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sense regarding the minus sign. In our 
research, we have learned that this 
limited view of the minus sign inter-
feres with students’ abilities to—

1. truly understand the process of 
solving equations, and 

2. make sense of variables.

three Meanings  
of the Minus sign
The minus sign is used in three 
common ways. The three problems 
in table 1 use the symbol “–” that we 
refer to, in general, as the minus sign. 
However, each problem may elicit a 
different meaning for students. 

The first meaning is shown in 
problem 1, in which the minus sign 
indicates subtraction, the original use 
of the symbol that young children en-
counter. In problem 2, the minus sign 
is part of the symbolic representation 
for a negative number, in this case, 
“negative 2.” In problem 3, however, 
the first minus sign may be viewed as 
the opposite of so that one could read 
- -4 as “the opposite of negative 4” 
rather than students’ more common 
reading of “negative negative 4” (see 
Bofferding 2010; Vlassis 2008). 

Imagine that you have just asked your 
students to read this equation: 

-x – 9 = 12

What would they say? If you expect, 
“Negative x minus 9 equals 12,” then 
that statement would be consistent 
with how most students would re-
spond. However, students could read 
this equation in a way that conveys a 
different, even deeper, understanding. 
We highlight three meanings of the 
minus sign and explore specific dif-
ficulties related to the minus sign that 
many students experience. We also 
suggest ways that you as a teacher can 
support your students in developing 
a robust understanding of the minus 
sign. 

Research has shown that how 
students interpret and use the minus 
sign are facets of symbol sense, which 
Arcavi (1994) described as “making 
friends with symbols” (p. 25). “Mak-
ing friends” with symbols includes an 
understanding of and feel for symbols 
and how to use them and read them. 
Research indicates that many students 
in middle school and even high school 
do not have fully developed symbol 
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Treating One Meaning as if It  
Were Another 
We often treat one meaning of the 
symbol as if it were another. For 
example, mathematically proficient 
students and adults will often rewrite 
3 – (x + 5) as 3 – x – 5 without pause. 
They implicitly invoke two mathemat-
ical principles:

a. The equivalence of subtraction and 
addition of the subtrahend’s inverse

b. The distributive property of multi-
plication over addition (see fig. 1) 

Those who reason in this way treat the 
subtraction symbol as if it were a nega-
tive sign, although they rarely identify it 
as such. This ability to treat one mean-
ing of the sign as if it were another is 
efficient for making calculations.

Changing the Meaning When  
Solving Equations
The meaning of the minus sign can 
change during the process of solving 

equations (Vlassis 2008). For example, 
in the equation

5 – x = 12,

the initial meaning of the minus sign is 
subtraction. When one solves for x by 
subtracting 5 from both sides, writing

-x = 7,

that action necessitates a change in 
the meaning of the minus sign from 
a binary operator (subtraction) to a 
unary operator (the opposite of  ). Stu-
dents who recognize the minus sign 
as sometimes meaning the opposite of 
could reason that because the opposite 
of x is 7, then x must be equal to -7. 
For students to truly understand the 
process of solving equations, they 
need to be able to flexibly move 
among the different interpretations 
of the minus sign and be aware of 
when and why this sign can change 
interpretations.

Meaning Opposite Of
The notion of the minus sign as the 
unary operator opposite of is critical 
in supporting a sophisticated un-
derstanding of variables, algebraic 
expressions, and symbolically repre-
sented definitions. However, research 
indicates that middle school and high 
school students have difficulty with 
problems that require them to (at 
least implicitly) conceive of the minus 
sign as the opposite of. For example, 
in our research, we found that only 
about one-fourth of middle school 
students who were interviewed cor-
rectly identified - -4 as larger than 
-4. Further, they did not recognize 
that they had insufficient informa-
tion to determine the larger of -x or 
x. Having a conception of the minus 
sign representing a negative number 
or representing subtraction is not par-
ticularly helpful when users are faced 
with these types of problems. 

In problem 1, the minus sign func-
tions as a binary operator in that two 
inputs are used to produce one output. 
Addition, subtraction, multiplication, 
and division are examples of binary 
operators. For example, subtraction is 
a binary operator because the inputs 
of 5 and 8 result in one output, -3. 

