
993SM - Laboratory of�
Computational Physics�

week VI

April 3, 2023

Maria Peressi

Università degli Studi di Trieste - Dipartimento di Fisica

Sede di Miramare (Strada Costiera 11, Trieste)

e-mail: peressi@units.it

tel.: +39 040 2240242

mailto:peressi@units.it

Metropolis Algorithm

1) to generate random points with a given distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

2

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

by (1953)

1) to generate random points with a given distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

3

Metropolis Algorithm
CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

by (1953)

Idea: produce a random walk with points
whose asymptotic probability distribution pN(x)
of the occupied positions approaches after
a large number N of steps

Metropolis Algorithm

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

1) to generate random points with a given distribution

4

Idea: produce a random walk with points
whose asymptotic probability distribution pN(x)
of the occupied positions approaches after
a large number N of steps

Metropolis Algorithm

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

A random walk in general is defined by specifying a
transition probability from one value
to another value and the distribution of points
 converges to a certain

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

1) to generate random points with a given distribution

5

Comment:
need to consider a RW more general than the ‘standard’
RW with length and probability fixed for each step.

Remind: a RW with fixed length and pleft = pright gives
PN(x) that for large N tends to a gaussian distribution
with a standard deviation that depends on N:

The recipe to obtain a gaussian distribution with given σ
from simple RWs was to generate several RWs with the
same N and do the histogram of their end-points.
The approach we are going to discuss now is something
different, the focus being one RW.

σ2 = Dt; D =
"2

2∆t
; ∆t =

t

N
=⇒ σ2 = "2N/2 P (x, N∆t) =

√

2

πN
e−x2/(2N)

(here l=1; remind also the factor of 2 due to discretization)

6

Markov chains
Consider a sequence of “configurations” C={C1, C2, ...
CN } stochastically generated, i.e. Ck+1 is obtained from
the previous one, Ck, by making some random changes
on the former.
The sequence is a Markov chain if the probability of
making a transition from Ck to Ck+1 is not dependent
on how we arrived at Ck (its history), i.e. no memory.

The sequence of points of a simple RW
is a Markov chain.

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

7

The detailed balance
Choose a transition probability from
one value to another value (from one
configuration Ci to another one Ci+1) such that the
distribution of points (of configurations)
converges to the desired .
It is sufficient (not necessary) to satisfy the condition:

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

(We can easily verify...)

A simple choice (not unique!) is:

8

xi

p(xi)

probability
distribution

x

initial position
9

Example:

xixj

p(xi)

probability
distribution

xx

initial position

new trial position

10

xixj

p(xj)

p(xi)

probability
distribution

xx

initial position
11

xixj

p(xj)

p(xi)

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

move with probability
p(xj)/p(xi) < 1

probability
distribution

xx

initial position
12

xi

p(xi)

probability
distribution

x

initial position
13

or:

xi

p(xi)

xj’

probability
distribution

x x

initial position

another new trial position

14

xi

p(xi)

xj’

p(xj’)

probability
distribution

x x

initial position
15

xi

p(xi)

xj’

p(xj’)

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

GO! since p(xj’)/p(xi) > 1

probability
distribution

x x

initial position
16

xixj

p(xj)

p(xi)

xj’

p(xj’)

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

GO! since p(xj’)/p(xi) > 1move with probability
p(xj)/p(xi) < 1

probability
distribution

x xx

initial position
17

Summarizing:

The Metropolis algorithm

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

The algorithm from 1) to 6) has to be repeated until
the distribution of the points is reached.

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

is given.

else

18

note:
it’s important how to handle the rejected attempts for
the generation of the random walk:

in case of a rejected attempt, the walker does not move,
and we have to consider again the point where we tried
to move from;

in the integration with importance sampling, a point
which is unchanged after a rejected attempt does enter
again in the average, i.e. its weight in the sum increases

19

Questions:
• how to choose ?

Convenient to start from a maximum

• how to choose ?
(if too small, most trial steps accepted, but
the walker moves too slowly; if too large,
only a few trial steps are accepted...)
A good compromise is a choice accepting
from ~ 1/3 to ~1/2 of the trial steps

• equilibration is necessary (how many steps?)
A possible criterion based on error estimate

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

20

Answers:
• how to choose ?

