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Abstract
To date, of the many studies on early algebraic thinking, none, to our knowledge, has examined the relationships between 
algebraic thinking and negative numbers. Students encounter persistent difficulties in dealing with these numbers, and 
we believe that these could be addressed through the development of algebraic thinking. We are particularly interested in 
relational thinking, a form of algebraic thinking involved in generalised arithmetic, characterised by the ability to identify 
the structure of an expression as well as the relationships between numbers. The idea of the ‘subtractive number’ has been 
highlighted in this context. The aim of the study was to investigate the role of relational thinking in dealing with negative 
numbers. We submitted a paper-and-pencil test to 166 grade 6 students in order to analyse their skills in operations with 
integers, as well as their relational thinking in questions relating to the compensation strategy in subtraction. We then exam-
ined the extent to which the students who answered the compensation questions correctly performed the operations with 
integers better than those who answered them incorrectly. Our results showed that students’ ability to see the subtraction 
operation as a ‘transformation’ involving a unary use of the minus sign appears to be a factor in their success in operations 
with negatives. Few students demonstrated this ability, yet it can be seen as an essential stage on which to base the progres-
sive development of relational thinking.

Keywords Early algebraic thinking · Negative numbers · Relational thinking · Subtractive number · Transformation · 
Compensation strategy in subtraction

1 Introduction

Over the past twenty years, there has been widespread inter-
est among researchers in early algebra and algebraic thinking 
(e.g., Blanton et al., 2019; Irwin & Britt, 2005; Kaput, 2008; 
Kieran et al., 2016; Radford, 2018). The focus has been on 
dealing with the well-known difficulties experienced by stu-
dents in order to smooth the transition to formal algebra, 
which is usually introduced at secondary level.

Negative numbers are an integral part of the algebra 
curriculum at the start of secondary education. However, 
while the difficulties experienced by early secondary school 
students in operations with these numbers have been high-
lighted for many years (Gallardo, 2002; Herscovics & 

Linchevski, 1991; Vlassis, 2004, 2008), they have almost 
invariably been omitted from research studies concerning 
algebraic thinking. The question that arises, therefore, is 
whether the development of algebraic thinking would also 
lessen the difficulties encountered by students when dealing 
with negative numbers.

Previous research has focused on identifying models for 
supporting students’ understanding of operations with inte-
gers (Subramanian, 2019; Whitacre et al., 2015). Without 
calling into question the value of this approach, our study 
dealt with this issue from an original angle by examining 
how the development of a certain form of algebraic thinking, 
in this case relational thinking, would make it possible for 
students to make sense of operations with negatives.

To investigate this question, a paper-and-pencil test was 
used to compare grade 6 students’ performance on two types 
of problem, namely, addition and subtraction with integers, 
and subtraction with natural numbers. In Luxembourg, grade 
6 students have not yet received any instruction in negative 
numbers. The operations with negatives used in this study 
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therefore consisted of ‘elementary’ operations of the type 
a ± b = c, where a, b and c are integers.

In the following, we first discuss algebraic thinking and 
relational thinking, then examine the main difficulties expe-
rienced by students in operations with negative numbers. 
Finally, we relate these two analyses in order to examine 
more precisely how relational thinking could support learn-
ing about operations with negatives.

2  Algebraic thinking and relational thinking

Despite some obvious overlap between different research-
ers’ conceptualisations of algebraic thinking, there is no 
clear consensus at present on what algebraic thinking is or 
what components it may have (Kiziltoprak & Köse, 2017; 
Stephens, 2008). A large body of authors regarded gener-
alising as the key characteristic of early algebraic thinking 
(Blanton et al., 2019; Kaput, 2008; Kieran et al., 2016). In 
this context, Kaput (2008) defined two main content strands 
involving algebraic thinking, namely, algebra as generalised 
arithmetic, and algebra as the study of functions involving 
generalising relationships between co-varying quantities. 
However, according to Radford (2018) generalisation is a 
common attribute of human thinking and consequently can-
not capture the specificity of algebraic thinking. For this 
author, algebraic generalization is characterised by analyti-
cal reasoning that involves handling indeterminate quanti-
ties as if they were known. This type of reasoning has been 
extensively investigated in generalisation activities based on 
patterns (e.g., Radford, 2018).

As we are interested in this question in the context of 
operations involving integers and natural numbers rather 
than functions or generalisation activities based on pat-
terns, we focused on the strand of generalised arithmetic. 
This strand "includes generalized arithmetic operations and 
their properties and reasoning about more general relation-
ships", leading students to "build the syntactic aspect of 
algebra from the structure of arithmetic" (Kaput, 2008, p. 
12). Two aspects stand out in particular from this characteri-
sation, namely, relationships and structure. These constitute 
relational thinking as defined by Molina and Castro (2021). 
According to these authors, such thinking implies, first, 
being able to consider expressions globally from a structural 
perspective instead of as a process to be carried out step by 
step (the ‘structure’ aspect), and second, recognising certain 
relations between the terms of the expressions and using 
them to design a strategy applying arithmetic properties (the 
‘relationships’ aspect). Very recently, Kieran (2018) drew 
attention in particular to the importance of structuring activ-
ity in early algebra, which consists in identifying structure 
within numbers and numerical operations, with attention to 
the properties of numbers and operations. This structuring 

allows students to consider expressions globally and to expe-
rience equivalence through decomposition, recomposition, 
and substitution (Pang & Kim, 2018). For Kieran (2018), 
generalizing and structuring are two complementary faces 
of algebraic thinking, one face looking towards generalizing 
and complementarily, the other face looking "towards ‘see-
ing through mathematical objects’ and drawing out relevant 
structural decompositions" (p. 101). This relational thinking 
allows students to restructure arithmetic operations in order 
to change the given calculation and carry it out more effec-
tively (Kiziltoprak & Köse, 2017). For example, students can 
transform the expression (85 + 69) + 15 into (85 + 15) + 69 
using the associative and commutative properties. For Irwin 
and Britt (2005), mental arithmetic strategies such as com-
pensation also involve methods of a relational nature. For 
example, the strategy of ‘compensation of the subtrahend’ in 
subtraction leads students to decompose a calculation such 
as 45 − 29 into 45 − 30 + 1.

