1$. Quindi abbiamo per gli intervalli $f_4^2([0,y_0])=f_4^2([y_0,1/2])=I$ e $f_4^2([1/2,y_1])=f_4^2([y_1,0])=I$. In tutto troviamo $4=2^2$ intervalli che vengono mappati in tutto I.

Con un argomento simile possiamo vedere che l'n-esima iterazione f_4^n mappa 2^n intervalli in tutto I. Similmente come abbiamo visto sopra f_4^2 ha quattro punti fissi: 0, 3/4 e due punti periodici di periodo 2 (questo perché punti fissi di f^2 sono 2-cicli di f). Allo stesso modo vediamo che f_4^3 ha sei punti fissi, oltre a 0 e 3/4 troviamo anche quattro punti di periodo 3. Per altre iterazioni la situazione diventa ancora più complicata.

Possiamo avere una idea di questa complicazione andando a vedere il grafico del diagramma di biforcazione (dove rimuoviamo i rami instabili della curva; questo è anche detto *orbit diagram*). Questo è in figura 1

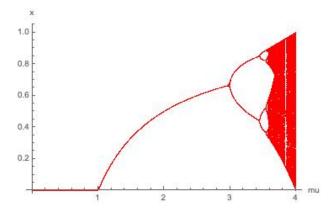


Figura 1: Orbit diagram. Quanto arriviamo vicino a 3, il punto critico diventa instabile e un punto critico stabile di periodo 2 viene creato. Più in avanti a 3.4 circa, questo diventa instabile e un punto critico di periodo 4 viene creato. Proseguendo il comportamento della mappa diventa caotico.

Caos. Supponiamo di avere una funzione f definita su un intervallo $I = [\alpha, \beta]$ che manda I in se stesso. Diciamo che la funzione f è caotica se valgono

- 1. I punti periodici di f sono densi in I.
- 2. La funzione f è transitiva in I, cioé dati due sotto-intervalli $U_1, U_2 \subset I$, esistono $x_0 \in U_1$ e n > 0 tale che $f^n(x_0) \in U_2$.
- 3. f è sensibile rispetto alle condizioni iniziali in I. Esiste una costante β (di sensibilità) tale che per $x_0 \in U \subset I$ intervallo aperto, esistono un $y_0 \in U$ e n > 0 tali che $|f^n(x_0) f^n(y_0)| > \beta$.

Si può dimostrare che la condizione numero 2) è equivalente all'esistenza di un'orbita che è densa in I.

Mappa a tenda. Consideriamo la funzione

$$T(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2} \\ -2x + 2 & \text{if } \frac{1}{2} \le x \le 1 \end{cases}, \tag{1.8}$$

chiamata la funzione a tenda. Si può vedere che questa mappa è caotica.

Infatti: l'iterata T^n manda gli intervalli $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)$, per $k=0,\ldots,2^n-1$ in [0,1). Quindi si vede graficamente che T^n interseca la diagonale y=x una volta in ogni intervallo. Pertanto ogni intervallo contiene un punto periodico di T. Quindi i punti periodici di T sono densi in I. Per quanto riguarda la transitività di T consideriamo due aperti U_1 e U_2 di I. Allora U_1 contiene un intervallo della forma $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)$ per n grande abbastanza. Ma T^n manda questo intervallo in tutto [0,1), che in particolare contiene U_2 . Infine prendiamo $x_0 \in I$. Come prima, ogni aperto U contenente x_0 viene mandato in [0,1) per n grande abbastanza. Allora possiamo trovare $y_0 \in U$ tale che $|f^n(x_0) - f^n(y_0)| \ge \frac{1}{2} \equiv \beta$.