Convenient to start from a maximum

• how to choose ?
(if too small, most trial steps accepted, but
the walker moves too slowly; if too large,
only a few trial steps are accepted...)
A good compromise is a choice accepting
from ~ 1/3 to ~1/2 of the trial steps

• equilibration is necessary (how many steps?)
A possible criterion based on error estimate

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

21

in moodle2.units.it:

gauss_metropolis.f90

metropolis_sampling.f90
direct_sampling.f90
boltzmann_metropolis.f90

Some programs:

22

! gauss_metropolis.f90
! METROPOLIS generation of random numbers with a Gaussian distribution
! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)
.... start from a given x=x0
 do i=1,n

 !ccccccccccccccccccccccccccccccc
 expx = - x**2 /(2*sigma**2) !
 call random_number(rnd) !
 xp = x + delta * (rnd-0.5) !
 expxp = - xp**2 /(2*sigma**2) ! metropolis
 w = exp (expxp-expx) ! algorithm
 call random_number(rnd) !
 if (w > rnd) then !
 x = xp !
 !ccccccccccccccccccccccccccccccc

 endif

 enddo

23

the exponent of p(x)

the exponent of p(x’)

the ratio p(x’)/p(x)

! gauss_metropolis.f90
! METROPOLIS generation of random numbers with a Gaussian distribution
! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)
.... start from a given x=x0
 do i=1,n
 x1 = x1 + x
 x2 = x2 + x**2
 x3 = x3 + x**3
 x4 = x4 + x**4
 !ccccccccccccccccccccccccccccccc
 expx = - x**2 /(2*sigma**2) !
 call random_number(rnd) !
 xp = x + delta * (rnd-0.5) !
 expxp = - xp**2 /(2*sigma**2) ! metropolis
 w = exp (expxp-expx) ! algorithm
 call random_number(rnd) !
 if (w > rnd) then !
 x = xp !
 !ccccccccccccccccccccccccccccccc
 acc=acc+1.
 endif
 ibin = nint(x/deltaisto)
 if (abs(ibin) < maxbin/2) istog(ibin) = istog(ibin) + 1
 enddo

calculate some momenta

calculate the histogram
calculate the acceptance ratio

24

Metropolis generation of
random numbers distribution

let’s use the Metropolis method to generate a
gaussian distribution

(with gauss_metropolis.f90)

example of application:

1)

(n=1000, x0=0, δ=5, σ=1)

25

• how to choose ?
Convenient to start from a maximum

• how to choose ?
(if too small, most trial steps accepted, but the
walker moves too slowly; if too large, only a few
trial steps are accepted...)
A good compromise is a choice accepting from ~
1/3 to ~1/2 of the trial steps: depends on

• equilibration is necessary (how many steps?)
A possible criterion based on error estimate:
consider when

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

〈x2〉 ≈ σ
2

Answers from numerical experiments:

σ

26

1) to generate random points with a given distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

27

example of application of the
Metropolis algorithm

1) to generate random points with a given distribution

2) to calculate averages with importance sampling

of the form

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

where the probability distribution does not need
to be normalized
(here: 1D, but generally useful also for multidimensional integrals)

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

28

example of application of the
Metropolis algorithm

weighted average mean

xxxxxx x xx
p(x)

- generate points according

- importance sampling of f(x)

1

using

A special case of importance sampling where certain
possible sampling attempts are rejected.

p(x)

p(x)

f(x)

1

29

example of application of the
Metropolis algorithm

where

F =

∫ b

a

f(x)dx =

∫ b

a

[

f(x)

p(x)

]

p(x)dx =

〈

f(x)

p(x)

〉
∫ b

a

p(x)dx

reminder from Lecture V:

“importance sampling”
consider a distribution function easy to integrate
and close to :f(x)

p(x)

〈

f(x)

p(x)

〉

≈

1

N

N
∑

i=1

[

f(xi)

p(xi)

]

 with distributed according to . {xi} p(x)

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

Here : substituting
f(x)

p(x)
=⇒ f(x) and rewriting, we have :

30

weighted average mean

in moodle2.units.it:

gauss_metropolis.f90

metropolis_sampling.f90
direct_sampling.f90
boltzmann_metropolis.f90

Some programs:

31

Metropolis Sampling

Using a method to generate a distribution ,
we can efficiently sample integrals of the form

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

See metropolis_sampling.f90 in the exercises:
example of estimate of average position, average
kinetic, potential and total energies in the ground
state of the harmonic oscillator:
f(x) : physical quantity; p(x) = |ψ(x)|2

example of application:

32

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

f(x) : physical quantity; p(x) = |ψ(x)|2

Consider the hamiltonian : H = −
1

2
∇

2
+

1

2
x

2

Interesting physical quantities are related to Epot, Ekin , Etot

The potential energy can be considered as f(x) (it is a multiplicative operator); kinetic and
total energy can not, but their expectation value can be related to the average value of x2:

〈Ekin〉 =

〈

ψ|− 1

2
∇2|ψ

〉

〈ψ|ψ〉
=

∫

(

1

4σ2 − x
2

8σ4

)

|ψ(x)|2dx
∫

|ψ(x)|2dx

〈Epot〉 =
〈ψ| 1

2
x2|ψ〉

〈ψ|ψ〉
=

∫
1

2
x2|ψ(x)|2dx

∫
|ψ(x)|2dx

Metropolis Sampling

Consider a wavefunction (not necessarily the ground state) : ψ(x) = exp(−x2/4σ2)

33

σ here is a given
input parameter

4 is ok

In this exercise, the numerical results can be checked by calculating <Epot> and <Ekin> also
analytically:

Metropolis Sampling

〈Ekin〉 =

〈

ψ|− 1

2
∇2|ψ

〉

〈ψ|ψ〉
=

∫

(

1

4σ2 − x
2

8σ4

)

|ψ(x)|2dx
∫

|ψ(x)|2dx

〈Epot〉 =
〈ψ| 1

2
x2|ψ〉

〈ψ|ψ〉
=

∫
1

2
x2|ψ(x)|2dx

∫
|ψ(x)|2dx

=
1

2
�2

=
1

8�2

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

=
1

2
�2

=
1

8�2

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

f(x) : physical quantity; p(x) = |ψ(x)|2

Consider the hamiltonian : H = −
1

2
∇

2
+

1

2
x

2

Consider a wavefunction (not necessarily the ground state) : ψ(x) = exp(−x2/4σ2)

34

!cc
! metropolis_sampling.f90
!
! METROPOLIS sampling of physical observables for the hamiltonian:
! h= -1/2\nabla^2 + x^2/2 on psi^2(x), with psi(x)=exp(-x^2/(4\sigma^2))
... start from a given x=x0...
 do i=1,n

 !ccccccccccccccccccccccccccccccc
 expx = - x**2 /(2*sigma**2) !
 call random_number(rnd) !
 xp = x + delta * (rnd-0.5_dp) !
 expxp = - xp**2 /(2*sigma**2) ! metropolis
 p = exp (expxp-expx) ! algorithm
 call random_number(rnd) !
 if (p > rnd) then !
 x = xp !
 !ccccccccccccccccccccccccccccccc

 endif
 enddo 35

!cc
! metropolis_sampling.f90
!
! METROPOLIS sampling of physical observables for the hamiltonian:
! h= -1/2\nabla^2 + x^2/2 on psi^2(x), with psi(x)=exp(-x^2/(4\sigma^2))
... start from a given x=x0...
 do i=1,n
 ekin = ekin - 0.5_dp * ((x/(2*sigma**2))**2 - 1/(2*sigma**2))
 epot = epot + 0.5_dp * x**2
 etot = ekin + epot
 x1 = x1 + x
 x2 = x2 + x**2
 x3 = x3 + x**3
 x4 = x4 + x**4
 !ccccccccccccccccccccccccccccccc
 expx = - x**2 /(2*sigma**2) !
 call random_number(rnd) !
 xp = x + delta * (rnd-0.5_dp) !
 expxp = - xp**2 /(2*sigma**2) ! metropolis
 p = exp (expxp-expx) ! algorithm
 call random_number(rnd) !
 if (p > rnd) then !
 x = xp !
 !ccccccccccccccccccccccccccccccc
 acc=acc+1.0_dp
 endif
 enddo

data accumulation on all points!

36

Correlations

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

Consider a random sequence of configurations.

How many Monte Carlo steps are required between two
configurations to be considered uncorrelated?
=> study the autocorrelation function:

37

 : average over the random sequence (index i)

C(j = 0) = 1

〈. . .〉

C(j != 0) = 0
〈xixj〉 = 〈xi〉〈xj〉 = 〈xi〉

2

expected for totally uncorrelated points,
since in that case

where:

Correlations

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

38

C(j != 0) = 0
〈xixj〉 = 〈xi〉〈xj〉 = 〈xi〉

2

expected for totally uncorrelated points,
since in that case

It is not always the case, but at least for ergodic
simulations we should expect that the
autocorrelation function approaches 0 as j → ∞.

Consider a random sequence of configurations.

How many Monte Carlo steps are required between two
configurations to be considered uncorrelated?
=> study the autocorrelation function:

Origin of correlations
Metropolis algorithm:
necessarily the points of the walker are correlated
each other over a short “time” scale (measured in
terms of Monte Carlo steps; at least 1 time step!)