Irwin and Britt (2005) consider that arithmetic opera-
tions of this kind, which lead students to produce equivalent 
expressions, involve a process of generalisation in which the 
numbers themselves act as variables, and they highlight that, 
without recourse to literal symbolic forms, the strategy is 
generalisable. These authors refer to the concept of ‘quasi-
variables’, which they define as "a number sentence or group 
of number sentences that indicate an underlying mathemati-
cal relationship which remains true whatever the numbers 
used are" (Irwin & Britt, 2005, p. 171). The ability involved 
in structuring the expression is intrinsically related to the 
ability to generalize strategies on the basis of quasi-varia-
bles. The idea is that, in order to perform operations such 
as 10 − 10 − 5 + 13, it is relevant to understand that +a – a 
will always be 0 whatever the value of a. Similarly, in mental 
computation strategies involving natural numbers such as the 
strategy of compensation in subtraction, which is applicable 
in problems such as 75 − 29, it is useful to decompose the 
second term into a difference of two terms, and to bear in 
mind that, whatever numbers a, b and c stand for, the expres-
sion a − (b − c) = a − b + c; hence in this case 75 − 29 = 75 
− (30 − 1) = 75 − 30 + 1.

In conclusion, in the context of generalised arithmetic, we 
consider relational thinking as a form of algebraic thinking 
characterised by structuring expressions and identifying and 
using relationships, involving a generalisation process on 
the basis of the ‘quasi-variables’. For many authors (Blan-
ton et al., 2019; Irwin & Britt, 2005; Stephens, 2008), early 
thinking of this kind in terms of holistic structures and num-
ber relationships leads to increased understanding and com-
petence in algebra. Beyond general proficiency in algebra, 
we believe that the development of this form of algebraic 
thinking based on relational thinking may in particular help 
to reduce the difficulties with negative numbers that have 
been highlighted in the research literature.
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3  Difficulties with negative numbers

The negative numbers are notable by their absence from 
reflections about algebraic thinking, but in fact it must be 
pointed out that little has been said about negative num-
bers so far in the research literature in general. Bishop 
et al. (2014), for example, noted that research on integers 
is relatively sparse compared to the literature on students’ 
understanding of, for example, rational numbers or whole 
numbers. Young and Booth (2020) were still making the 
same observation six years later!

However, authors such as Lamb et al. (2016) or Thomp-
son and Dreyfus (1988) showed that students’ performance 
on integer addition and subtraction problems has major 
implications for their success in algebra. In addition, several 
researchers found that students already demonstrate the abil-
ity to reason about integers in relatively sophisticated ways 
from early grades, even before they have learnt about these 
numbers, and that this potential could constitute a basis for 
the teaching of negative numbers (Bofferding, 2014; Lamb 
et al., 2016). However, despite this potential, several authors 
(Gallardo, 2002; Herscovics & Linchevski, 1991; Vlassis, 
2004, 2008) pointed to the many difficulties secondary 
school students experience when first learning about nega-
tive numbers, in terms of both these numbers themselves 
and the operations and equations involving them. It is there-
fore important to take a look at these difficulties in order to 
understand how developing algebraic thinking might help 
overcome them.

As regards the negative numbers themselves, some stu-
dents, especially when first learning about integers, have 
difficulty in accepting a negative number as a solution to an 
equation (Gallardo, 2002; Vlassis, 2008). A negative solu-
tion seems impossible to them, as they are unable to give it a 
concrete interpretation. A classic example of this difficulty is 
students’ assertion that a problem such as 3 – 5 is equivalent 
to 5 – 3 (Peled et al., 1989).

But the most significant and persistent difficulties have 
been found in performing operations with integers, and in 
particular addition and subtraction, regardless of the nature 
of the solution (positive or negative). Peled et al. (1989) 
showed in interviews with grade 6 students that, a year after 
they had learned addition and subtraction of negative num-
bers, their overall computational performance was low. Her-
scovics and Linchevski (1991) pointed out several mistakes 
made by many grade 7 students when required to simplify 
an algebraic expression. One of these, which they called 
‘Detachment From the Minus Sign’ (DFMS), consisted of 
ignoring the minus sign before a number, and simplifying 
an expression such as 4 + n – 2 + 5 by first calculating 2 + 5 
to obtain 4 + n – 7, as if the minus sign was not attached 
to the 2. These authors were particularly surprised by the 

frequency of this error. Vlassis (2004) also observed this 
type of error in polynomials such as –12 – 7 – 7n + 4n, which 
were simplified to –12 – 7 – 11n rather than to –12 – 7 – 3n.

More surprisingly, DFMS has also been observed 
with natural numbers, in addition and subtraction opera-
tions consisting of more than two terms. For exam-
ple, 237 + 89 − 89 + 67 − 92 + 92 was simplified to  
237 + 89 − 89 + 67 − 184, as if the minus sign before 92 
was not attached to the number (Herscovics & Linchevski, 
1991). This observation is consistent with the findings of 
Livneh and Linchevski (2007), who showed empirically that 
the difficulties with algebraic structures stem from difficul-
ties with similar numerical structures, that as a consequence, 
the obstacles identified in algebraic contexts, such as DFMS, 
also exist in the corresponding numerical contexts, and that 
these obstacles are widespread.