Coniugazione per sistemi dinamici discreti. Consideriamo due funzioni $f:I\longrightarrow I$ e $g:J\longrightarrow J$. Diciamo che f e g sono coniugate se esiste un omeomorfismo $h:I\longrightarrow J$ tale che il diagramma

$$\begin{array}{ccc}
I & \xrightarrow{f} & I \\
\downarrow h & & \downarrow h \\
I & \xrightarrow{g} & I
\end{array} \tag{1.9}$$

commuta; cioé $h \circ f = g \circ h$. Notiamo in particolare che la funzione h porta orbite di f in orbite di g: il fatto che $h(f^n(x)) = g^n(h(x))$ per $x \in I$ vuol dire a parole che h manda il punto n-esimo dell'orbita di x sotto l'azione di f nel punto n-esimo dell'orbita del punto h(x) sotto l'azione di g.

L'importanza di questo concetto viene dal seguente teorema

Teorema 1.10. Siano f e g definite come sopra, su intervalli finiti I e J. Supponiamo che f e g siano coniugate attraverso h. Allora se f è caotica in I, g è caotica in J.

Dimostrazione. Consideriamo $U \subset J$ un aperto e $h^{-1}(J) \subset I$.

- Siccome f è caotica, i punti periodici sono densi in I e quindi possiamo trovare un punto periodico $x \in h^{-1}(U)$ per f. Chiamiamo n il periodo. Allora a causa delle proprietà di h, abbiamo $g^n(h(x)) = h(f^n(x)) = h(x)$. Quindi h(x) è un punto periodico per g. Inoltre i punti periodici di g sono densi in J.
- Siano U e V due aperti di J. Per la transitività di f, esistono $x_1 \in h^{-1}(U)$ e m > 0 tali che $f^m(x_1) \in h^{-1}(V)$. Tuttavia $h(x_1) \in U$ e a cause delle proprietà di h abbiamo $g^m(h(x_1)) = h(f^m(x_1)) \in V$, il che dimostra che anche g è transitiva.
- Chiamiamo β la costante di sensitività di f. Denotiamo $I \in [\alpha_0, \alpha_1]$. Assumiamo che $\beta < \alpha_1 \alpha_0$. Prendiamo $x \in [\alpha_0, \alpha_1 \beta]$. La funzione $|h(x + \beta) h(x)|$ è continua e positiva in $[\alpha_0, \alpha_1 \beta]$. Quindi questa funzione ha un minimo in $[\alpha_0, \alpha_1 \beta]$, che chiamiamo β' . Quindi h porta intervalli di lunghezza β in I in intervalli di lunghezza almeno β' in J. Segue dalle proprietà di h che β' è una costante di sensitività per g.

In maniera analoga diremo che h è un omeomorfismo di semi-coniugazione se invece di essere una funzione uno a uno, è una funzione al più n a uno, che soddisfa le stesse proprietà. Anche una semi-coniugazione preserva il comportamento caotico, su intervalli di lunghezza finita. L'unica differenza è che mappa cicli in cicli ma senza conservarne il periodo minimo.

Teorema 1.11. La funzione logistica $f_4(x) = 4x(1-x)$ è caotica.

Dimostrazione. Per dimostrare il teorema costruiremo esplicitamente una semi-coniugazione tra la mappa logistica e la mappa della tenda sull'intervallo unitario. La semi-coniugazione è data da $h(x) = \frac{1}{2} (1 - \cos 2\pi x)$. Questa funzione è 2 a 1 sull'intervallo [0, 1], tranne che per il punto 1/2, dove è uno a uno e h(1/2) = 1.

Infatti abbiamo

$$h(T(x)) = \frac{1}{2} (1 - \cos 4\pi x) = \frac{1}{2} - \frac{1}{2} (2\cos^2 2\pi x - 1) = 1 - \cos^2 2\pi x$$
$$= 4 \left(\frac{1}{2} - \frac{1}{2}\cos 2\pi x\right) \left(\frac{1}{2} + \frac{1}{2}\cos 2\pi x\right) = f_4(h(x)) . \tag{1.12}$$

