

## Le azioni a favore della transizione energetica

Un vero e proprio cambio di paradigma. Da una parte la sostituzione delle fonti fossili con quelle rinnovabili. Dall'altra lo sviluppo di nuove tecnologie come lo <u>storage</u> e l'<u>idrogeno</u>, l'elettrificazione di alcuni settori e la digitalizzazione.

(End)

- Energia: définisione operativa
- Conservazione dell'energia
- Lavors: det. operation

# INDAGINE SUI CONSUMI ENERGETICI DELLE FAMIGLIE

#### Che cosa è

Lo scopo di questa indagine è di acquisire informazioni e produrre dati statistici sulle dotazioni energetiche delle famiglie, cioè relative agli impianti e alle apparecchiature che consumano energia nelle abitazioni e sulle modalità con cui vengono utilizzate nella vita quotidiana.

I risultati dell'indagine forniranno un quadro completo dei consumi di energia e delle caratteristiche energetiche del settore residenziale, utili alla collettività e alle istituzioni per predisporre interventi mirati a tutelare la qualità dell'ambiente e a rispettare gli Obiettivi nazionali ed europei di mitigazione dei cambiamenti climatici.

(Istat)

#### Efficienza energetica

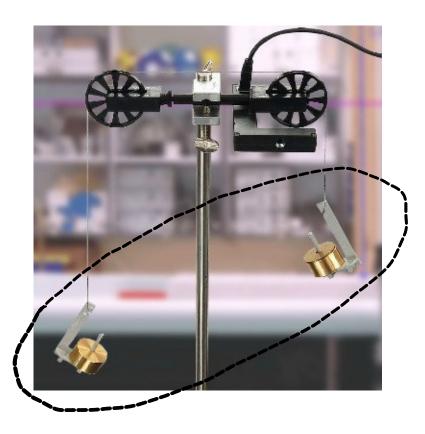
In ingegneria energetica il termine efficienza energetica indica la capacità di un sistema fisico di ottenere un dato risultato utilizzando meno energia rispetto ad altri sistemi detti a minor efficienza, aumentandone generalmente il rendimento e consentendo dunque un risparmio energetico ed una riduzione dei costi di esercizio.

W More at Wikipedia (IT)

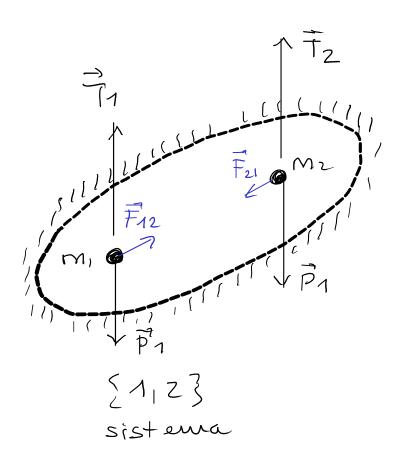
(Wikipedia)

#### Sistema e ambiente

Sistema: insieme di corpi delimitato da una superficie (immaginaria) Ambiente (esterno): tutto ciò che resta fuori dana superficie



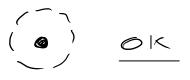
Macchina di Atwood



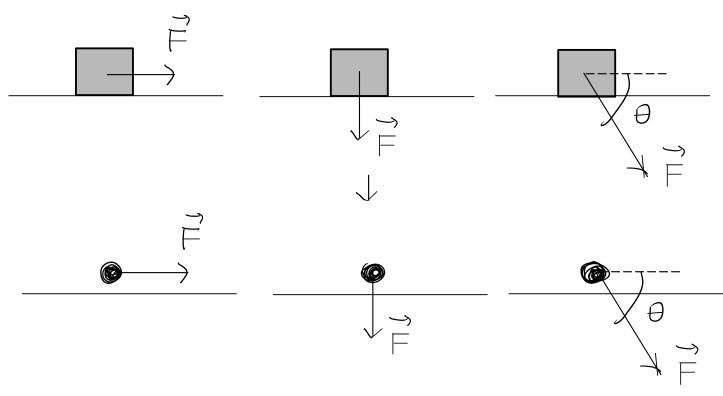
Force interne !

Forze esterue:

$$\vec{P}_1, \vec{P}_2, \vec{T}_1, \vec{T}_2$$



Lavoro -> influenza dell'ambiente su un sistema



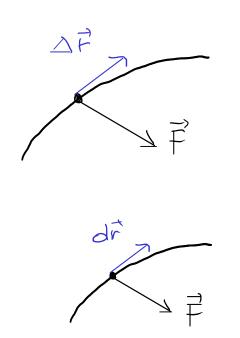
Sistemi di particelle

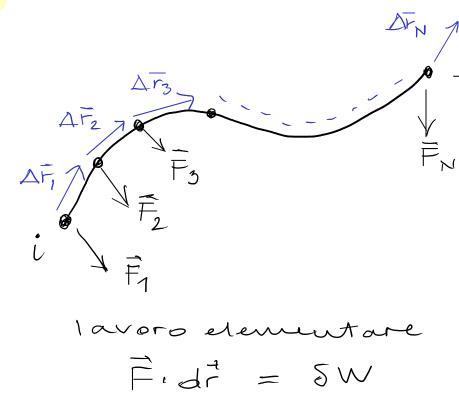
$$\sim |\vec{F}|$$
 spostamento del corps  $\sim |\Delta \vec{F}|$  dépude da directione di  $\vec{F}$  e  $\Delta \vec{F}$ 