The DFMS error has since been reported on numerous 
occasions in the research literature (Banerjee & Subra-
maniam, 2012; Bishop et al., 2014; Linchevski & Livneh, 
1999; Vlassis, 2004, 2008), to the point where DFMS can 
be regarded as a sign of a significant and persistent obstacle 
in the learning of both algebraic and numerical operations.

4  Relational thinking and operations 
with negative numbers

Two reasons may explain the difficulties discussed in the 
previous section, as follows.

4.1  A lack of structure sense

Linchevski and Livneh (1999) attributed the DFMS error 
to a misunderstanding relating to a lack of ‘structure sense’. 
They defined structure sense as being able to identify all the 
equivalent forms of an expression and "the ability to discrim-
inate between the forms relevant to the task—generally one 
or two forms—and all the others" (p. 175). In the example 
of the operation 237 + 89 − 89 + 67 − 92 + 92, this consists 
of considering 237 + 89 − 89 + 67 or 237 + 67 as equivalent 
forms relevant to the task, whereas 237 + 89 − 89 + 67 − 184 
should not be recognised as an equivalent form.

4.2  A restrictive understanding of subtraction

The lack of structure sense referred to by Linchevski and 
Livneh (1999) is not unrelated to the restrictive understand-
ing of subtraction as ‘taking away’, which is often observed 
in students (Selter et al., 2012). In this view, numbers repre-
sent ‘unsigned’ concrete quantities on which operations are 
performed in order to find the answer. Selter et al. (2012) 
believe that this computational view is too one-sided and 
probably leads to restricted mathematical thinking.
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From our point of view, relational thinking, character-
ised by the notions of structures and relations, would help 
overcome both the lack of structure sense and the restric-
tive conception of subtraction. In relational thinking, 
detecting the structure of an expression means ‘seeing’ 
the expression holistically. In a numerical expression such 
as 237 + 89 − 89 + 67 − 92 + 92, for example, this would 
involve ‘seeing’ the expression as follows:

This holistic view requires the expression to be considered 
as a sum of signed components separated by an implicit plus 
sign (Vlassis, 2009). This view is essential in algebra, for exam-
ple when it is necessary to reduce polynomial expressions. It 
is not necessary in numerical operations, since it is always 
possible to proceed computationally, step by step, to find the 
answer. However, it is very useful for carrying out operations 
efficiently: first, it ensures that DFMS errors are avoided, and 
second, treating the expression as a sum allows properties of 
addition such as commutativity or associativity to be applied 
and makes clear the relationships between the numbers. In this 
case, this involves recognising the pairs of opposites + 92 and 
−92 and + 89 and −89 and using this relationship to cancel 
the opposites and rewrite the expression as 237 + 67, which 
ultimately enables the answer to be found more easily.

By analogy, an expression involving negative numbers 
such as 2 − 5 − 3 + 5 should be considered in the same way, 
that is:

After this, either mentally or in writing, students can put 
the opposites together and produce, for example, an equiva-
lent expression such as 2 − 3 + 5 − 5 by moving − 5 after + 5 
by applying the commutativity principle, to finally obtain the 
expression 2 − 3 and the answer, −1.

These two examples illustrate the importance of the struc-
turing activity mentioned by Kieran (2018) for performing 
this type of operation. However, this is a complex activity for 
students, as seeing an expression holistically requires unary 
use of the minus sign (as well as of the plus sign1): in other 
words, the minus sign has to be treated as attached to the 
number that follows it (Vlassis, 2004). As Vlassis (2004) and 
McGowen and Tall (2013) have shown, the unary use of the 
minus sign represents a considerable obstacle for students, 
who have been accustomed throughout elementary school 
to think of this sign as binary (that is as an operation sign).

The unary aspect of the minus sign refers to the concept 
called ‘signed numbers’ by Thompson and Dreyfus (1988), 
who advocated the use of an arithmetic of signed numbers to 
facilitate algebraic operations in the elementary grades. To 
this end, they showed the effectiveness of teaching for grade 
6 students based on thinking of integers as transformations of 
quantities, as defined by Vergnaud (1982). Thus, considering 
expressions holistically could involve, at the elementary level, 
getting students to think of operations in terms of a composi-
tion of transformations (Vergnaud, 1982). This requires a com-
pletely different conception of operations, which can no longer 
be thought of as processes applied to unsigned quantities.

This move from subtraction operation on unsigned quan-
tities to signed numbers requires the subtraction operation 
to be reified as an object (Kumar et al., 2017). Subramaniam 
(2019) also contends that the extension of natural numbers 
to negative numbers is based on the reification of the sub-
traction operation. According to Bishop et al. (2014), his-
torically, it recalls the idea of ‘subtractive number’ which 
was one of the earlier conceptions mathematicians had for 
negative numbers. However, it should be noted that this 
subtractive number does not yet have the status of a formal 
negative number (Gallardo, 2002): although it is a number, 
its meaning remains strongly contextualised in the idea of 
subtraction. According to Gallardo (2002), this interpreta-
tion represents the first level in the understanding of negative 
numbers, namely the ‘subtrahend level’, as it appeared in the 
history of these numbers. As a signed number, this subtrac-
tive number can be related to the idea of transformation of 
quantities (or composition of transformations, if there are 
two or more subtractive numbers) applied to an initial state 
(Thompson & Dreyfus, 1988), as in the following examples:

1 However, inappropriate use of the plus sign goes unnoticed as it 
does not cause mistakes.

8 – 3 = Transformation (–3) applied 

to 8

8 – 3 – 1 =
Composition of two 

transformations (–3 and –1)

applied to 8
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This analysis can lead to the holistic view of the expres-
sion that we described previously.

In conclusion, our hypothesis was that relational think-
ing, based on the one hand on the identification of structure 
and the emergence of the subtractive number, and on the 
other hand on the identification and generalisation of the 
relations and properties of operations, may help students to 
make sense of addition and subtraction of integers.