2 L'esponente di Liapunov

Introduciamo ora una misura quantitativa di caos, l'esponente di Liapunov associato ad una mappa. L'idea è che il comportamento caotico sia associato ad un tasso esponenziale di repulsione tra traiettorie vicine. Consideriamo

$$x_{n+1} = f(x_n) \tag{2.1}$$

e prendiamo due condizioni iniziali x_0 e $x_0 + \epsilon$. Allora definiamo

 $\lambda = \lim_{\substack{N \to \infty \\ \epsilon \to 0}} \frac{1}{N} \log \frac{|f^N(x_0 + \epsilon) - f^N(x_0)|}{\epsilon}$ (2.2)

Quindi

$$\lambda = \lim_{N \to \infty} \frac{1}{N} \log \left| \frac{\mathrm{d}f^N}{\mathrm{d}x}(x_0) \right| = \lim_{N \to \infty} \frac{1}{N} \log \left| (f^N)'(x_0) \right| \tag{2.3}$$

Prendendo le derivate, usando la regola di derivazione della funzione composta

$$(f^{N})'(x_{0}) = (f(f^{N-1}(x_{0})))'(x_{0}) = (f'(f^{N-1}))(x_{0})(f^{N-1})'(x_{0})$$

$$= f'(f^{N-1}(x_{0}))(f'(f^{N-2}))(x_{0})(f^{N-2})'(x_{0}) = \cdots =$$

$$= f'(f^{N-1}(x_{0}))f'(f^{N-2}(x_{0}))f'(f^{N-3}(x_{0}))\cdots f'(f(x_{0}))f'(x_{0})$$

$$= \prod_{i=0}^{N-1} f'(x_{i})$$
(2.4)

Allora assumendo che il limite esista

$$\lambda = \lim_{N \to \infty} \frac{1}{N} \log \left| \prod_{i=0}^{N-1} f'(x_i) \right| = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log |f'(x_i)|$$
 (2.5)

Notiamo che λ è funzione della condizione iniziale x_0 , e misura di quanto traiettorie che partono vicino si distanziano dalla traiettoria che parte per x_0 .

Ad esempio prendiamo un k-ciclo. Questo significa che l'iterazione di f produce solo k valori, che poi si ripetono. Ricordiamo che un punto critico è stabile se $|f'(x^*)| < 1$. Allo stesso modo possiamo dire che un k-ciclo è stabile se $|(f^k)'(x^*)| < 1$ (cioé x^* è un punto fisso stabile di f^k). Allora per un k-ciclo stabile $\log |(f^k)'(x^*)| < \log 1 = 0$. Quindi¹

$$\lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log |f'(x_i)| = \frac{1}{k} \sum_{i=0}^{k-1} \log |f'(x_i)|$$
 (2.7)

e usando la derivata di una funzione composta all'indietro

$$\lambda = \frac{1}{k} \sum_{i=0}^{k-1} \log |f'(x_i)| = \frac{1}{k} \log |(f^k)'(x_0)| < 0$$
 (2.8)

e quindi per un ciclo periodico stabile l'esponente di Liapunov è sempre negativo. Se abbiamo $|(f^k)'(x_0)| = 0$, allora $\lambda = -\infty$ e chiamiamo il ciclo superstabile.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \left(\left\lfloor \frac{n}{p} \right\rfloor \sum_{i=1}^{p} x_i + \sum_{i=1}^{n \mod p} x_i \right) = \frac{\left\lfloor \frac{n}{p} \right\rfloor}{\frac{n}{p}} \sum_{i=1}^{p} \frac{x_i}{p} + \frac{1}{n} \sum_{i=1}^{n \mod p} x_i$$
 (2.6)

dove nel primo termine il coefficiente tende a uno per $n \to \infty$ e il secondo termine (che è il resto e contiene solo un numero finito di sommandi) tende a zero.