Lavoro : grandera frica definita da  $W = |\vec{F}| |\Delta \vec{F}| \cos \theta$   $W = |\vec{F}| |\Delta \vec{F}| \cos \theta$   $W = |\vec{F}| |\Delta \vec{F}| \cos \theta$   $(\vec{F} \cos t)$   $(WJ = ML \cdot L = ML^2)$  SI! N.m = J (Jowle)

Lavoro è compiuto / fatto DA una forza SU un sistema  $W[\vec{F}]$ ,  $W[\Sigma\vec{F}] = \sum_{i=1}^{N} \vec{F}_{i} \cdot \Delta \vec{F}$ 

#### Lavoro elementare





$$W \approx \sum_{i=1}^{N} \vec{F}_{i} \cdot \Delta \vec{F}_{i}$$

$$W = \lim_{|\Delta \vec{r}| \to 0} \sum_{i=1}^{N} \vec{F}_{i} \cdot \Delta \vec{r}_{i}$$

$$W = \int_{i}^{f} \vec{F}_{i} \cdot d\vec{r} = \int_{i}^{f} \delta w$$
integrale curvilines

## Esempi:

### 1) Forza costante

$$\vec{F} = cost$$

$$\hat{F} = F_x \, \hat{e}_x + F_y \, \hat{e}_y$$

$$d\hat{r} = dx \, \hat{e}_x + dy \, \hat{e}_y$$

$$y = y(x)$$

$$W = \int_{i}^{f} \overline{F} \cdot d\vec{r}$$

$$= \int_{i}^{f} [F_{x} dx + F_{y} dy]$$

$$= F_{x} \int_{x_{i}}^{x_{f}} dx + F_{y} \int_{y_{i}}^{y_{f}} dy =$$

Peso: P = mj (cost)  $\vec{e}_{y} \uparrow \qquad \downarrow \vec{g} \qquad \mathcal{W} = m\vec{g} \cdot \Delta \vec{r} = -mg \Delta y$   $(\vec{g} = -g\vec{e}_{y})$   $(\Delta \vec{r} = \Delta \times \vec{e}_{x} + \Delta y \vec{e}_{y})$ 

$$= F_{x}(x_{f}-x_{i}) + F_{y}(y_{f}-y_{i})$$

$$= F_{x}\Delta x + F_{y}\Delta y = \widehat{F} \cdot \Delta \widehat{r}$$
non dipende dal cammino.

#### 2) Forza elastica

Molla ideale, costante elastica K, lunghezza a riposo lo

$$\vec{F}_{\ell} = - k \Delta \ell \, \vec{e}_{x} = - k \times \vec{e}_{x} \qquad d\vec{r} = dx \, \vec{e}_{x}$$
Lavoro della forza elastica sulla particella
$$W = \int_{\ell}^{f} \vec{F}_{\ell} \, d\vec{r} = \int_{x_{\ell}}^{x_{f}} (-kx) \, dx$$

$$= - k \left[ \frac{x^{2}}{2} \right]_{x_{\ell}}^{x_{f}} = -\frac{1}{2} k (x_{f}^{2} - x_{\ell}^{2})$$

Es: 
$$x_i = 0$$
  $\sqrt{x} \times x_i < 0$ 

$$M = -\frac{1}{7} K \times x_i < 0$$

$$A \times x_i = 0$$

Nota: N' dipende dana velocità della particella?

$$\int_{x_i}^{x_f} f(x) dx = \int_{t_i}^{t_f} f(x(t)) \frac{dx}{dt} dt$$

$$x = x(t) \quad dx = \frac{dx}{dt} dt$$

$$x_i = x(t_i) \quad x_f = x(t_f)$$

$$W = \int_{X_i}^{x_f} F dx = \int_{X_i}^{t_f} F(t) \frac{dx}{dt} dt$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

=) W non dipende dana velocità se F = F(x)

## Teorema dell'energia cinetica

Effetto del lavoro su un sistema? Particella massa m, IF

$$W[\Sigma\tilde{F}] = \int_{i}^{f} (\Sigma\tilde{F}) \cdot d\tilde{r} = \int_{i}^{f} m \frac{d\tilde{v}}{dt} \cdot d\tilde{r} = m \int_{i}^{f} \frac{d\tilde{v}}{dt} \cdot d\tilde{r}$$