5  Method

5.1  Research questions

1. To what extent can grade 6 students solve integer addi-
tions and subtractions before learning about negative 
numbers?

2. To what extent do grade 6 students develop relational 
thinking in mental computation strategies in arithmetic?

3. To what extent does the use of relational thinking in 
mental computation strategies go hand in hand with suc-
cess in integer additions and subtractions?

5.2  Participants

A total of 171 grade 6 students in 13 classes at eight primary 
schools in the Grand Duchy of Luxembourg took part in 
the study by completing a paper-and-pencil test. Only five 
students had to be removed from the sample because they 
did not reply to more than 80% of the questions. The final 
sample was therefore composed of 166 students.

The students in our sample had not been taught about 
negative numbers, as this topic is not included in the Lux-
embourg elementary curriculum. In contrast, the meaning of 
equality and the relations between operations are explicitly 
included in the curriculum, as are the properties of addition 
(commutativity and associativity) for performing calcula-
tions effectively (MEN, 2011).

5.3  Test

The paper-and-pencil test was designed to be taken individu-
ally, and took approximately one hour to complete. The test 
had two parts: the first part consisted of decontextualised 
questions relating to integer additions and subtractions, the 
role of zero, the order of negative numbers, opposite num-
bers, and mental computations in addition and subtraction 
operations with more than two terms, and in subtractions 
with two terms where the compensation strategy would 
clearly be useful. The second part consisted of contextual 
problems, the solutions to which required operations similar 
to those in the first part. The contexts chosen were familiar 
contexts for calculations with integers and natural numbers, 

such as temperatures, lifts, gains and losses, passengers get-
ting in and out of a bus and so on.

For the purposes of this study, only decontextualised 
questions relating to (1) integer additions and subtractions, 
and (2) subtractions in which a compensation strategy would 
be useful, were analysed.

The items relating to these questions are presented in the 
following sections together with the analysis of the results.

Before the final version of the test was administered to the 
13 experimental classes, a pilot test was carried out with five 
students. A second pilot test was then given to four grade 6 
classes (i.e., 82 students). On the basis of these preliminary 
tests, the test instructions were adapted in order to be com-
prehensible to the students; the number of items was also 
adjusted so that the test time did not exceed one hour.

The first author of this paper administered the test in the 
different classes. After the general objectives of the test had 
been explained to the students, it was handed out to them 
without any specific instructions. As Luxembourg is a mul-
tilingual country, the test was provided either in German 
or in French, so that language would not be an obstacle to 
understanding the test instructions. It is in any case custom-
ary in Luxembourg to provide tests in both French and Ger-
man, in both national and international assessments.2 This 
is because, although the language of mathematics teaching 
at primary school is German, many students who speak 
Romance languages (mainly Portuguese, but also French, 
Italian, etc.) attend school in Luxembourg and understand 
French better. Each student was therefore able to choose the 
version he or she preferred. In the end, of the 171 tests dis-
tributed, 39 tests (23%) were taken in French.

6  Results

6.1  Integer additions and subtractions

Questions 1 and 2 in the test were designed to measure stu-
dents’ ability to perform additions and subtractions with 
integers. These two questions presented integer operations of 
the type a ± b = c where a, b and c are integers; the operations 
potentially corresponded to a concrete model from everyday 
life (temperature, lift, gains and losses, etc.). This type of 
operation was justified by the test’s objective of investigat-
ing the knowledge of grade 6 students who had not received 
any instruction about negative numbers. The operations had 
to be accessible to the students. For this reason, none of the 
operations involved subtractions of negative numbers with 
two consecutive minus signs. Although these two questions 

2 French and German are two of the three national languages, along 
with Luxembourgish.
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both presented integer operations, they pursued rather dif-
ferent objectives. The first question, containing items with-
out any apparent negative numbers, essentially investigated 
students’ ability to envisage a negative solution—in other 
words, their "acceptance of negative solutions" (Gallardo, 
2002). The second question, involving operations with the 
same structure but using clearly identifiable negative num-
bers, was designed to test students’ ability in integer opera-
tions, regardless of the positive or negative nature of the 
solution. Table 1 below shows students’ results for the first 
question.

All of these items were answered correctly by more than 
50% of students, with a mean score of 60%. More than half 
of these grade 6 students thus already showed some accept-
ance of negative solutions, without having received any 
teaching.

The two hardest items were Items 1–1 and 1–2, where the 
unknown negative number appeared as the first or second 
term in the operation. They were also characterised by the 
highest omission rates, namely, 22% and 21% respectively. 
The task was to find a number to add to the first term of an 
addition to obtain a smaller answer. The high omission rates 
observed for these items indicate some students’ perplexity 
with these items. It is likely that students were confused 

by these operations which contradicted their initial model 
of ‘Addition makes bigger’ stemming from their previous 
experience with natural numbers (Bofferding, 2014).

In the items that were answered correctly by more stu-
dents, there were far fewer omissions. However, the pos-
sibility cannot be ruled out for these two items that even the 
correct answers did not indicate an understanding of nega-
tive numbers, but rather derived from superficial approaches. 
For example, some students may have solved Item 1–4 by 
calculating 10 − 5 = 5, then adding a minus sign in front of 
their solution, 5.

Table 2 below presents the results of the students in items 
of Question 2.

By contrast with the items of Question 1, most of the four 
items with the lowest correct response rates, i.e. answered 
correctly by less than 50% of the students (Items 2–1, 2–2, 
2–3 and 2–4, shaded in Table 2), are characterised by a solu-
tion representing the final state. Only Item 2–3 (among these 
four items) required a solution corresponding to the initial 
state.