 $^{^{1}}$ Abbiamo usato la relazione per il valor medio di una sequenza periodica di periodo p

Consideriamo adesso l'esponente di Liapunov della mappa a tenda. La definiamo come

$$T(x) = \begin{cases} 2rx & \text{if } 0 \le x \le \frac{1}{2} \\ 2r(1-x) & \text{if } \frac{1}{2} \le x \le 1 \end{cases},$$
 (2.9)

dove abbiamo introdotto un parametro r. Allora |T'(x)| = 2r per $x \in [0, 1]$, tranne che per $x = \frac{1}{2}$ dove non è derivabile. Fuori da questo valore

$$\lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log |T'(x_i)| = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log 2r = \lim_{N \to \infty} \frac{1}{N} N \log 2r = \log 2r > 0$$
 (2.10)

per $r > \frac{1}{2}$, come nel caso che abbiamo trattato in precedenza.

3 Dinamica simbolica

Consideriamo adesso la mappa logistica $f_{\lambda}(x) = \lambda x(1-x)$ per $\lambda > 4$. In questo caso l'intervallo I = [0,1] non è più invariante e possiamo trovare delle orbite che scappano a $-\infty$. Infatti se $\lambda > 4$, esiste un intervallo A_0 tale che $f_{\lambda}(x) = \lambda x(1-x) > 1$ (centrato su x = 1/2). Allora $f_{\lambda}^2(x) = f_{\lambda}(x' > 1) = \lambda x'(1-x') < 0$. Queste orbite tendono a $-\infty$. Invece gli estremi di A_0 (quando $f_{\lambda}(x) = 1$) vanno in 0. Vogliamo capire come è fatto Λ , definito come l'insieme di tutti i punti di I tali che le loro orbite non escono da I.

Andiamo all'indietro: A_1 è la preimmagine di A_0 , cioé f_{λ} manda A_1 in A_0 . A_1 è costituito da due intervalli: i suoi estremi diventeranno eventualmente punti fissi dopo diverse iterazioni. La preimmagine di A_1 , chiamiamola A_2 , è costituita da 4 intervalli. In generale A_n è costituito da 2^n intervalli aperti di I dove l'iterata n-esima giace in A_0 , e quindi esce da I. Allora i punti le cui orbite non escono da I sono $\Lambda = I - \bigcup_{n=0}^{\infty} A_n$.

Dividiamo $I - A_0 = I_0 \cup I_1$, che si trovano rispettivamente a sinistra e a destra. Se prendiamo $x_0 \in \Lambda$, l'intera orbita di x_0 giace in $I_0 \cup I_1$ (perchè gli x_0 in Λ non lasciano mai I). Gli associamo una sequenza

$$S(x_0) = (s_0 s_1 s_2 \cdots) \tag{3.1}$$

dove $s_j = k \iff f_{\lambda}^j(x_0) \in I_k$, con k = 0, 1. A parole le s valgono 0 o 1 a seconda che f_{λ}^j mandi x_0 in I_0 o in I_1 . Ad esempio $S(0) = (000 \cdots)$. Se prendiamo l'altro punto fisso in I_1 , $S(x^*) = (111 \cdots)$. Il punto 1 viene mandato in 0 $S(1) = (1000 \cdots)$ e così via.

Definiamo Σ come l'insieme di tutte le sequenze di 0 e 1. Un punto di Σ è quindi $s=(s_0s_1s_2\cdots)$. Possiamo definire una distanza in Σ , definendo la metrica

$$d(s,t) = \sum_{i=0}^{\infty} \frac{|s_i - t_i|}{2^i}$$
 (3.2)

Si può verificare che questa soddisfa le condizioni di una metrica

- 1. Positiva: $d(s,t) \ge 0$ e $d(s,t) = 0 \iff s = t$
- 2. Simmetrica: d(s,t) = d(t,s)

3. Disuguaglianza triangolare : $d(s, u) \le d(s, t) + d(t, u)$

La metrica così definita è convergente perchè i numeratori sono tutti o 0 o 1 e quindi per maggiorazione

$$d(s,t) \le \sum_{i=0}^{\infty} \frac{1}{2^i} = \frac{1}{1 - 1/2} = 2 \tag{3.3}$$