# New to

$$\int \frac{dv_{x}}{dt} dx = \int \frac{dv_{x}}{dt} \frac{dx}{dt} dt = \int v_{x} \frac{dv_{x}}{dt} dt = \int v_{x} dv_{x} = \frac{1}{2} \left( v_{x+}^{2} - v_{x_{i}}^{2} \right)$$

$$\times i \qquad \uparrow \qquad t_{i} \qquad \qquad \downarrow = \pm (v_{x})$$

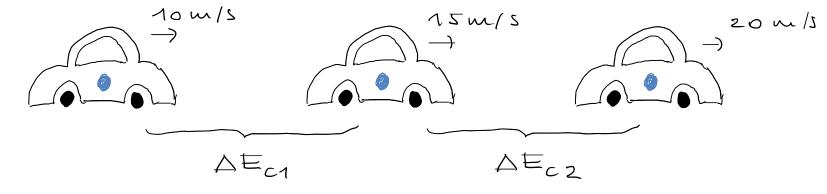
$$\int_{y_i}^{y_f} \frac{dv_y}{dt} dy = --- = \frac{1}{2} \left( v_{yf}^2 - v_{yi}^2 \right)$$

$$W[\Sigma F] = \frac{1}{2}m(v_{xy}^2 + v_{yf}^2 - v_{xi}^2 - v_{yi}^2) = \frac{1}{2}m(|\bar{v_f}|^2 - |\bar{v_{i}}|^2) = \frac{1}{2}m|\bar{v_f}|^2 - \frac{1}{2}m|\bar{v_f}|^2$$

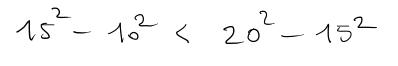
$$E_{C} = \frac{1}{2} m |\vec{v}|^{2}$$

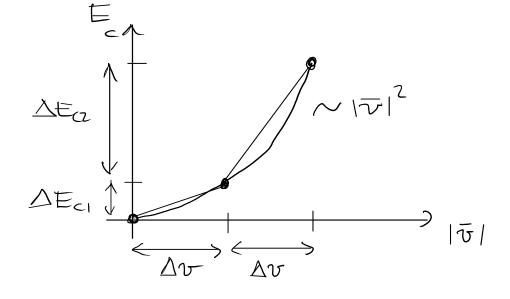
Teorema dell'energia cinetica:

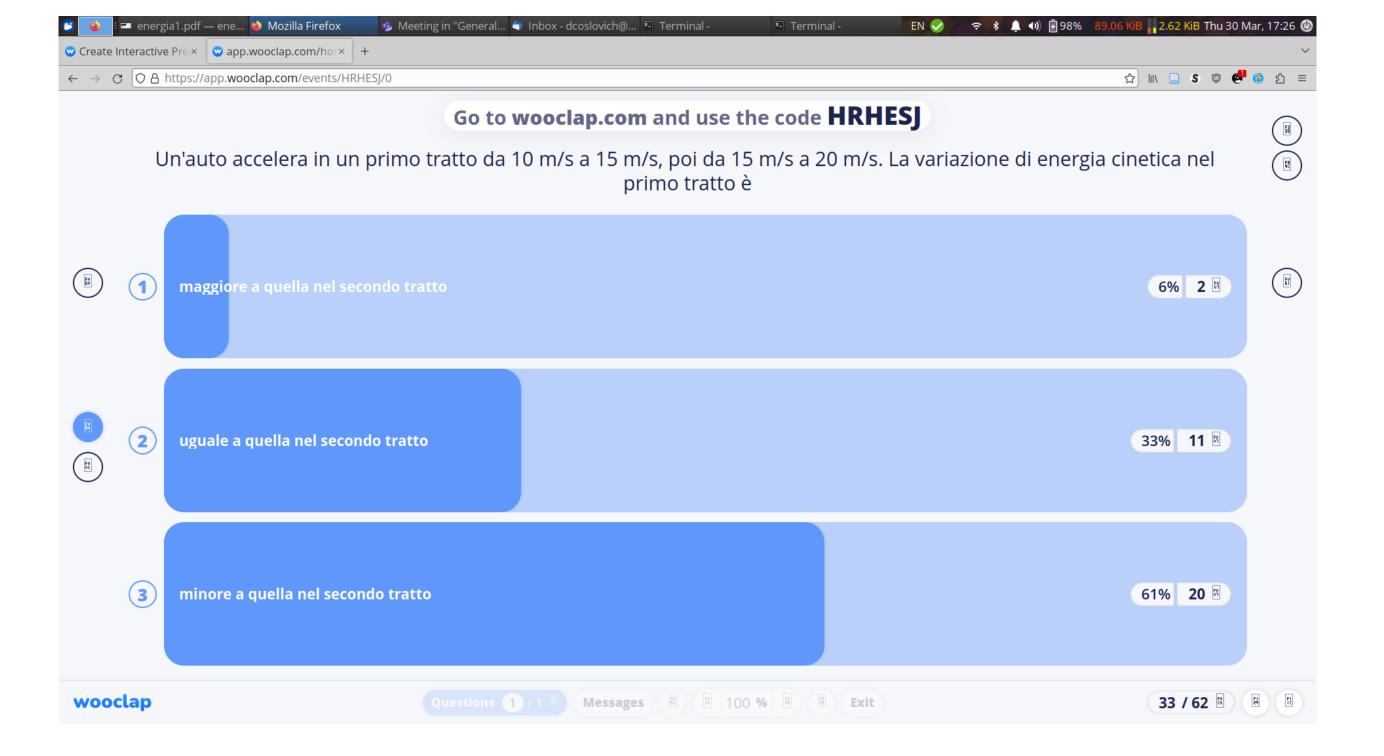
Quiz: m, auto accelera in m primo tralto da 10 m/s a 15 m/s poi da 15 m/s a 20 m/s, Variazione di energia cinetica DEc ?



a) 
$$\Delta E_{c1} > \Delta E_{c2} = b$$
)  $\Delta E_{c1} = \Delta E_{c2} = c$ )  $\Delta E_{c1} < \Delta E_{c2}$ 

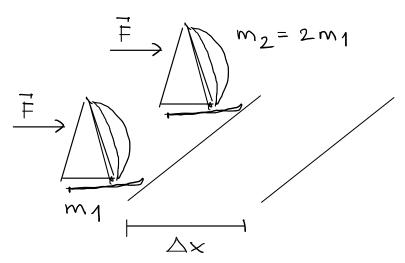






## Esupio: bardu sul guiaccio





Quale barca ha mappiore energia cinetica all'arrivo?