In problem 3, in contrast, the minus 
sign is used as a unary operator in that it 
involves only one input and one output. 
When one thinks of –(-4) as “the op-
posite of negative 4,” then one is view-
ing the first minus sign as the unary 
operator, the opposite of. However, in 
problem 2, some people may view the 
minus sign in -2 as a unary operator, 
not as part of the number but instead as 
the opposite of 2. One who can view -2 
in both ways can be said to flexibly hold 
both meanings of the minus sign.

Although students may initially face 
difficulties because three meanings are 
assigned to the same symbol, having 
the same symbol represent several ideas 
is important. 

Problem Meaning of the Minus sign

1. 5 – 8 = Subtraction as a binary operation

2.  + 5 = –2 A symbolic representation for a negative 
number

3. Which is larger, – – 4 or – 4? The opposite of, a unary operation

3 – (x + 5) = 3 – x – 5 because—

•	 3	–	1(x + 5) = 3 + -1(x + 5).  Subtracting x is equivalent to  
     adding - x. 

•	 3	+	-1(x + 5) = 3 + -x + -5.  Using the distributive property of
      multiplication over addition  

     removes the parentheses.

•	 3	+	-x + -5 = 3 - x - 5.   Adding - x is equivalent to  
     subtracting x. 

table 1 Exploring the three meanings of the minus sign will allow students to 
differentiate among them.

fig. 1 Three explanations offer justification for the equivalence of two expressions.
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We view the responses to these 
problems as evidence that students 
not only struggle to respond cor-
rectly but also, by and large, have not 
engaged with the meaning of the 
minus sign as opposite of. Students 
who conceive of the expression -x 
as the opposite of x may be poised to 
understand that -x may represent 
a positive number. But students 
who lack a strong conception of -x 
and opposite of can, understandably, 
struggle.

When students use the language 
“negative x” to read or say “-x,” they 
may think that “-x” should represent 
a negative number. Negative is used 
in the term, so why would one expect 
that “negative x” could represent a 
positive number?

Although we have found that stu-
dents can move between the meanings 
of the minus sign as subtraction and 
as the sign of the number, students 
often implicitly make these shifts 
and struggle to explain their think-
ing. Further, very few students invoke 
the meaning of the symbol as opposite 
of. This limited view of the minus sign 
hinders students’ abilities to under-
stand expressions related to symboli-
cally represented definitions (such as 

the definition of absolute value) and 
appropriately make sense of algebraic 
expressions (such as -x). 

suPPorting Minus-sign 
syMbol sense
We believe that supporting students’ 
sense making of the three meanings 
of the minus sign and the students’ 
ability to identify when each meaning 
might be appropriately invoked are 
important. Time and attention need 
to be paid for students to—

•	 learn	the	different	meanings	of	the	
minus sign;

•	 recognize	the	appropriate	meaning	
in a problem;

•	 understand	when	the	meaning	
shifts during problem solving; and

•	 flexibly	move	among	the	meanings.	

In the following sections, we share 
three ideas to help students (1) better 
understand the three meanings of the 
minus sign and (2) become aware of 
the shifting meanings. 

Discuss and Make Explicit the 
Meanings of the Minus Sign 
Table 2 presents two examples of 
problems that may arise naturally in 

your classroom and how you might 
leverage those problems to explicitly 
support students’ understanding and 
awareness of the multiple meanings of 
the minus sign. A student might state 
that “-3 – 5 has two negatives” (see 
the first row), even though this prob-
lem as stated contains one negative 
number and subtraction of a positive 
number. Pressing students to explain 
their strategies will draw out both 
interpretations for discussion.

Similarly, when -x appears in a 
problem or as part of a solution (see 
the second row of table 2), stop and 
ask students to read the expression 
out loud. Many students will likely 
refer to it as “negative x.” You might 

student Work teacher Questions

A student remarks that “–3 – 5 has 
two negatives so my answer is –8.”

“I see one negative [points to –3] and a subtraction sign [points to the  
subtraction sign]. Can you explain how you see two negatives?”

A student has written “–5” and “–x” 
on the board. 

After a teacher sees this student’s work, he or she asks:

1. “What would you call this symbol [points to –5]? Can you place this on 
the number line?” 

2. “What would you call this symbol [points to –x]? Can you place this on 
the number line?” 

3. “Is there another place we could locate –5? Is there another place we 
could locate –x? In what ways do these two symbols [points to the minus 
sign in each expression] have the same meaning? In what ways do they 
have different meanings?” 