Ad esempio $d(\overline{01},\overline{10})=\sum_{i=0}^{\infty}\frac{1}{2^i}=2$ e $d(\overline{01},\overline{1})=\sum_{i=0}^{\infty}\frac{1}{4^i}=\frac{1}{1-1/4}=\frac{4}{3}.$

Proposizione 3.4. Se $s_i = t_i$ per i = 0, ..., n, allora $d(s,t) \le \frac{1}{2^n}$. Viceversa, se $d(s,t) < \frac{1}{2^n}$, abbiamo che $s_i = t_i$ per i = 0, ..., n

Dimostrazione. Scriviamo

$$d(s,t) = \sum_{i=0}^{n} \frac{|s_i - s_i|}{2^i} + \sum_{i=n+1}^{\infty} \frac{|s_i - t_i|}{2^i} \le 0 + \frac{1}{2^{n+1}} \sum_{j=0}^{\infty} \frac{1}{2^j} = \frac{1}{2^n}$$
(3.5)

avendo introdotto j = i - (n + 1). Viceversa se $d(s,t) < \frac{1}{2^n}$ deve essere $s_j = t_j$ per ogni $j \le n$, altrimenti, siccome la distanza è maggiore o uguale ad uno qualsiasi dei suoi sommandi

$$d(s,t) \ge \frac{|s_j - t_j|}{2^j} = \frac{1}{2^j} \ge \frac{1}{2^n}$$
(3.6)

perchè $j \leq n$. Abbiamo quindi un assurdo.

Abbiamo il risultato

Teorema 3.7. La funzione itinerario $S:\Lambda\longrightarrow\Sigma$ è un omeomorfismo per $\lambda>4$.

Dimostrazione. Per semplicità vediamo solo il caso di λ grande, cioè assumiamo esista K tale che $|f'_{\lambda}(x)| > K > 1$, per ogni $x \in I_0 \cup I_1$. Dimostriamo che è 1 a 1. Prendiamo $x, y \in \Lambda$ e supponiamo S(x) = S(y), cioè che abbiano lo stesso itinerario. Allora per ogni n, $f^n_{\lambda}(x)$ e $f^n_{\lambda}(y)$ stanno dallo stesso lato rispetto ad $\frac{1}{2}$ (entrambi in I_0 oppure in I_1). Siccome f ha la forma di una campana, f_{λ} é monotona nell'intervallo tra $f^n_{\lambda}(x)$ e $f^n_{\lambda}(y)$ e tutti i punti di questo intervallo rimangono in $I_0 \cup I_1$. Siccome $|f'_{\lambda}| > K > 1$, ad ogni iterazione successiva l'intervallo tra $f^n_{\lambda}(x)$ e $f^n_{\lambda}(y)$ viene espanso di un fattore K (per lo stesso argomento che abbiamo usato dimostrando il teorema 1.2) e quindi la loro distanza cresce ed eventualmente finiranno su lati opposti rispetto ad $\frac{1}{2}$. Questa é una contraddizione perchè avevamo assunto che avessero lo stesso itinerario S(x) = S(y).

Dimostriamo che è surgettiva. Prima, sia $J \subset I$ un intervallo chiuso. Allora

$$f_{\lambda}^{-n}(J) = \{ x \in I | f_{\lambda}^{n}(x) \in J \}$$

$$(3.8)$$

è la preimmagine di J sotto f_{λ}^n . Allora si può vedere dal grafico di f_{λ} con $\lambda > 4$ che $f_{\lambda}^{-1}(J)$ consiste di due sottointervalli, uno in I_0 e uno in I_1 . Se abbiamo $s = (s_0 s_1 s_2 \cdots)$ troviamo $x \in \Lambda$ tale che S(x) = s. Per fare questo definiamo

$$I_{s_0 s_1 \cdots s_n} = \left\{ x \in I | x \in I_{s_0}, f_{\lambda}^1(x) \in I_{s_1}, \dots, f_{\lambda}^n(x) \in I_{s_n} \right\}$$