Correlation exponentially decaying with a certain
characteristic “time” τ

Only points separated by 2τ or 3τ can be
considered statistically independent

39

40

41

Calculation of correlations
In Metropolis simulations, the autocorrelation time is often
measured when the simulation is running:
● Create an array, say “corr” with j elements and initialize it
to zero.
● Maintain a list of the j most recently computed values of
the observable C. This can be an array of length j in which the
value of Cn is stored at index “n mod j”.
● At each step n ≥ j accumulate the values of Cn−jCn−j+i for i =
0, 1, . . . j − 1 in the array elements corr[i].
● At the end of the run, divide each corr[i] by n − j, subtract
⟨C⟩2, and divide by corr[0] to normalize.

Calculate for different and check when it approaches 0

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

(do the code yourself!)

42

43

44

Notes - I

* Correlation may cause fictitiously a variance of the
averages much smaller than the actual error!

* The relationship

σn/
√

n ≈ σm ≈ σs/
√

s

is based on the assumption of uncorrelated data
(at least, for the block average, uncorrelated among
different blocks)

45

Notes - II

How to estimate correlations? How to estimate ?
How to control the reliability of the statistical sampling?

Use block averages with different block size and
compare the numerical error estimates and .
If they coincides, the correlation time is smaller than
the smallest block size used.

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 397

c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

Suppose n=1000 data.
1) do blocking of s=20 sets with 50 points and calculate averages and errors
2) do blocking of s’=10 sets of 100 points and calculate averages and errors
50 is therefore the smallest block size used.
If , this means that

σs/
√

s σs
′/
√

s′

σ20/
√

20 ≈ σ10/
√

10 τ << 50

Not good to use correlated points...

46

Metropolis Sampling

Using a method to generate a distribution ,
we can efficiently sample integrals of the form

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

Particularly useful integrals (or averages) are those
related to ensemble averages

47

let’s recall slide n. 28:

Metropolis algorithm
1) to generate random points with a given
distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

48

Review of some
concepts of �

statistical mechanics
(microstate / macrostate / trajectory / statistical ensemble;

statistical and temporal averages)

49

Microstates

• (index related to N particles) in
the Hilbert space in Quantum Mechanics

• a point in the phase space (large number of
variables) in Classical Mechanics

|Ψν〉 ν

1) Examples of a microstate: characterized by:

Figure 2: Lowest-energy states of the two-dimensional Ising model with ferromagnetic (left) and
antiferromagnetic (right) interactions. Solid and open circles correspond to up an down spins,
respectively.

The coupling constants Jij are often restricted to be non-zero only for lattice sites i, j that are
nearest neighbors. Here the spin vectors are three dimensional, but anisotropies can lead to effective
spin models in which the spin orientations are confined to within a plane, as illustrated in Fig. 1,
or along a single axis.

The simplest spin model is the Ising model, in which the spins have only two possible orientations
along a chosen axis; ”up” or ”down”. Denoting the degrees of freedom σi = ±1, the energy is

E =
∑

i,j

Jijσiσj − h
∑

i

σi, (17)

where we have also included an external magnetic field. The interaction Jij is again often (but not
always) non-zero only between nearest neighbors. Ising couplings can arise in a system of S = 1/2
quantum spins when anisotropies make the interactions in one spin direction dominant, e.g., only
Sz

i Sz
j may have to be considered. There is also a plethora of other physical situations that can be

mapped onto Ising models with various forms of the interaction Jij and the field h in Eq. (17), e.g.,
binary alloys (where σi correspond to the two species of atoms) and atoms adsorbed on surfaces
(where σi correspond to the presence of absence of an atom on a surface).

Considering nearest-neighbor interactions only and zero external field, the energy is

E = J
∑

〈i,j〉

σiσj , (18)

where 〈i, j〉 denotes a pair of nearest-neighbor sites i, j. In sums like thse one normally counts each
interacting spin pair only once, i.e., if the term 〈i, j〉 is included in the sum, the term 〈j, i〉 is not.
Denoting by σ the whole set of spin configurations {σ1, . . . ,σN}, where N is the total number of
spins in the system, the thermal expectation value of a function A(σ) is

〈A〉 =
1

Z

∑

σ

A(σ)e−E(σ)/T , (19)

Z =
∑

σ

e−E(σ)/T . (20)

For ferromagnetic interactions (i.e., J < 0) when T → 0 there are only two contributing spin con-
figurations; those with all spins pointing up or down. For antiferromagnetic interactions (J > 0)
there are also two lowest-energy configurations if the lattice is bipartite, i.e., if the system can

5

examples of microstates:

distribution of spins on a lattice
(open circles: spin up;

closed circles: spin down)
Figure 4: Updating attempts for the Ising model (left), where a spin to be flipped is selected at
random (here the one indicated by a circle), and for particles occupying a continuous volume (right),
where a particle to be moved is selected at random and its new position is generated randomly
within a sphere surrounding it (indicated by a gray circle).