In an attempt to understand the difficulties encountered by 
the students in these operations, in Table 3 below we present 
the incorrect solutions which were the most common (Error 
1) and the second most common (Error 2).

Table 1  Results for items concerning the acceptance of negative solutions (Question 1—Items 1 to 4)

In this question, two additional items with natural numbers were added (12 – □ = 8 and 7 + □ = 12) to prevent students from deducing that all 
the answers to this question were negative numbers and therefore automatically producing negative solutions without thinking
In Tables 1 and 2, the items have been presented in ascending order of percentage of correct answers for the sake of clarity

Items Correct
(%)

Incorrect
(%)

Omission (%) Total
(N = 166)

1–1 8 + □  = 5 54 24 22 100
1–2 □ + 9 = 6 58 21 21 100
1–3 4 − 6 =  □ 63 33 4 100
1–4 5 − 10 =  □ 65 31 4 100
Mean score (Cronbach’s alpha: 0.81) 60

Table 2  Results for items 
concerning skills in integer 
additions and subtractions 
(Question 2—Items 1 to 8)

Items Solution Correct 
(%)

Incorrect 
(%)

Omission
(%)

Total
(N = 

166)

2-1 –12 – 8 = -20 36 60 4 100
2-2 4 + (–9) = -5 44 34 22 100
2-3 + 4 = -6 -10 45 47 8 100
2-4 –3 – 5 = -8 47 43 10 100
2-5 –7 + 4 = -3 52 45 3 100
2-6 7 + = –3 -10 52 36 22 100
2-7 – 3 = –8 -5 62 34 4 100
2-8 –5 + 8 = 3 68 30 2 100

Mean score (Cronbach’s 

alpha: 0.88)

48
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The first point that is noticeable in Table 3 is that the 
incorrect solutions produced by the students always repre-
sent numbers with the same absolute value, except in Item 
2–2. Students seem to have performed the operations in 
order to find a value, which in some cases they prefixed with 
a minus sign. Secondly, the results in Table 3 seem to show 
that the difficulty this time lay not necessarily in accepting 
negative solutions, since the students produced both posi-
tive and negative solutions, but in the operations themselves.

The errors made in Items 2–1, 2–4, 2–5 and 2–8 appear to 
reflect a DFMS approach. For example, in Item 1, to perform 
–12 – 8 students detached the minus sign in front of 12, cal-
culated 12 – 8 and ended up with –4 (Error 1) or 4 (Error 2), 
depending on whether or not they attached the minus sign 
to their solution after performing the calculation. For this 

item, which also had the lowest correct answer rate, 52% 
of the students made this mistake. The solutions that may 
reflect DFMS have been shaded in Table 3 in order to show 
the significance of this erroneous approach, which appeared 
quite systematically when the first term was negative. Other 
types of errors are listed in Table 3, but occur less frequently 
than those relating to DFMS.

Analysis of Tables 1 and 2 shows that the items presented 
in Table 2, with a mean score of 48%, were answered cor-
rectly less often than those in Table 1 (mean score of 60%). 
This difference is statistically significant (ANOVA: F = 8.96; 
p = 0.003). This result shows that students seem to have more 
difficulties in performing operations with negatives than in 
accepting a negative solution. In the operations of Table 2, 
DFMS consisted of detaching the minus sign from the first 
term of the operation, whether or not this represented the 
unknown. It thus appeared to be a major obstacle in this type 
of operation. Peled et al. (1989) previously also observed 
this problem in the same type of operations in grade 6 stu-
dents, but as far as we know did not demonstrate the extent 
of the phenomenon.

6.2  Algebraic thinking in mental computation 
strategies

Among the questions concerning mental computation strate-
gies, we chose two questions about the strategy of compen-
sation in subtraction. We decided to analyse these two ques-
tions in particular because both the format of the question 
and the nature of this strategy require the development of 
relational thinking. Regarding the format of the questions, 
students were not asked to solve operations using this strat-
egy of compensation in subtraction, as it is known that stu-
dents rarely use it spontaneously (Hickendorf, 2018). They 
were rather asked to choose the correct equivalent three-term 
expression (Question 1) or to decide on a given equivalent 

Table 3  Most common errors made by the students in the items of 
Question 2

Item Error 1 % Error 2 % Total %
(N = 166)

2-1 –12 – 8 = –4 36 4 16 52
2-2 4 + (–9) = –13 11 5 7 18
2-3 + 4 = –6 –2 24 2 13 37
2-4 –3 – 5 = 2 19 –2 10 29
2-5 –7 + 4 = –11 13 11 12 25
2-6 7 + = –3 –4 9 4 3 12
2-7 – 3 = –8 –11 21 11 20 41
2-8 –5 + 8 = 13 15 –13 4 19

Table 4  Percentage of correct answers in compensation questions

Correct (%) Incorrect (%) Omis-
sion (%)

Total (%)
(N = 166)

Question 1 25 66 9 100
Question 2 33 66 1 100

Table 5  Types of arguments used by students in compensation questions

Arguments Abbreviation Description

Computational Comp The student claims—after actually performing the calculations or not—that the operations lead to the same 
result.

DFMS DFMS The student notes that 219 = 220 – 1 and ≠ 220 + 1 (in Question 1), or claims that Lydia is wrong because 
79 ≠ 80 + 1 (in Question 2).

He/she thus detaches the minus sign from 220 or 79 to justify his/her choice
 + 1 –1 rule  + 1 –1 rule The student seems to overgeneralize a compensation rule that works with addition but not with subtraction.

He/she explains that you have to apply + 1 –1, and that therefore, for example, 3648 – 220 – 1 (in Question 1) is 
correct because to get 220, you have to add 1 to 219, so then you have to subtract 1 afterwards. This strategy is 
also based on DFMS, as the student is thinking in terms not of –220 – 1 but 220 – 1.