4. “Could we place the opposite of x [–x] on the positive side of the number 
line? Why, or why not?”

table 2 These questions highlight the different meanings of the minus sign.
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then ask students how they would 
read the expression “  -5.” We expect 
that students will respond, “nega-
tive 5.” If students think of and read 
-x as “negative x,” we suspect that 
when asked to place -x and -5 on the 
number line, they will place -x on the 
same side of the number line as -5. 
Using the line of questioning sug-
gested in the second row of table 2, 
the-opposite-of interpretation can 
be discussed in conjunction with the 
negative-number interpretation. 

Use Opposite of, Subtraction,  
and Negative Language 
For students to truly understand 
the process of solving equations, 
they need to flexibly move among 
the different interpretations of the 
minus sign and be aware of when and 
why they can change. Being aware 
of the language you use can support 
students’ understanding and help 
them recognize that the meaning of 
the symbol can change during the 

on the value of x, either expression 
may be larger. After students have 
reasoned through several problems 
similar to (a)–(d), pose a task such as 
(e) to give students opportunities to 
expand their ideas about the symbol 
by combining ideas about possible 
values for x with the meaning of the 
minus sign as the opposite of. 

conclusion
In closing, we believe that students, 
given opportunities to engage in dis-
cussions like those suggested in tables 
2-4, can develop a sophisticated 
understanding of the three meanings 
of the minus sign. Explicitly discuss-
ing each meaning of the symbol with 
a particular emphasis on the opposite 
of concept will enable students to 
robustly reason about operations and 
algebraic expressions. We also believe 
that these experiences will support 
students in developing symbol sense 
in relation to the minus sign that will 
foster their future learning as they 

equation-solving process. Table 3 
provides suggestions for explicitly 
helping students become aware of 
language use in relation to the minus 
sign. In 6 – x = 9, the initial meaning 
of – is subtraction. If one subtracts  
6 from both sides, the resulting equa-
tion is –x = 3, necessitating a change 
in meaning from subtraction to  
opposite of. In the final answer, x = –3, 
the minus sign represents the sign of 
a number.

Comparison Tasks That Support  
the Opposite-of Interpretation 
The tasks in table 4 can be used to 
support students in making meaning 
of the minus sign as the opposite of. 
In discussing problems (a) and (b), 
students can reason about the minus 
sign as the opposite of by comparing 
numerical expressions. By using prob-
lems (c) and (d), students can expand 
their conceptions so that the possible 
values for x include negative numbers. 
Students can discuss how, depending 

equation teacher actions 

6  –  x = 9
Points to the minus sign and reminds students that the minus sign means subtraction.

–  x = 3
Points to the minus sign and states, “The opposite of x is equal to 3.”

x =  –  3
Points to the minus sign and reminds students that the minus sign can also mean the  
sign of the number.

tasks directions for each task

a.  – (–4)                4 Ask students to circle the larger quantity or write an equal sign if the values are equal.  
have students write a question mark if too little information is given to determine the  
larger quantity. After each task, ask students how they determined the larger quantity  
and which meaning of the minus sign they used and why. 

b.      – 6         – (–6)

c.       –4                x

d.  x + x                 x

e.        x               –x

f.  5 = –           Ask, “Is there anything that you can put in the blank to make this equation true?”

table 3 Various examples can help students become aware of language use in relation to the minus sign.

table 4 The meaning of the minus sign as an opposite can be illustrated with several permutations.
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move from middle school into high 
school and beyond.

This material is based on work 
supported by the National Science 
Foundation (NSF) under grant num-
ber DRL-0918780. Any opinions, 
findings, conclusions, and recommen-
dations expressed in this material are 
those of the authors and do not neces-
sarily reflect the views of NSF. The 
authors thank Debra Johanning for 
her thoughtful comments on drafts of 
this article. 
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Fair Shares, Matey,

W
hether sharing a collection of 
toys among friends or a pie 
for dessert, children as young 
as kindergarten age are keen 

on making sure that everyone gets their “fair 
share.” In the classroom, fair-sharing activities 
call for creating equal-size groups from a col-
lection of objects or creating equal-size parts 
of a whole and are generally used by teach-
ers to support students in formulating ideas 
of unit fractions. Yet most of us will readily 
acknowledge that as many students progress 
through the elementary school mathematics 
curriculum toward rational numbers, they 
have great diffi culties in learning to reason 
about fractions, ratios, and multiplicative 
operations—all of which require reasoning 
about equal-size groups or parts. As teachers, 
how can we assist students in using their tal-
ent for and interest in fair sharing to overcome 
the challenges of learning rational numbers?