Teor, dell'eurgia cinetica:

Il lavoro della risultante delle force su una particella è uguale alla variazione di energia cinetica della particella stessa.

Es.! peso 
$$\overline{P} = w_{\overline{g}}$$

B. om  $\sqrt{\overline{g}}$   $\uparrow^{\overline{z}}$   $W$ 

$$W[\Sigma \vec{F}_{1}] = \Delta E_{C1}$$

$$W[\Sigma \vec{F}_{2}] = \Delta E_{C2}$$

$$\downarrow$$

$$W[\Sigma \vec{F}_{1}] + W[\Sigma \vec{F}_{2}] = \Delta E_{C} \{1,23\}$$

$$W_{1}[\Sigma \vec{F}_{1}] + W_{2}[\Sigma \vec{F}_{2}] = \Delta E_{C} \{1,23\}$$

B. 
$$m$$
  $\sqrt{g}$   $\uparrow^z$   $W[P] = \int_A^B \vec{P} \cdot d\vec{r} = -nng(z_B - z_A) \rightarrow lavoro non dipunde dal percorso tra  $A \in B$ 
 $V_{OA} = \int_A^B \vec{F} \cdot d\vec{r}$  non dipende dal percorso forze non  $O_{OA} = \int_A^B \vec{F} \cdot d\vec{r}$  forze non  $O_{OA} = \int_A^B \vec{F} \cdot d\vec{r} \cdot \vec{r} = 0$$ 

$$-W_{OA} = E_{p}(\vec{r}_{A})$$
 energia  $E_{p}(\vec{r})$ 

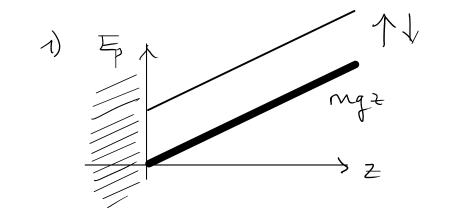
$$-W_{OB} = E_{p}(\vec{r}_{B})$$
 potentiale  $SI: J$ 

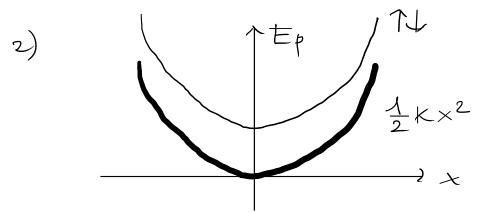
Esempi di energie potenziali

1) 
$$\frac{Peso}{m}$$
  $\Rightarrow \sqrt{g}$   $(\Delta E_p = -W_{AB} = -\int_{A}^{\overline{p}}, d\vec{r} = Mgz_B - Mgz_A \Rightarrow E_p = Mgz_B + cost$ 

$$\frac{1}{(M)!(M)!} (\Delta E_p = E_{pB} - E_{pA})$$

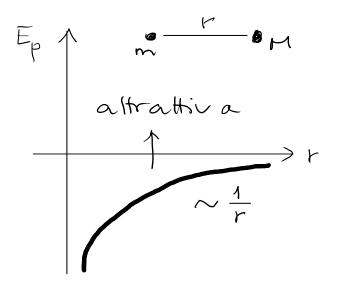
2) Forza elastica molla ideale





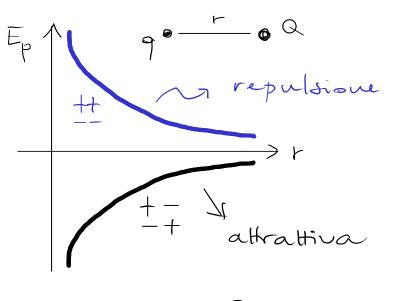
{m, molla, M}

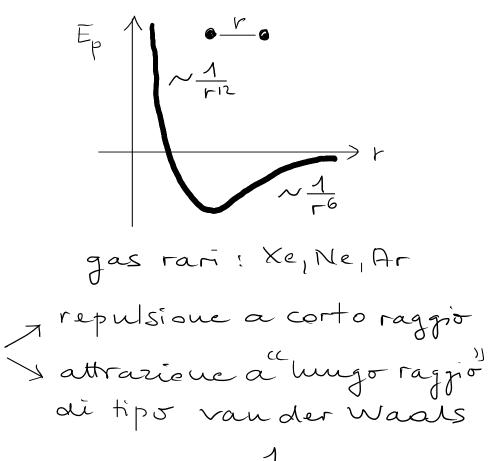




(es.) 
$$E_{p} = -G \frac{mM}{r}$$

$$M \qquad F_{p}(\infty) = 0$$





Energia potenziale di Lennard - Jones:  $E_p = 4E\left[\left(\frac{\tau}{r}\right)^{12} - \left(\frac{\tau}{r}\right)^{6}\right]$  Relazione tra energia potenziale e forza