= $I_{s_0} \cap f_{\lambda}^{-1}(I_{s_1}) \cap f_{\lambda}^{-2}(I_{s_2}) \cap \dots f_{\lambda}^{-n}(I_{s_n})$ (3.9)

Quindi

$$I_{s_0 s_1 \cdots s_n} = I_{s_0} \cap f_{\lambda}^{-1}(I_{s_1 \cdots s_n}) \tag{3.10}$$

dove come prima

$$I_{s_1 \cdots s_n} = \left\{ x \in I | x \in I_{s_1}, f_{\lambda}^1(x) \in I_{s_2}, \dots \right\}$$
(3.11)

Se $I_{s_1\cdots s_n}$ è non vuoto $f^{-1}(I_{s_1\cdots s_n})$ è costituito da due sottointervalli chiusi, uno in I_0 e l'altro in I_1 . Quindi $I_{s_0} \cap f_{\lambda}^{-1}(I_{s_1\cdots s_n})$ è un intervallo chiuso singolo. Quindi

$$I_{s_0 \cdots s_n} = I_{s_0 \cdots s_{n-1}} \cap f_{\lambda}^{-n}(I_{s_n}) \subset I_{s_0 \cdots s_{n-1}}$$
(3.12)

Allora abbiamo che $\bigcap_{n=1}^{\infty} I_{s_0 \cdots s_n}$ è non vuoto e se prendiamo $x \in \bigcap_{n=1}^{\infty} I_{s_0 \cdots s_n}$ è tale che $x \in I_{s_0}$, $f_{\lambda}(x) \in I_{s_1}$ e così via. Quindi abbiamo $S(x) = (s_0 s_1 \cdots)$. Notiamo che $\bigcap_{n=1}^{\infty} I_{s_0 \cdots s_n}$ consiste di un punto solo, visto che S è 1 a 1.

Per finire dimostriamo che è continua. Prendiamo $x \in \Lambda$ e supponiamo $S(x) = (s_0 s_1 \cdots)$. Prendiamo $\epsilon > 0$ e n tale che $\frac{1}{2^n} < \epsilon$. Per ogni possibile combinazione $t_0 \cdots t_n$ prendiamo $I_{t_0 \cdots t_n}$. Ci sono 2^n possibili combinazioni e quindi 2^n intervalli; $I_{s_0 \cdots s_n}$ è uno di quegli intervalli. Inoltre, siccome sono tutte le possibili combinazioni, $\Lambda \subset \bigcup I_{t_0 \cdots t_n}$. Allora possiamo scegliere un δ tale che $|x - y| < \delta$ e $y \in \Lambda$ implica $y \in I_{s_0 \cdots s_n}$, cioè i primi n + 1 termini di S(y) coincidono con S(x).

Allora $d(S(x), S(y)) \leq \frac{1}{2^n} < \epsilon$ (per una proposizione precedente) e quindi S è continua. In modo simile si può anche dimostrare che S^{-1} è continua.

La mappa shift. Adesso costruiamo una mappa $\sigma: \Sigma \longrightarrow \Sigma$ che è caotica, coniugata a f_{λ} per $\lambda > 4$, ma più facile da comprendere. È definita come $\sigma(s_0s_1, \dots) = (s_1s_2\dots)$, cioè cancellando il primo termine. È una mappa 2 a 1, $\sigma(0s_1s_2\dots) = \sigma(1s_1s_2\dots) = (s_1s_2\dots)$.

Proposizione 3.13. La funzione $\sigma: \Sigma \longrightarrow \Sigma$ è continua.

Dimostrazione. Prendiamo $s=(s_0s_1\cdots)\in \Sigma$ and $\epsilon>0$. Scegliamo inoltre n tale che $\frac{1}{2^n}<\epsilon$ e prendiamo $\delta=\frac{1}{2^{n+1}}$. Se abbiamo $t=(t_0t_1\cdots)$ tale che $d(s,t)<\delta$, allora $s_i=t_i$ per $i=0,\ldots,n+1$ per una proposizione precedente. Allora $\sigma(s)=(s_1s_2\ldots)$ and $\sigma(t)=(s_1s_2\ldots s_ns_{n+1}t_{n+2}\ldots)$ e quindi $d(\sigma(s),\sigma(t))\leq \frac{1}{2^n}<\epsilon$ e quindi σ è continua.