Relational RTh The student uses the relationships between the numbers to explain his/her correct choice of operation 2 (that is 
3648 – 219 = 3648 – 220 + 1) in Question 1. The student says that with –220, 1 too much has been taken away, 
so you have to add 1 afterwards. In Question 2, he/she decides that Lydia is right on the basis of the same type 
of reasoning. Where this type of justification is given, the student is thinking in terms of –220 or –79, attaching 
the minus sign to 220 or 79.
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three-term expression (Question 2). The operations in the 
two items were 3648 – 219 = or 843 – 79 = , inviting the use 
of compensation. The two questions were as follows:

• Question 1: Choose the correct equivalent expression and 
justify it (Could you reduce the figure below?)

• Question 2: Decide on an equivalent expression and jus-
tify it (Can you reduce the figure below and make only 
one box with the two?

Table 4 shows the percentage of correct answers for the 
two compensation questions. The answer was counted as 
correct when the student not only made the right choice but 
also gave an explanation consistent with his or her choice 
and clearly justified it. The aim was to avoid answers picked 
correctly by chance.

The results in Table 4 show that only a small proportion 
of students gave correct answers to these items involving 
compensation in subtraction: 25% in Question 1 and slightly 
more (33%) in Question 2. However, the correlation between 
the two items was strong (0.53). It cannot therefore be said 
that the format of the questions has a significant impact on 
students' performance. The omission percentages relate to 
students who omitted the whole question (both choice and 
justification).

To explore the students’ difficulties in more depth, 
Table 5 presents the four main arguments used by students 
to justify their choice.

What fundamentally differentiates DFMS-type reason-
ing from reasoning based on relational thinking is that in 
the first case, students base their reasoning on the num-
bers (219 = 220 – 1 and ≠ 220 + 1), whereas in the second 
case, they take the operation as their basis. This involves 

Table 6  Percentages of each 
type of argument used in 
the compensation questions 
according to whether the 
question was answered correctly 
or not

a Others
b Omission

Correct (%) Incorrect (%) Om.b
(%)

Total
(N = 166)

Comp RTh Comp DFMS  + 1–1 rule Otha Om.b

Q. 1 12 13 4 33 9 4 16 9 100
Q. 2 17 15 5 46 3 2 11 1 100

reasoning that ‘taking away 220’ means taking away 1 too 
many, so that 1 must be added, or that ‘something minus 
220’ will give you 1 less than ‘something minus 219’, and 
so 1 needs to be added back. With this type of reasoning, the 
minus sign is attached to 220.

Table 6 presents the percentages of each type of argu-
ment provided by the students, according to whether 
they answered the questions correctly (‘correct’) or not 
(‘incorrect’).

The results presented in Table 6 clearly show that the 
most frequent response profile in these questions used the 
erroneous strategy of DFMS. In both questions, the percent-
ages were high: in Question 1, 42% of the students made this 
error if we add the + 1 –1 strategy, also based on DFMS, 
(33% + 9%), while in Question 2, as many as 49% of students 
committed DFMS errors (46% + 3%).

Figures 1 and 2 present examples of this DFMS approach 
in each of the two questions.

Where the correct answer was given, the results in Table 6 
show that the methods used were divided between computa-
tional reasoning based on the result (12% in Question 1 and 
17% in Question 2), and relational thinking (13% in Ques-
tion 1 and 15% in Question 2). These results seem to show 
that the successful completion of the compensation items did 
not necessarily imply a particular type of reasoning, whether 
computational or relational.

The example presented in Fig. 3 below demonstrates a 
computational type of reasoning.

Figure 4, by contrast, shows a relational type of reasoning.
It should be noted that the argument in Fig. 4, while rela-

tional in nature, is based on the ‘taking away’ meaning of 
subtraction.

Again, to avoid the effects of chance, we regarded only 
those students who produced a relational type of reasoning 
in the two compensation items as having developed genu-
ine relational thinking: they seemed to be able to treat the 
expressions holistically, as, for example, in Question 1:

This led them to recognise the correct expression and to 
deduce the relation ‘by doing –220, 1 too much has been 
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taken away, so you have to add 1’. Moreover, they could 
identify and use this relationship in both compensation ques-
tions. This could be a sign that these students seem to be 
able to generalise this relationship in other operations of 
the same type.

It is likely that with these criteria, both for treating the 
question as answered correctly and for considering genuine 
relational thinking to have been used, we underestimated the 
number of students who had actually developed this kind 
of thinking. According to Pang and Kim (2018), students' 
prior experience with algorithmic arithmetic leads them to 
have confidence in computation. So, it may be easy or even 
‘desirable’ for them to calculate in solving a given operation 
or to use such computational ability when asked to justify 
their answers.

In Table 6, the omission rates shown under incorrect 
answers relate to students who chose the wrong answer with-
out giving an explanation. There were no omissions under 
correct answers, as a correct answer was defined as a correct 
choice accompanied by a clear and consistent justification. It 
is worth noting that the omission rates were relatively low, 
even though students often found it difficult to justify and 
present arguments for their answer. Table 6 shows that a total 
of 25% of students (16% + 9%) did not answer the whole of 
Question 1 or did not justify their incorrect choice, while 
the corresponding proportion of students for Question 2 was 
smaller, at 12% (11% + 1%).

6.3  Relations between relational thinking 
and negative numbers

To examine the relationships between relational thinking 
and negative numbers, we compared the scores for the two 
compensation questions (Sect. 6.2) with the scores for the 
12 items relating to negative numbers (Sect. 6.1). For this 
last score, the items of Questions 1 (4 items) and 2 (8 items) 
were combined. More specifically, we wondered if the stu-
dents who used relational type of reasoning in the two com-
pensation questions performed better on the 12 items with 
integers.