One of a child’s greatest mathematical 
accomplishments is reasoning about rational 
numbers. A rich understanding of fractions, 
ratios, and multiplicative operations (mul-
tiplication, division, and scaling) requires 
gradual development and integration over the 
elementary and middle grades. Recognizing 
this, NCTM recommends in its Number and 
Operations Standard that “beyond under-
standing whole numbers, young children can 
be encouraged to understand and represent 
commonly used fractions in context … and 
to see fractions as part of a unit whole or of a 
collection” (NCTM 2000, p. 33). More recently, 

Curriculum Focal Points (NCTM 2006) pri-
oritized the development of rational number 
reasoning (RNR) during the elementary school 
years.

Although proficiency in RNR is funda-
mental for success in higher mathematics, 
students have diffi culties in coming to under-
stand and use rational numbers (Lamon 
2007). Teachers are familiar with these strug-
gles, like the belief that “multiplication makes 
bigger, division makes smaller” or choosing 
to multiply or divide on the basis of the num-
bers in a problem rather than the problem 
context. However, young children are success-
ful at creating equal-size groups or parts of 
collections and wholes, an idea that Confrey 
and colleagues refer to as equipartitioning
(Confrey et al. 2009). In contrast to breaking a 
collection or whole into unequal-size groups 
or parts, equipartitioning describes children’s 
cognitive ability to partition a set of objects or 
a whole into groups or parts of the same size.

In our work with children from prekinder-
garten through the middle grades, we sought 
to understand the ways that the children 
learned equipartitioning through fair-sharing 
activities and to chart these ways as they 
developed across the grades. Here, we present 
the different strategies, justifi cations, names, 
and mathematical relationships that students 
used as they engaged in fair-sharing activities 
(Confrey et al. 2010). From these observations, 
we offer an outline of the ways children use 
this early understanding to build successively 
more sophisticated ideas of rational number.

Teaching young children to 
create equal-size groups is 
your treasure map for building 
students’ fl exible, connected 
understanding of and reasoning 
about ratios, fractions, and 
multiplicative operations. 

By P. Holt Wilson, Marriel le 

Myers,  Cyndi Edgington, 

and Jere Confrey
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sentations typically varies among stu-
dents, representation also varies within 
the work of each student. Representa-
tion, then, becomes a personally mean-
ingful activity for each student, central 
to his or her problem solving and 
construction of meaning. Researchers 
have highlighted how students’ rep-
resentations evolve from concrete to 
abstract during mathematical activity 
(see Gravemeijer et al. 2002). Students 
draw from their earlier applications of 
representations by using them as tools 
for thinking. For teachers, attention to 
the evolution of representation in each 
student’s work opens a window to all 
students developing problem-solving 
processes and mathematical reasoning. 

MatheMatizing and 
RepResenting
Fosnot and Dolk (2002) describe the 
process of mathematizing by contrast-
ing a “traditional approach to teach-
ing mathematics” with the work of 
mathematicians. Of mathematicians, 
they write that “at the heart of math-
ematics is the process of setting up 
relationships mathematically in order 
to communicate them to others”  
(p. 8). Central to this is the process of 
representing. Mathematicians repre-
sent problem situations and use these 
representations as devices in advancing 
their own understanding and commu-
nicating their thinking to their peers. 
Similarly, as students explore problem 
contexts, they create representations 
as part of processing and exploring 

mathematics (Stylianou 2011). Their 
representations become models of 
their thinking. 

Let us join a sixth-grade classroom 
in which students were beginning to 
study algebraic concepts and were 
offered a “cognitively demanding task” 
(Smith and Stein 1998). This task 
required that students explore and 
understand the nature of mathematical 
concepts, without being offered repre-
sentations, algorithms, or worked-out 
examples up front. Such tasks natural-
ly allow for a variety of approaches to 
emerge. The Party problem was used 
to start this unit: 

We plan on having a party to cel-
ebrate the upcoming elections. We 
want to sit with our friends and watch 
the results as they are announced 
on TV. A party rental company will 
bring several small square tables (each 
side fits one person) that we will put 
together to form one long table. How 
many people can we invite to our 
party if we rent several such tables?