La funzione σ è abbastanza semplice che possiamo trovarne tutti i punti periodici. Ad esempio $(\overline{0})$ e $(\overline{1})$ sono punti fissi, $(\overline{01})$ e $(\overline{10})$ sono 2-cicli. In generale un punto periodico di periodo n è $(\overline{s_0s_1\cdots s_{n-1}})$ perché ogni iterazione di σ elimina la prima entrata. In particolare i punti periodici sono densi: prendiamo un punto $t=(t_0t_1\cdots)$ qualsiasi. Allora possiamo costruire un punto periodico prendendo i primi i termini $s=(\overline{t_0\cdots t_i})$. Quindi la distanza $d(s,t)\leq \frac{1}{2^i}$ e allora $\lim_{i\to\infty}d(s,t)=0$ e quindi i punti periodici sono densi.

Teorema 3.14. La funzione $S: \Lambda \longrightarrow \Sigma$ è una conjugazione tra f_{λ} e σ

Dimostrazione. Siccome S è un omeomorfismo dobbiamo solo dimostrare che $S \circ f_{\lambda} = \sigma \circ S$. Prendiamo $x_0 \in \Lambda$. Allora $S(x_0) = (s_0 s_1 s_2 \dots)$ e quindi $x_0 \in I_{s_0}$, $f_{\lambda}(x_0) \in I_{s_1}$, $f_{\lambda}^2(x_0) \in I_{s_2}$ e così via. Cioè abbiamo l'itinerario di f_{λ} e quindi $S(f_{\lambda}) = (s_1 s_2 s_3 \dots)$. Allora $S(f_{\lambda}(x_0)) = \sigma(S(x_0))$ Possiamo esibire esplicitamente un punto periodico che ha un'orbita densa

$$s^* = (01|00011011|000001\cdots|\cdots) \tag{3.15}$$

dove nel blocco i ci sono tutte le possibili sequenze di 0 e 1 di lunghezza i. In particolare se prendiamo un qualsias $t = (t_0 t_1 \cdots)$ possiamo sempre trovare i primi n termini da qualche parte dentro s^* . Quindi esiste un k tale che

$$\sigma^k(s^*) = (t_0 t_1 \cdots t_n s_{n+1} s_{n+2} \cdots) \tag{3.16}$$

e quindi per un risultato precedente $d(\sigma^k(s^*),t) \leq \frac{1}{2^n}$. Questo implica che l'orbita di s^* sotto σ passa arbitrariamente vicino ad ogni punto di Σ , cioè è densa. In particolare σ è transitiva. Allo stesso modo in cui abbiamo trovato s^* possiamo costruire infiniti punti con orbite dense semplicemente rimaneggiando le posizioni dei blocchi. Notiamo che invece è molto difficile trovare orbite dense di f_{λ} .

Per finire σ è sensitiva ai dati iniziali. Ad esempio dato un $s = (s_0s_1s_2\cdots s_ns_{n+1}s_{n+2}\cdots)$ qualsiasi possiamo costruire un punto arbitrariamente vicino $s' = (s_0s_1s_2\cdots \hat{s}_n\hat{s}_{n+1}\hat{s}_{n+2}\cdots)$ dove \hat{s} nega s, se s=0, $\hat{s}=1$ e viceversa. Quindi abbiamo che $d(s,s')\leq \frac{1}{2^n}$ ma $d(\sigma(s),\sigma(s'))=2$, la distanza massima tra due punti di Σ . Abbiamo quindi dimostrato che

Teorema 3.17. La mappa σ è caotica in Σ . Quindi f_{λ} è caotica in Λ per $\lambda > 4$.

Quindi σ produce un modello calcolabile di una funzione caotica.