The transition probability P (Ci → Cj) in the examples given above can be written as a product of
two probabilities; one for attempting a certain update (selection of the spin to be flipped, or the
particle to be moved and the displacement vector !δ) and one for actually carrying out the change
(accepting it). We hence write

P (Ci → Cj) = P attempt(Ci → Cj)P
accept(Ci → Cj). (30)

It is often the case, as it is in the examples mentioned above, that the probability of attempting
each of the possible updates is trivially uniform, i.e., P attempt(Ci → Cj) = constant, independent
of i, j. This part of the transition probability then drops out of the detailed balance condition (29)
and we are left with a detailed-balance condition for the acceptance probabilities;

P accept(Ci → Cj)

P accept(Cj → Ci)
=

W (Cj)

W (Ci)
. (31)

This condition can be fulfilled in a number of ways, among which the most commonly used is the
Metropolis acceptance probability;

P accept(Ci → Cj) = min

[

W (Cj)

W (Ci)
, 1

]

. (32)

In other words, if the new configuration weight is higher (corresponding to lowering the energy of
the system) we always accept the update, whereas if it is lower we accept it with a probability equal
to the ratio of the new and old weights. It can easily be checked that this Metropolis acceptance
probability indeed satisfies the detailed balance condition (31). To determine whether or not to
accept the update when P accept(Cj) < 1, the acceptance probability (i.e., the weight ratio) can be
compared with a ranom number r ∈ [0, 1); if r < P accept(Ci → Cj) the update is accepted, and
otherwise it is rejected. If an update is rejected, the old configuration Ci should be considered the
next configuration in the sequence. The whole procedure of attempting updates and accepting or
rejecting them using the above scheme goes under the name of the Metropolis algorithm, after the
first author of the paper where this method was first introduced.2

Another often used acceptance probability that can be used with the Metropolis algorithm is

P accept(Ci → Cj) =
W (Cj)

W (Ci) + W (Cj)
, (33)

2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations

by fast computing machines, J. Chem. Phys. 21, 1087 (1953). This paper is recommended reading!

9

Figure 4: Updating attempts for the Ising model (left), where a spin to be flipped is selected at
random (here the one indicated by a circle), and for particles occupying a continuous volume (right),
where a particle to be moved is selected at random and its new position is generated randomly
within a sphere surrounding it (indicated by a gray circle).

The transition probability P (Ci → Cj) in the examples given above can be written as a product of
two probabilities; one for attempting a certain update (selection of the spin to be flipped, or the
particle to be moved and the displacement vector !δ) and one for actually carrying out the change
(accepting it). We hence write

P (Ci → Cj) = P attempt(Ci → Cj)P
accept(Ci → Cj). (30)

It is often the case, as it is in the examples mentioned above, that the probability of attempting
each of the possible updates is trivially uniform, i.e., P attempt(Ci → Cj) = constant, independent
of i, j. This part of the transition probability then drops out of the detailed balance condition (29)
and we are left with a detailed-balance condition for the acceptance probabilities;

P accept(Ci → Cj)

P accept(Cj → Ci)
=

W (Cj)

W (Ci)
. (31)

This condition can be fulfilled in a number of ways, among which the most commonly used is the
Metropolis acceptance probability;

P accept(Ci → Cj) = min

[

W (Cj)

W (Ci)
, 1

]

. (32)

In other words, if the new configuration weight is higher (corresponding to lowering the energy of
the system) we always accept the update, whereas if it is lower we accept it with a probability equal
to the ratio of the new and old weights. It can easily be checked that this Metropolis acceptance
probability indeed satisfies the detailed balance condition (31). To determine whether or not to
accept the update when P accept(Cj) < 1, the acceptance probability (i.e., the weight ratio) can be
compared with a ranom number r ∈ [0, 1); if r < P accept(Ci → Cj) the update is accepted, and
otherwise it is rejected. If an update is rejected, the old configuration Ci should be considered the
next configuration in the sequence. The whole procedure of attempting updates and accepting or
rejecting them using the above scheme goes under the name of the Metropolis algorithm, after the
first author of the paper where this method was first introduced.2

Another often used acceptance probability that can be used with the Metropolis algorithm is

P accept(Ci → Cj) =
W (Cj)

W (Ci) + W (Cj)
, (33)

2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations

by fast computing machines, J. Chem. Phys. 21, 1087 (1953). This paper is recommended reading!