After reading this problem’s statement: 

•	 How	would	the	students	in	your	
class approach this task? 

•	 What	types	of	representations	
would you expect them to build? 

•	 How	would	you	support	them	in	
their efforts to use these represen-
tations as tools to solve this task? 

The teacher in this class introduced the 
task and allowed students to work with 
their peers. Some attempted to act it 
out, some used square tiles, and others 
started drawing figures. In all cases, 
students began their investigation 
grounded in the context of the party. 

Two students, Gareth and Ellen, 
debated the fate of seated party guests 
if the tables were pushed together. 
Would the guests be “squished”? 
Would they be asked to move to the 
next available spot? Would it be a good 

idea to combine tables, considering 
that some seats would disappear? How 
many seats would be eliminated?

Gareth: But if you said that it elimi-
nates one, then it’s gonna…

Ellen: Exactly, ’cause, because if it 
eliminates . . . 

Gareth: No, it actually eliminates two, 
doesn’t it, because you got one, two, 
three, four, five, six, and there’s sup-
posed to be seven, and eight. 

Ellen: So you draw one table; you put 
each person on each side.

Gareth: Yeah.
Ellen: Then, you, you, uh . . . .
Gareth: You add another table.
Ellen: Yeah, you add another table, and 

then you put each person on each 
side and . . . 

Gareth: But, you know, you have to 
eliminate that because he’s going to 
be squished.

Ruby: So you’re saying there’s going 
to be four people at each table, or 
three? 

Ellen: Three. Three at each table.
Gareth: No, no, look, you eliminate 

two . . . . 

As the students debated, they created 
drawings to represent their thinking. 
Figure 1a shows this first drawing. 
Each table is clearly represented as a 
square with four guests, one on each 
side. But as tables are moved together, 
some of the seats for the guests are 
eliminated. Figure 1a was, in fact, the 
first step that Gareth and Ellen took 
in mathematizing this situation. 

Note that the work in this class 
had been grounded in the belief that 
mathematical reasoning can best be 
developed when students are given the 
opportunity to engage in contextual 
situations that the students themselves 
mathematize—exploring situations 
mathematically, looking for relations, 
and building explanations and conjec-
tures as they do so (Fosnot and Dolk 
2002; Freudental 1968). 

Using their representation, Gareth 
and Ellen determined an initial 
solution to the Party problem. Their 
teacher listened and examined the 
representation that students produced 
as they described their process. The 
figure and their thinking were strongly 
grounded in the context. The teacher 
eventually wanted them to generalize 
their findings, so she encouraged them 
to pursue their investigation through 
the use of their representation. “I see 
what you are saying: You eliminate 
two guests. But could this drawing 
have more to say? I wonder if there’s 
more here for us to find out. We might 
want to have more tables.” After 
asking these questions and making 
these comments, the teacher left the 
students so they could negotiate their 
next steps. 

iteRative cycles in the 
pRocess of RepResenting
The representation that Gareth and 
Ellen produced was only the first step 
in their mathematical activity. Grave-
meijer (1999) described four levels 
of mathematical activity: (1) activity 
within the task, (2) activity that refers 
back to work in the task, (3) general 
activity, and (4) formal activity. The 
goal is for students to gradually move 
from the activity within the task—the 
counting of guests at the tables—to 
a general activity that allows them to 
see a growth pattern and generalize it 
to other situations. This move is rarely 
linear. As students move back and 
forth using their representations, they 
move toward abstraction. This is a 
dynamic process of gaining and losing 
information in their representations: 
Students lose contextual detail and 
gain abstracted information. 

Ellen’s group resumed its work on 
the Party problem and produced a new 
representation (see fig. 1b). The square 
tables were now moved together, 
indicating that the issue of displacing 
guests had been resolved. The guests, 

Representation lies at the heart of 
doing mathematics. It is the activity 
of creating and using mathematical 
symbols, signs, and diagrams. NCTM 
(2000) advocates that students be flu-
ent users of representations and that 
instruction should support students 
in learning to navigate mathematical 
concepts and problem solving through 
the use of a variety of representations.

Representation is often understood 
to be a product—a static picture or set 
of symbols. These static representa-
tions or products are often used to aid 
instruction or illustrate a mathematical 
idea. However, representation is also 
a process—the path that one follows 
while developing mathematical un-
derstanding. Diagrams and symbolism 
evolve dynamically during problem 
solving, assuming different roles and 
providing insights into this process.