$$\Delta E_{p} = - \int_{0}^{A} \vec{F} \cdot d\vec{r} \longrightarrow 1d$$

$$\begin{cases}
\frac{dEP}{dx} = -F_{x} \\
\frac{dEP}{dy} = -F_{y}
\end{cases}$$
20

$$\hat{F} = F_{\chi} \vec{e}_{\chi} + F_{\gamma} \vec{e}_{\gamma}$$

$$= - \frac{dF_{\gamma}}{d\chi} \vec{e}_{\chi} - \frac{dF_{\gamma}}{d\gamma} \vec{e}_{\gamma}$$

$$\mathbb{E}_{p}(x) - \mathbb{E}_{p}(x_{o}) = - \int_{x_{o}}^{\infty} F_{x}(x') dx'$$

Ep(x) à meno la primitiva di Fx!

$$\frac{dEP}{dx} = -F_x$$

$$= -\frac{dE_{p}}{dx}\bar{e}_{x} - \frac{dE_{p}}{dy}\bar{e}_{y} \qquad = -\frac{0E_{p}}{0x}\bar{e}_{x} - \frac{0E_{p}}{0y}\bar{e}_{y} \qquad (E_{p}(x,y))$$

### Conservazione dell'energia meccanica

( 
$$W[\Sigma F] = \Delta E_C$$
 teor. en. cinetica  
 $V[\Sigma F] = -\Delta E_P$   $\Sigma F$  conservativa  
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$   
 $V[\Sigma F] = -\Delta E_P$   $V[\Sigma F] = 0$ 

$$W[\Sigma F_c] + W[\Sigma F_{nc}] = \Delta E_c$$

$$\Delta E = W[\Sigma F_{nc}]$$

$$\uparrow$$
non conservative

Energia meccanica: E = Ec+ Ep

$$E_f - E_c = 0 \quad (3) \quad E_f = E_c \quad (3) \quad \Delta E = 0$$

conservazione dell'eurgia meccanica

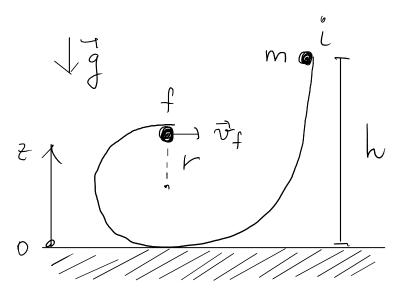
M Peso

non Conservative

M Electrostation

## Esempio: skateboard

velocità iniziale  $\vec{v}_i = \vec{0}$ , no altrito => valore minimo di h per aderenza in f?



1) Conservatione dell'energia relocation

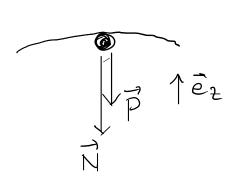
$$E_{i} = E_{f}$$

$$E_{ci} + E_{pi} = E_{cf} + E_{pf}$$

$$\emptyset + mgh = \frac{1}{2}mv_{f}^{2} + 2mgr$$

$$v_{f}^{2} = 2g(h - 2r)$$

## 2) Condizione di aderenza



It Newton:  $\vec{P} + \vec{N} = m\vec{a}$ 

$$-mg\tilde{e}_{\pm} - |\vec{N}| \tilde{e}_{\pm} = m \tilde{a}_{c} = -m \frac{v_{f}^{2}}{r} \tilde{e}_{7}$$

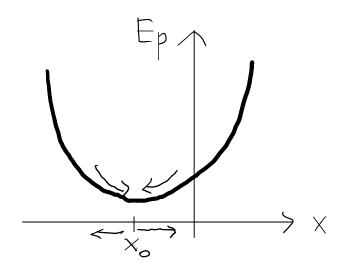
$$|\vec{N}| + mg = m \frac{v_{f}^{2}}{r} \quad 2n - 4r > r = h > \frac{5}{2}r.$$

$$contatto = \frac{|\vec{N}|}{m} = \frac{v_{f}^{2}}{r} - g > 0 \quad 2g(h-2r) > g \quad h > \frac{5}{4}(2r)$$