9

distribution of particles in a box
(list of positions)

50

2) For a classical system, the temporal evolution (with
possible changes of microstates) is a trajectory (a
line) in the phase space:

Macrostate and Trajectory

• along the trajectory, some parameters or variables
such as N, or V, or T are fixed (constraints -
macrostate)

• others do change

The trajectory is on a certain surface in the phase
space (typically still high-dimensional), determined by
the constraints

51

examples of changes of microstates:

flip of one spin in a lattice
(open circles: spin up;

closed circles: spin down)

(the macrostate here is
characterized by the
temperature T and

by the total number of lattice sites)

moving one particle in a box

(the macrostate here is
characterized by the

number of particles N)

Figure 4: Updating attempts for the Ising model (left), where a spin to be flipped is selected at
random (here the one indicated by a circle), and for particles occupying a continuous volume (right),
where a particle to be moved is selected at random and its new position is generated randomly
within a sphere surrounding it (indicated by a gray circle).

The transition probability P (Ci → Cj) in the examples given above can be written as a product of
two probabilities; one for attempting a certain update (selection of the spin to be flipped, or the
particle to be moved and the displacement vector !δ) and one for actually carrying out the change
(accepting it). We hence write

P (Ci → Cj) = P attempt(Ci → Cj)P
accept(Ci → Cj). (30)

It is often the case, as it is in the examples mentioned above, that the probability of attempting
each of the possible updates is trivially uniform, i.e., P attempt(Ci → Cj) = constant, independent
of i, j. This part of the transition probability then drops out of the detailed balance condition (29)
and we are left with a detailed-balance condition for the acceptance probabilities;

P accept(Ci → Cj)

P accept(Cj → Ci)
=

W (Cj)

W (Ci)
. (31)

This condition can be fulfilled in a number of ways, among which the most commonly used is the
Metropolis acceptance probability;

P accept(Ci → Cj) = min

[

W (Cj)

W (Ci)
, 1

]

. (32)

In other words, if the new configuration weight is higher (corresponding to lowering the energy of
the system) we always accept the update, whereas if it is lower we accept it with a probability equal
to the ratio of the new and old weights. It can easily be checked that this Metropolis acceptance
probability indeed satisfies the detailed balance condition (31). To determine whether or not to
accept the update when P accept(Cj) < 1, the acceptance probability (i.e., the weight ratio) can be
compared with a ranom number r ∈ [0, 1); if r < P accept(Ci → Cj) the update is accepted, and
otherwise it is rejected. If an update is rejected, the old configuration Ci should be considered the
next configuration in the sequence. The whole procedure of attempting updates and accepting or
rejecting them using the above scheme goes under the name of the Metropolis algorithm, after the
first author of the paper where this method was first introduced.2

Another often used acceptance probability that can be used with the Metropolis algorithm is

P accept(Ci → Cj) =
W (Cj)

W (Ci) + W (Cj)
, (33)

2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations

by fast computing machines, J. Chem. Phys. 21, 1087 (1953). This paper is recommended reading!

9

(random choice of spin flip/particle move in case of Markov chain)
52

Stochastic processes and Markov chains

Stochastic process:
evolves through a series (a Markov chain) of well defined
configurations (microstates in a given ensemble)
C={C1, C2, ... CN } stochastically generated, i.e. Ck+1 is
obtained from the previous one, Ck, by making some
random changes on the former.

53

Figure 4: Updating attempts for the Ising model (left), where a spin to be flipped is selected at
random (here the one indicated by a circle), and for particles occupying a continuous volume (right),
where a particle to be moved is selected at random and its new position is generated randomly
within a sphere surrounding it (indicated by a gray circle).

The transition probability P (Ci → Cj) in the examples given above can be written as a product of
two probabilities; one for attempting a certain update (selection of the spin to be flipped, or the
particle to be moved and the displacement vector !δ) and one for actually carrying out the change
(accepting it). We hence write

P (Ci → Cj) = P attempt(Ci → Cj)P
accept(Ci → Cj). (30)

It is often the case, as it is in the examples mentioned above, that the probability of attempting
each of the possible updates is trivially uniform, i.e., P attempt(Ci → Cj) = constant, independent
of i, j. This part of the transition probability then drops out of the detailed balance condition (29)
and we are left with a detailed-balance condition for the acceptance probabilities;

P accept(Ci → Cj)

P accept(Cj → Ci)
=

W (Cj)

W (Ci)
. (31)

This condition can be fulfilled in a number of ways, among which the most commonly used is the
Metropolis acceptance probability;

P accept(Ci → Cj) = min

[

W (Cj)

W (Ci)
, 1

]

. (32)