Although the use of various repre-
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connecting researchto teaching

ematics, and we share some of our strategies for 
teaching proof and proving.

What is ProoF?
A proof is a “mathematical argument, a connected 
sequence of assertions for or against a mathematical 
claim” (Stylianides 2007). As this definition suggests, 
proofs are built on statements that are accepted by a 
given community—that is, the audience determines 
what counts as “proof.” To prove that the sum of 
two odd numbers is even, a third-grade class may 
use an argument different from an argument used by 
a ninth-grade class. Similarly, when constructing a 
geometry proof, high school students may use criteria 
different from those that professional mathemati-
cians use. Thus, proof is a socially constructed con-
cept whose validity is based on criteria established 
by a community—a community that is accountable 
to mathematics. Ultimately, however, we want stu-
dents’ understanding of proofs and proving to evolve 
toward an understanding held by mathematicians.

If proof is indeed a process of argumentation, 
of questioning statements and using evidence 
appropriately, then it is reasonable to look for ways 
to strengthen students’ argumentation skills in 
mathematics. One important approach is to look at 
how classroom discourse can support students in 
engaging in productive conversations for proving 
mathematical claims. 

stUDent-constrUcteD ProoFs
The work reported here was taken from a year-
long mathematics class that had as one of its 
objectives helping students understand and build 
proofs. The class was taught by one of the two 
authors, and all classes were videotaped and sub-
sequently analyzed to trace students’ development 
with respect to proof.

Let’s revisit the student-constructed proofs 
whose types are provided in figure 1. Follow-
ing Sowder and Harel (1998), we call the student 
proofs by Mark and Jared (see figs. 1a and 1b) 
empirical arguments—that is, arguments that use 
numerical examples as their basis. Although not 
considered a proof by mathematicians, empirical 
arguments are commonly used in high school and 
even in early college (see, e.g., Healy and Hoyles 
[2000]). 

Mark’s explanation, following his attempt to 
write a proof, illustrates the strategies used by 
most students before they develop a formal notion 
of proof: 

 I started with some basic things like 2 or 3, like a 
real easy number, and then I used like a more …, 
like a number that often disproves things, like 0 or 
1. And then I used ridiculously large numbers and 
going all over the spectrum to all sorts of different 
things.

Despina a. stylianou and Maria L. Blanton

Developing students’ 
capacity for constructing 
Proofs through Discourse

it was early in the fall, and we asked students in 
our mathematics class to explore and prove a 
proposition: “The sum of an even number and 

an odd number is odd.” 
Students’ arguments varied substantially (see  

fig. 1 for some types of arguments that students cre-
ated). Mark and Jared used a few examples to show 
that the proposition is true. Alex and Pat attempted 
to build logical arguments using properties of odd and 
even numbers; they, too, were convinced that the sum 
of an even and an odd number is an odd number.

Before we proceed, think about the students in 
your class. How would they prove this proposition? 
How would their arguments look? And how would 
you support them in their efforts to construct proofs?

What is the roLe oF ProoF in 
MatheMatics teaching anD Learning?
Proof has been described as the “soul of mathemat-
ics” (Schoenfeld 2009, p. 12). NCTM (2000) has 
recognized the importance of proof by elevating it 
to one of five Process Standards for thinking math-
ematically, emphasizing that proof should be part 
of students’ experiences across all grades. More 
recently, the Common Core Standards (2010) have 
reiterated the importance of justification as a math-
ematical practice. 

Despite its central role in mathematical thinking, 
however, proof is challenging. Research has docu-
mented that students of all ages face difficulties in con-
structing rich mathematical arguments. Recent cur-
ricula in middle school and high school have attempted 
to bring proof to the forefront of instruction by provid-
ing more opportunities for students to build appropri-
ate mathematical arguments. Still, teachers have few 
tools at their disposal to help students overcome their 
struggles with constructing proof. 

What makes proof so difficult? Why does it 
remain so elusive for the majority of students 
across the grades, particularly in high school? And 
what can be done to improve students’ ability to 
prove their mathematical claims? In this article, we 
discuss proving as it applies to high school math-
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Fig. 1  students’ proofs indicate a variety of approaches.

Mark (empirical argument) Jared  (empirical argument)

 
 (a) (b)

Alex (moving toward a deductive argument) Pat (moving toward a deductive argument)

 
 (c) (d)
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