### Condisione di equilibrio meccanico

$$A \implies B$$

$$1d: F_{x} = -\frac{dE_{p}}{dx}$$

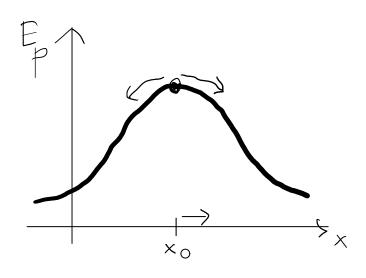


equilibrio Stabile

$$x-x_o > o \Rightarrow \overline{+}_x < o$$

$$x \sim x_0 < 0 \Rightarrow F_X > 0$$

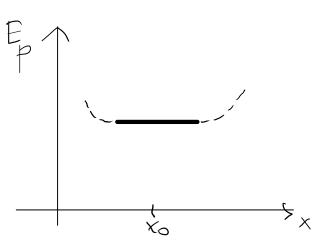
$$\frac{d^2 E_P}{dx^2} \Big|_{x_0} > 0$$



equilibrio instabile

$$\times - \times_{\circ} > 0 = ) \overline{\uparrow}_{\chi} > 0$$
  
 $\times - \times_{\circ} < 0 = ) \overline{\downarrow}_{\chi} < 0$ 

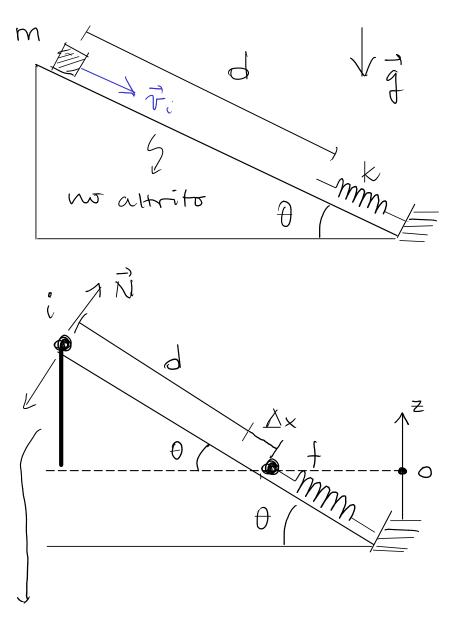
$$\frac{d^2E}{dx^2}\Big|_{x_0}$$



equilibrio indifferente

$$\frac{d^2 E_p}{dx^2} = 0$$

### Es.: blocco + molla su piano indinato



 $(d + \Delta x) \sin \theta = z_i$ 

|Fi| velouità iniziale j molla ideale (K).

Determina la massima compressione Ax>0 della molla

Sistema; { corpo}

Force: peso, rearione, forca elastica indipendenti dal tempo e conservative a) conservazione energia meccanica

 $E_{i} = E_{f}$   $E_{ci} + E_{pi} = E_{cf} + E_{pf}$   $\frac{1}{2} m |\overline{v_{i}}|^{2} + mg (d + \Delta x) \sin \theta + 0 = mg^{2} + \cos t$   $0 + 0 + \frac{1}{2} K \Delta x^{2}$ 

$$\frac{1}{2} k \Delta x^{2} - mg \sin \theta \Delta x - \left(\frac{1}{2} m | \overline{r}, |^{2} + mg \sin \theta d\right) = 0$$

$$\left(a x^{2} + b x + c = 0\right)$$

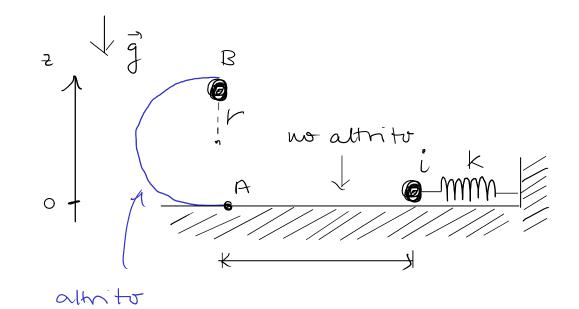
$$\left(x_{12} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right)$$

$$\Delta x_{12} = \frac{mg \sin \theta \pm \sqrt{(mg \sin \theta)^{2} + 2k(\frac{1}{2}m | \overline{r}, |^{2} + mg \sin \theta d)}}{k}$$

$$\triangle x > 0 \Rightarrow \Delta x = \frac{\text{ug sin} \partial + \sqrt{1 - 1 - 1}}{x}$$
 Solutione accettabile

$$E_{p} = E_{p}(z)$$

## Es. blocco su guida circolare



$$m = 0.5 kg$$

$$v_A = |\vec{v}_A| = 12 \text{ m/s}$$

$$|\hat{F}_a| = 7 N$$

2) determina 
$$V_B = |\vec{v}_B|$$

3) viesce ad arrivare in Baderendo alla grida?

1) Forze conservative, indipendent dat tumps => conservatione energia

$$E_{ci} + E_{pi} = E_{CA} + E_{pA}$$

$$O + \frac{1}{2} k \Delta x^{2} = \frac{1}{2} m v_{A}^{2} + O =) \Delta x = \sqrt{\frac{m v_{A}^{2}}{k}} = \sqrt{\frac{m}{k}} v_{A} = \sqrt{\frac{o.5 k_{1}}{450 \text{ N/m}}} 12 \text{ m/s}$$

$$= 0.4 m$$

2) In presenza di una forza non-conservativa tra A e B

teor. dell'energia nueccanica

$$E_{CB} + E_{PB} - E_{CA} - E_{PA} = \int_{A}^{B} F_{a} \cdot d\hat{r}$$

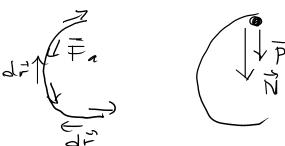
$$\frac{1}{2}mv_{B}^{2} + 2 mgr - \frac{1}{2}mv_{A}^{2} - 0 = -\int_{0}^{B} |F_{a}| dr$$