In other words, if the new configuration weight is higher (corresponding to lowering the energy of
the system) we always accept the update, whereas if it is lower we accept it with a probability equal
to the ratio of the new and old weights. It can easily be checked that this Metropolis acceptance
probability indeed satisfies the detailed balance condition (31). To determine whether or not to
accept the update when P accept(Cj) < 1, the acceptance probability (i.e., the weight ratio) can be
compared with a ranom number r ∈ [0, 1); if r < P accept(Ci → Cj) the update is accepted, and
otherwise it is rejected. If an update is rejected, the old configuration Ci should be considered the
next configuration in the sequence. The whole procedure of attempting updates and accepting or
rejecting them using the above scheme goes under the name of the Metropolis algorithm, after the
first author of the paper where this method was first introduced.2

Another often used acceptance probability that can be used with the Metropolis algorithm is

P accept(Ci → Cj) =
W (Cj)

W (Ci) + W (Cj)
, (33)

2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations

by fast computing machines, J. Chem. Phys. 21, 1087 (1953). This paper is recommended reading!

9

Suppose to make N independent measurements of an observable G:

3) which info from the trajectory in the phase space?

Statistical averages

After a sufficiently long time, the system will assume all
possible microstates compatible with the constraints i.e.
with the macrostate : the ensemble of such microstates
is a statistical ensemble

Gobs =
1

N

N∑

a=1

Ga

of times in which the
microstate s is observed

the measure is on a microstate

︸ ︷︷ ︸

statistical average
or

 ensemble average

=
∑

s

[1

N
· ()]Gs

=

M∑

s=1

PsGs =< G >

Ps

(M is the number of the
possible different

microstates s)

(Ps depends of the
microstate s but also
on the macrostate)

54

• the system is ergodic (after a sufficient long time,
the trajectory visits all the possible microstates)

• observation time is long

• observations are independent

statistical average = temporal average
is a fundamental assumption of the statistical mechanics;

OK if:

(T >> τrelax or equil)

(d >> dcorrel)

55

The canonical ensemble
(N,V,T) fixed. The probability that the system is in the
microstate with energy is given by:
(here the energy identifies different microstates, it is not a characteristic of the macrostate)

s Es

Chapter 17

Monte Carlo Simulation of the
Canonical Ensemble

c©2002 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
22 April 2002

We discuss Monte Carlo methods for simulating equilibrium systems. Applications are made
to models of magnetism and simple fluids.

17.1 The Canonical Ensemble

Most physical systems are not isolated, but exchange energy with their environment. Because
such systems are usually small in comparison to their environment, we assume that any change
in the energy of the smaller system does not have a significant effect on the temperature of the
environment. We say that the environment acts as a heat reservoir or heat bath at a fixed absolute
temperature T . If a small but macroscopic system is placed in thermal contact with a heat bath,
the system reaches thermal equilibrium by exchanging energy with the heat bath until the system
attains the temperature of the bath.

Imagine an infinitely large number of copies of a system at fixed volume V and number of
particles N in equilibrium at temperature T . In Chapter 16 we verified that Ps, the probability
that the system is in microstate s with energy Es, is given by

Ps =
1
Z

e−βEs , (canonical distribution) (17.1)

where β = 1/kT , and Z is a normalization constant. The ensemble defined by (17.1) is known as
the canonical ensemble. Because

∑
Ps = 1, Z is given by

Z =
M∑

s=1

e−Es/kT . (17.2)

The summation in (17.2) is over all M accessible microstates of the system. The quantity Z is
known as the partition function of the system.

579

Chapter 17

Monte Carlo Simulation of the
Canonical Ensemble

c©2002 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
22 April 2002

We discuss Monte Carlo methods for simulating equilibrium systems. Applications are made
to models of magnetism and simple fluids.

17.1 The Canonical Ensemble

Most physical systems are not isolated, but exchange energy with their environment. Because
such systems are usually small in comparison to their environment, we assume that any change
in the energy of the smaller system does not have a significant effect on the temperature of the
environment. We say that the environment acts as a heat reservoir or heat bath at a fixed absolute
temperature T . If a small but macroscopic system is placed in thermal contact with a heat bath,
the system reaches thermal equilibrium by exchanging energy with the heat bath until the system
attains the temperature of the bath.

Imagine an infinitely large number of copies of a system at fixed volume V and number of
particles N in equilibrium at temperature T . In Chapter 16 we verified that Ps, the probability
that the system is in microstate s with energy Es, is given by

Ps =
1
Z

e−βEs , (canonical distribution) (17.1)

where β = 1/kT , and Z is a normalization constant. The ensemble defined by (17.1) is known as
the canonical ensemble. Because

∑
Ps = 1, Z is given by

Z =
M∑

s=1

e−Es/kT . (17.2)

The summation in (17.2) is over all M accessible microstates of the system. The quantity Z is
known as the partition function of the system.