Fig. 1  Justification based on 
DFMS in the Compensation 
Question 2

‘One should calculate 843–

80–1, because if we had done 

as Lydia did, it would have 

been 843–81, but it is 843–

79’

Fig. 2  Justification based on 
the + 1 − 1 rule in the Compen-
sation Question 1

‘If you do +1 to the first 

number, you have to do – 1 

to the second’ 

Fig. 3  Computational reasoning 
in the Compensation Question 2 ‘Yes, because you calculate  

843–79=764, so 843–80=763, 

763+1=764’

Fig. 4  Relational reasoning in 
the Compensation Question 1

‘You’re taking away 220 so you 

have taken away an extra one and 

you add it back again’ 

Table 7  Relationship between scores on compensation items and 
integer operations

Scores for compensation items Scores for inte-
ger operations 
(%)

0/2 48
1/2 43
2/2 72
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In Table 7, we compare the scores for compensation items 
with those for integer operations. The two types of items 
show good internal consistency (for compensation items, 
Cronbach’s alpha was 0.70 and for the 12 items with nega-
tives, Cronbach’s alpha was 0.90).

The performance on the compensation items was scored 
according to the ‘correct answer’ criteria stated above. Thus 
a score of 2/2 refers to students who answered both items 
correctly (i.e., made the correct choice in both items accom-
panied by a clear and consistent justification), and a score of 
1/2 refers to students who made the correct choice accompa-
nied by a justification in one of the two items. A score of 0/2 
means that the students failed to answer either item correctly.

Table 7 shows that the students who made the correct 
choice and justified it in both items (2/2) were clearly more 
likely to answer the items with integers correctly (72%). This 
result was significantly different (F = 14.79; p = 0.0002) from 
those for profiles 0/2 and 1/2. Where a student had correctly 
answered just one compensation item, this seemed to have 
little connection with the score on items with integers (43%). 
The same was true for students who failed to answer either 
compensation item correctly (48%). Surprisingly, these stu-
dents had a (slightly) better score on the items with integers 
than the students who answered one of the two compensa-
tion items correctly.

In order to explore the question further, we looked at the 
type of justification used—whether computational or rela-
tional—by the students who had answered the compensation 
questions correctly.

Table 8 presents the results of the integer items for the 
students who succeeded in the two compensation questions. 
These results were analysed according to the type of justi-
fication given.

Table 8 shows that the type of justification did not seem 
to have an influence on the correct answering of items 
with integers: the differences between the scores of 76% 
and 70% is not statistically significant (ANOVA: F = 0,28; 
p = 0.5984). It should be noted that very few students (N = 3) 
had a mixed profile: they used relational arguments in one 
question and computational arguments in the other.

In the end, the main effect on integer operations seemed 
to come more from the fact of having answered both com-
pensation items correctly than from the type of reasoning 

used to justify a correct choice (computational or relational). 
What fundamentally distinguished correct from incorrect 
answers to the compensation questions was students’ abil-
ity to focus on the operation of subtraction involving a unary 
use of the minus sign (−219 and −220), rather than on num-
bers detached from this sign (219 and 220).

7  Discussion

In our study we examined the extent to which algebraic 
thinking might be associated with better performance in 
addition and subtraction with negative numbers. The form 
of algebraic thinking relevant to such operations belongs to 
the generalised arithmetic strand (Kaput, 2008). It is char-
acterised by relational thinking involving a holistic view of 
expressions as well as the use of relationships between num-
bers and properties of operations (Molina & Castro, 2021).

In order to investigate this issue, we first examined the 
students’ correct and incorrect answers in operations with 
integers (RQ1). The results showed that while the students 
showed some acceptance of negative solutions, they expe-
rienced greater difficulty when they had to perform opera-
tions with negative numbers. These results confirm those 
of previous research (Gallardo, 2002; Vlassis, 2004, 2008). 
In particular, the analyses revealed that the most frequent 
mistakes occurred when the operation began with a negative 
number. In these situations, a large proportion of students 
detached the minus sign from the first term before perform-
ing the operation (DFMS error).

The students’ relational thinking (RQ2) was then ana-
lysed on the basis of two questions relating to the mental 
computation strategy of compensation in subtraction. The 
rate of correct answers was low. But why did these ques-
tions on compensation prove so difficult? Analysis of the 
justifications produced by the students who made mistakes 
sheds light on this issue. Most of the explanations given by 
these students were based on DFMS. These students had 
focused on the number detached from the minus sign, rather 
than on the subtraction operation, involving a unary use of 
the minus sign. This represents a significant difficulty for 
students (Vlassis, 2004), and in this sense, notably, the com-
pensation strategy is complex.

Table 8  Relationship between 
type of justification given in 
the two correctly answered 
compensation items and success 
in integers operations

Computational justifica-
tion in the 2 items

Relational justifcation 
in the 2 items

Mixed profile Total
(N = 166)

Correct answers 
in compensation 
items

8% (N = 14) 9% (N = 15) 2% (N = 3) 19% (N = 32)

Correct answers 
in integer opera-
tions

76% 70% 61% 72%
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The final goal of our study was to investigate the rela-
tionships between relational thinking and negative numbers 
(RQ3). Our analyses revealed a close link between success 
in operations with natural numbers (in compensation ques-
tions) and operations with negative numbers: students who 
answered both compensation questions correctly were signif-
icantly more likely to complete the integer operations accu-
rately. Again, the analysis of the arguments put forward by 
these students gave us an interesting insight. Students who 
successfully answered these questions provided justifications 
based on either computational or relational reasoning. We 
observed that this latter type of reasoning could rely on the 
‘taking away’ meaning of subtraction, often considered as 
leading to a computational view of mental arithmetic (Selter 
et al., 2012). In this sense of subtraction, numbers are usu-
ally seen as unsigned quantities separated by a minus sign 
(Vlassis, 2004). It seems, however, that a unary use of this 
sign may exist in the ‘taking away’ conception of subtrac-
tion. That is what we call a ‘signed taking-away’ meaning of 
subtraction. Half of the students who performed well on the 
compensation items—and therefore had a higher probability 
of also performing well on the integer operations—relied 
on computational reasoning. This result seemed surprising 
to us, as we had hypothesised that it was relational thinking 
that could help students to make sense of integer operations, 
and not computational reasoning.