4 L'insieme di Cantor

Il nostro insieme Λ è un esempio di un insieme di Cantor (Georg Cantor 1845-1918). In questa Sezione descriveremo l'insieme di Cantor più semplice. Definiamo C come segue: prendiamo l'intervallo I = [0,1] e applichiamo ricorsivamente la regola che ad ogni intervallo chiuso togliamo l'aperto centrale di lunghezza $\frac{1}{3}$ dell'intervallo di partenza. Al passo n-esimo abbiamo 2^n chiusi di lunghezza $\frac{1}{3^n}$. L'insieme di Cantor è definito per $n \longrightarrow \infty$ (e si può dimostrare che è omeomorfo al nostro Λ).

Definiamo l'indirizzo di ciascun punto din C: ad ogni passo un punto di C si trova in uno degli intervalli a destra R o a sinistra L del pezzo che viene rimosso a quel passo. Quindi gli associamo una stringa infinita, ad esempio $LRRLLRRL\cdots$. Ad esempio: $0 = LLL\cdots$, $1 = RRR\cdots$, $\frac{1}{3} = LRRR\cdots$, $\frac{7}{9} = RLRRR\cdots$. Questi esempi sono estremi di intervalli. La maggior parte dei punti di C però non è l'estremo di nessun intervallo. Ad esempio il punto $LRLRLRLR\cdots$ è dentro $[0,\frac{1}{3}]\cap[\frac{2}{9},\frac{1}{3}]\cap[\frac{2}{9},\frac{7}{27}]\cap[\frac{20}{81},\frac{7}{27}]\cap\cdots$.

Proposizione 4.1. L'insieme C non è numerabile.

Dimostrazione. Assumiamo per assurdo che C sia numerabile. Allora possiamo associare un intero ad ogni indirizzo, ad esempio $1 \leftrightarrow LLLL \cdots$, $2 \leftrightarrow RRRR \cdots$, $3 \leftrightarrow LRLR \cdots$, $4 \leftrightarrow RLRL \cdots$, e così via. Costruiamo un indirizzo che non è in questa lista: è l'indirizzo che al posto i-esimo ha la negazione dell'entrata i-esima dell'elemento i-esimo della lista. Visto che è costruito negando un elemento di ogni stringa, questo indirizzo non fa parte della lista di cui sopra.

Possiamo descrivere C nel modo seguente. Scriviamo ogni $x \in [0,1]$ in base 3, $x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$ con $a_i = 0, 1, 2$ a seconda che si trovi nel primo, secondo o ultimo terzo dell'intervallo i-esimo. Quindi

i punti di C sono i punti di [0,1] che possono essere scritti nell'espansione in base 3 senza che vi appaia 1 (notiamo che l'espansione in base 3 non è unica, ad esempio $\frac{1}{3}=0.10000\cdots=0.02222\ldots$. Basta che esista una rappresentazione senza 1).

Proposizione 4.2. C ha tanti punti quanti [0,1]

Dimostrazione. Se $x \in C$, allora $x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$ con $a_i = 0, 2$. Se sostituiamo ad ogni 2 un 1, possiamo pensare alla stringa di a_i come all'espansione binaria di un numero qualsiasi in [0,1] (la corrispondenza è al più 2 a 1).

Proposizione 4.3. C ha misura nulla.

Dimostrazione. Basta che facciamo la somma delle lunghezze degli intervalli rimossi

$$\frac{1}{3} + 2\frac{1}{9} + 4\frac{1}{27} + \dots = \frac{1}{3} \sum_{n} \left(\frac{2}{3}\right)^n = \frac{1}{3} \frac{1}{1 - \frac{1}{3}} = 1$$
 (4.4)

Approfondimenti

- Morris W. Hirsch, Stephen Smale and Robert L. Devaney Differential Equations, Dynamical Systems, and an Introduction to Chaos Academic Press (2012)
- G.C. Layek An Introduction to Dynamical Systems and Chaos Springer (2015)