$$\frac{1}{2}mv_{B}^{2} = \frac{1}{2}mv_{A}^{2} - 2 mgr - |T_{r}|F_{a}|$$

$$v_{B}^{2} = v_{A}^{2} - 4gr - \frac{2\pi r}{m}|F_{a}|$$

$$v_{B} = \sqrt{v_{A}^{2} - 4gr - \frac{2\pi r}{m}|F_{a}|}$$

$$= \sqrt{144 \frac{m^{2}}{s^{2}} - 4x \sqrt{8} |x| \sqrt{\frac{m^{2}}{s^{2}}} - \frac{6.24 \times 1m}{0.5 \text{ kg}} \times 7N = 4.1 \frac{m}{s}$$



3) advenza  $m\overline{a} = \widehat{N} + \widehat{P}$  $m\frac{v^2}{r} = |\vec{N}| + |\vec{P}|$  $m \frac{v^2}{r} - mg = |N|$  $\frac{v^2}{r} - g > 0$  $v^2 > gr = 9.8 \frac{m^2}{c^2}$ 

$$m_1 = 60 \text{ kg}$$

$$m_2 = 0.030 \text{ kg}$$

$$|\vec{v}_{2i}| = 85 \text{ m/s}$$

$$\sqrt{\frac{1}{2}}$$

$$\sqrt{\frac{1}{2}}$$

$$m_1 \frac{d\overline{v_1}}{dt} + m_2 \frac{d\overline{v_2}}{dt} = \vec{0}$$

$$\frac{d}{dt}(m_1 \vec{v_1}) + \frac{d}{dt}(m_2 \vec{v_2}) = \vec{0}$$

$$\frac{d}{dt}(m_1 \vec{v_1}) + m_2 \vec{v_2}) = \vec{0}$$

### QUANTITA' DI MOTO

Sistema compostr { arciere, arco, freccia}
arciere + arco -> m1
freccia -> mz

I Newton; 
$$\Sigma \vec{F}_1 = m_1 \vec{a}_1$$
  
 $\Sigma \vec{F}_2 = m_2 \vec{a}_2$ 

$$m_1 \hat{a}_1 + m_2 \hat{a}_2 = \Sigma \hat{F}_1 + \Sigma \hat{F}_2 = \Sigma \hat{F}_{int} + \Sigma \hat{F}_{est}$$

$$= 3 + 3$$

$$+ 1$$

$$\pm Newton$$

quantità di moto

$$\vec{p} = m\vec{v}$$
 [ $\vec{p}$ ] =  $M = M = ST$ :  $\frac{kgm}{S}$ 

Due corpi hanno la stessa energia cinetica. Che relazione c'è tra i moduli p\_1 e p\_2 delle loro quantità di moto? 0% **0** 🖪 50% 12 🖺 0% 0 🖪 50% 12 🖺 non ci sono abbastanza informazioni per rispondere

## Moto di un sistema di particelle

$$\Sigma \vec{F}_i = m_i \frac{d\vec{v}_i}{dt}$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} m_i \frac{d \overline{v}_i}{d t}$$

$$\sum \vec{F}_{int} + \sum \vec{F}_{est} = \frac{d}{dt} \left( \sum_{i=1}^{N} m_i \vec{v}_i \right) = \frac{d}{dt} \left( \sum_{i=1}^{N} \vec{P}_i \right)$$

$$= 0$$

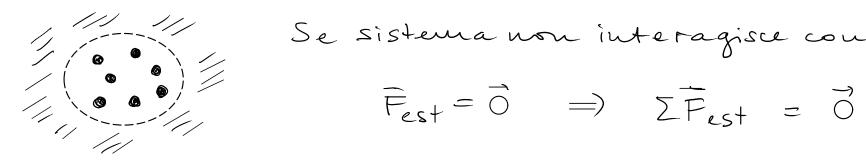
$$M = \sum_{i=1}^{N} m_i$$

$$\vec{F}_{CM} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{F}_i$$
 centro di massa

$$\vec{p} = \sum_{i=1}^{N} m_i \vec{v}_i = \frac{d}{dt} \left( \sum_{i=1}^{N} m_i \vec{r}_i \right) = M \frac{d}{dt} \left( \frac{1}{M} \sum_{i=1}^{N} m_i \vec{r}_i \right) = M \frac{d\vec{r}_{CM}}{dt}$$

$$\overline{Z}\overline{F}_{est} = M \frac{d^2\overline{F}_{cM}}{dt^2} = M \overline{a}_{cM}$$

## Leggi di conservazione



Se sistema non interagisce con ambiente esterno : 150LATO

$$\hat{F}_{est} = \vec{0}$$
  $\Rightarrow$   $\Sigma \hat{F}_{est} = \vec{0}$ 

a) 
$$\frac{d\vec{p}}{dt} = 0$$
  $\vec{p} = \cos t$   $\Delta \vec{p} = \vec{0}$  conservatione della quantità di unto

· 
$$\Sigma \vec{+}_{est} = \vec{0}$$
 vedi 1) + 2)  $\vec{F}_{int}$ ,  $\vec{F}_{est}$ 