What the students who answered correctly had in com-
mon was the ability to consider the operation as a signed 
‘entity’, that is a ‘transformation’ (Vergnaud, 1982) involv-
ing a unary use of the minus sign. This ability seems to have 
been decisive in the successful completion of the integer 
operations. We refer to signed ‘entities’ rather than signed 
‘numbers’ because we believe that they had not yet fully 
acquired the status of number: computational reasoning, 
conducted step by step, did not allow these students to see 
expressions holistically and to apply the properties of addi-
tion. The subtraction operation therefore could not be com-
pletely reified. In this sense, we believe that these students 
had not fully developed the concept of the subtractive num-
ber (Bishop et al., 2014). Genuine relational thinking was 
probably not necessary to answer these questions on com-
pensation correctly. However, it becomes essential for effi-
ciently performing complex numerical operations consisting 
of more than two terms such as 147 + 10 – 27 – 10 + 15. This 
requires a holistic view of the expression, where the terms 
–27 and –10 are considered as subtractive numbers that can 
be moved, like objects, by applying commutativity. It is this 
holistic view that allows the restructuring of the expression 
147 – 27 + 10 – 10 + 15, to obtain the simplified expres-
sion, 120 + 15. To the extent that the difficulties with alge-
braic structures stem from difficulties with similar numeri-
cal structures (Banerjee & Subramaniam, 2012; Livneh & 
Linchevski, 2007), working with this kind of expression 

could help reduce the well-known phenomenon of DFMS, 
observed in operations with natural numbers and integers as 
well as in algebraic expressions.

8  Conclusion

Our study was a first approach to the question of the rela-
tionship between negative numbers and algebraic thinking. 
The data were collected by means of a paper-and-pencil test. 
This format represents a limitation of the study, in that the 
nature of students’ thinking was deduced from their answers 
or explanations rather than being observed; as Hickendorff 
(2018) stressed, previous studies have shown that what 
students do on a standard task may not fully reflect what 
they know. Thus this first approach could be taken further 
through student interviews which would provide a better 
understanding of students’ actual thinking.

Ultimately, our results, and in particular the analysis of 
the arguments put forward by the students, throw interest-
ing light on a potential developmental path for students. 
Rather than dichotomising a computational versus rela-
tional conception of expressions (Subramaniam, 2019), it 
is interesting to consider how the students made use of their 
‘met-before’—the mental structure resulting from previous 
experiences (McGowen & Tall, 2013). On the one hand, the 
students' previous experience with computational arithmetic 
based on unsigned quantities led some of them to maintain a 
computational perspective, yet at the same time they showed 
themselves capable of evolving towards an understanding of 
subtraction as transformation. On the other hand, students 
who gave relational arguments, while demonstrating a holis-
tic view of operations and analysis of relationships, based 
them on the ‘taking away’ meaning of subtraction.

These analyses suggest the potential value of a ‘teaching/
learning trajectory’ (Warren & Cooper, 2009) starting from 
the idea of transformations as well as a ‘signed taking away’ 
meaning of subtraction, and moving towards the develop-
ment of fully relational thinking. In secondary school, this 
thinking is essential to avoid, in particular, the many errors 
due to erroneous use of the minus sign in polynomial reduc-
tions and equation-solving (Vlassis, 2004, 2009). In elemen-
tary school, while students often have to perform operations 
consisting of two terms, they should be presented with 
expressions with multiple operations that can be interpreted 
as compositions of transformations. Various activities could 
serve this purpose, including problems such as ‘The Piggy 
Bank problem’ (Carraher et al., 2006), in which students 
compare the movements of money entering and leaving 
the piggy bank of two children. ‘Think of a number’-type 
problems could also be useful. These consist of applying a 
sequence of operations to any number and analysing the link 
between the starting number and the final result. However, 
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these activities alone are not enough to develop full rela-
tional thinking as defined in Sect. 2. The teacher must play a 
proactive role, initiating discussions with students about the 
structure of expressions, leading them to see these expres-
sions as a whole and focusing particularly on the unary use 
of the minus sign, which, as our results have shown, con-
stitutes a major difficulty for students. These discussions 
will also address the relationships between numbers and the 
properties of operations in order to make them explicit. The 
activity can only be termed algebraic when "we are stating 
these properties explicitly and examining their generality” 
(Kaput, 2008, p. 13).

It is clear from the above reflections that it is possible to 
offer activities in primary school that will prepare students 
to deal with negative numbers, even when these numbers are 
not included in the curriculum. As well as improving effi-
ciency in operations with natural numbers, these activities 
will help reduce the difficulties in operations with negative 
numbers such as DFMS. Our results have shown that it is 
possible to envisage a gradual development in such activities 
of relational thinking and the idea of a subtractive number 
which, it is worth stressing again, represents the first stage in 
the acceptance of negative numbers (Gallardo, 2002). In fur-
ther investigations, it would be of major interest to examine 
whether such activities offered to primary school students 
would indeed reduce the difficulties often observed in sec-
ondary school students in operations with negative numbers. 
This would also be an important challenge for the implemen-
tation of professional development programmes, because 
many primary school teachers still tend to view arithmetic 
not in a relational way, but as a set of rules and procedures 
to be memorised and applied (Stephens, 2008).
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