• 
$$\widehat{LF}_{est} \neq \overrightarrow{0}$$
 (a) component e x di  $\widehat{LF}_{est} = 0 = 0$  px si conserva  $x = x_1 y_1 z_2$   
b)  $\widehat{F}_{est}$  conservative e indipendent dat temps =  $\Delta E = 0$ 

$$\vec{p}$$
  $m_1 = 60 \text{ kg}$  archere + arco  $m_2 = 0.03 \text{ kg}$  freccia  $m_2 = 85 \text{ m/s}$   $m_3 = 70 \text{ m/s}$   $m_4 = 70 \text{ m/s}$   $m_5 = 70 \text{ m/s}$ 

sistema non isolato ma 
$$Z\vec{F}_{est} = \vec{0}$$
 ( $\vec{N} + \vec{P} = \vec{0}$ )

$$m_1 m_2$$
 $\xrightarrow{\tilde{V}_1} \tilde{V}_2$ 
 $m_1 m_2$ 
 $m_1 m_2$ 
 $m_1 m_2$ 
finale

Conservatione q. di moto

$$\hat{P}_i = \hat{P}_i$$

$$\hat{O} = m_1 \hat{v}_1 + m_2 \hat{v}_2$$

$$\hat{v}_1 = -\frac{m_2}{m_1} \hat{v}_2 = -\frac{0.03 k_1}{60 k_g} \times 85 - \frac{m}{5} \hat{e}_x$$

$$= -0.042 - \frac{m}{5} \hat{e}_x \quad \Pi$$

initiale 
$$\overline{v}_1$$
  $\overline{v}_3$ 

$$\overline{p}_i = \overline{0} = \overline{p}_f = \frac{3}{2} \overline{p}_i$$

$$= m_1 \overline{v}_1 + m_2 \overline{v}_2$$

$$+ m_3 \overline{v}_2$$

$$m_1$$
  $v_{1i}$   $m_2$   $v_{2i}$   $m_2$   $v_{2i}$   $m_2$   $v_{2i}$   $m_2$   $v_{2i}$   $m_2$   $v_{2i}$   $m_2$   $v_{2i}$ 

$$\overline{p}_i = m_1 \overline{v}_{ii} + m_2 \overline{v}_{2i} = \overline{p}_f = m_1 \overline{v}_{1f} + m_2 \overline{v}_{2f}$$

Conservatione que unto : 
$$\Delta \vec{p} = \vec{0}$$
  $\vec{p}_i = \vec{p}_f$   
Conservatione energia :  $\Delta \vec{E} = 0$   $\vec{E}_i = \vec{E}_f$ 

Sistema isolato =) 
$$\Delta \vec{p} = \vec{0}$$
  
 $E_{pi} = E_{pf}$ 

Es.: urto tra 2 protoni

 $\begin{array}{c} \tilde{e}_{u} \\ \tilde{e}_{x} \\ \tilde{e}_{x} \\ \tilde{m} \\ \tilde{v}_{1} \\ \tilde{v}_{2} \\ \tilde{v}_{2} \\ \tilde{v}_{2} \\ \tilde{v}_{3} \\ \tilde{v}_{4} \\ \tilde{v}_{2} \\ \tilde{v}_{3} \\ \tilde{v}_{4} \\ \tilde{v}_{5} \\ \tilde{v}_{6} \\ \tilde{v}_{6}$ 

$$|\vec{v}_{1i}| = 3.5 \times |o^{\tau}m|s \qquad \vec{v}_{2i} = \vec{0}$$

$$|\vec{v}_{1f}| = 2.8 \times |o^{\tau}m|s \qquad \theta_{1} = 37^{\circ} \qquad \theta_{1}, \theta_{2} > 0$$

$$\Rightarrow \theta_{2} = ?; |\vec{v}_{2f}| = ? \quad \text{Elasticar}?$$

isolato =) 
$$\vec{D} = \vec{D} = \vec{D$$

[Solutione 
$$\theta_z = 53^\circ$$
,
$$|\widehat{\sigma}_{zf}| = 2.1 \times 10^5 \frac{\text{m}}{\text{s}}$$
]
$$E_{ci} = \frac{1}{2} \text{m} |\widehat{\tau}_{1i}|^2$$

$$E_{cf} = \frac{1}{2} \text{m} (|\widehat{\tau}_{1f}|^2 + |\widehat{\tau}_{2f}|^2)$$

$$\begin{cases} v_{1i} = v_{1f} \cos \theta_1 + v_{2f} \cos \theta_2 & (1) \\ 0 = v_{1f} \sin \theta_1 - v_{2f} \sin \theta_2 & (2) \end{cases}$$

$$0 = v_{1f} \sin \theta_1 - v_{2f} \sin \theta_2$$
 2

$$v_{1i} - v_{1f} \cos \theta_1 = v_{1f} \frac{\sin \theta_1}{+ \cos \theta_2}$$

$$+ au \theta_2 = \frac{v_{1f} \sin \theta_1}{v_{1i} - v_{1f} \cos \theta_1}$$

$$\theta_2 = \arctan\left(\frac{v_{1f} + v_{1f} + v_{1f}}{v_{1f} - v_{1f} \cos \theta_1}\right) = --- = 53^{\circ}$$