579

Chapter 17

Monte Carlo Simulation of the
Canonical Ensemble

c©2002 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
22 April 2002

We discuss Monte Carlo methods for simulating equilibrium systems. Applications are made
to models of magnetism and simple fluids.

17.1 The Canonical Ensemble

Most physical systems are not isolated, but exchange energy with their environment. Because
such systems are usually small in comparison to their environment, we assume that any change
in the energy of the smaller system does not have a significant effect on the temperature of the
environment. We say that the environment acts as a heat reservoir or heat bath at a fixed absolute
temperature T . If a small but macroscopic system is placed in thermal contact with a heat bath,
the system reaches thermal equilibrium by exchanging energy with the heat bath until the system
attains the temperature of the bath.

Imagine an infinitely large number of copies of a system at fixed volume V and number of
particles N in equilibrium at temperature T . In Chapter 16 we verified that Ps, the probability
that the system is in microstate s with energy Es, is given by

Ps =
1
Z

e−βEs , (canonical distribution) (17.1)

where β = 1/kT , and Z is a normalization constant. The ensemble defined by (17.1) is known as
the canonical ensemble. Because

∑
Ps = 1, Z is given by

Z =
M∑

s=1

e−Es/kT . (17.2)

The summation in (17.2) is over all M accessible microstates of the system. The quantity Z is
known as the partition function of the system.

579

Chapter 17

Monte Carlo Simulation of the
Canonical Ensemble

c©2002 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
22 April 2002

We discuss Monte Carlo methods for simulating equilibrium systems. Applications are made
to models of magnetism and simple fluids.

17.1 The Canonical Ensemble

Most physical systems are not isolated, but exchange energy with their environment. Because
such systems are usually small in comparison to their environment, we assume that any change
in the energy of the smaller system does not have a significant effect on the temperature of the
environment. We say that the environment acts as a heat reservoir or heat bath at a fixed absolute
temperature T . If a small but macroscopic system is placed in thermal contact with a heat bath,
the system reaches thermal equilibrium by exchanging energy with the heat bath until the system
attains the temperature of the bath.

Imagine an infinitely large number of copies of a system at fixed volume V and number of
particles N in equilibrium at temperature T . In Chapter 16 we verified that Ps, the probability
that the system is in microstate s with energy Es, is given by

Ps =
1
Z

e−βEs , (canonical distribution) (17.1)

where β = 1/kT , and Z is a normalization constant. The ensemble defined by (17.1) is known as
the canonical ensemble. Because

∑
Ps = 1, Z is given by

Z =
M∑

s=1

e−Es/kT . (17.2)

The summation in (17.2) is over all M accessible microstates of the system. The quantity Z is
known as the partition function of the system.

579

(M : all accessible microstates of the system)

Chapter 17

Monte Carlo Simulation of the
Canonical Ensemble

c©2002 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
22 April 2002

We discuss Monte Carlo methods for simulating equilibrium systems. Applications are made
to models of magnetism and simple fluids.

17.1 The Canonical Ensemble

Most physical systems are not isolated, but exchange energy with their environment. Because
such systems are usually small in comparison to their environment, we assume that any change
in the energy of the smaller system does not have a significant effect on the temperature of the
environment. We say that the environment acts as a heat reservoir or heat bath at a fixed absolute
temperature T . If a small but macroscopic system is placed in thermal contact with a heat bath,
the system reaches thermal equilibrium by exchanging energy with the heat bath until the system
attains the temperature of the bath.

Imagine an infinitely large number of copies of a system at fixed volume V and number of
particles N in equilibrium at temperature T . In Chapter 16 we verified that Ps, the probability
that the system is in microstate s with energy Es, is given by

Ps =
1
Z

e−βEs , (canonical distribution) (17.1)

where β = 1/kT , and Z is a normalization constant. The ensemble defined by (17.1) is known as
the canonical ensemble. Because

∑
Ps = 1, Z is given by

Z =
M∑

s=1

e−Es/kT . (17.2)

The summation in (17.2) is over all M accessible microstates of the system. The quantity Z is
known as the partition function of the system.

579

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 580

We can use (17.1) to obtain the ensemble average of the physical quantities of interest. For
example, the mean energy is given by

〈E〉 =
M∑

s=1

Es Ps =
1
Z

M∑

s=1

Es e−βEs . (17.3)

Note that the energy fluctuates in the canonical ensemble.

17.2 The Metropolis Algorithm

How can we simulate a system of N particles confined in a volume V at a fixed temperature T?
Because we can generate only a finite number m of the total number of M microstates, we might
hope to obtain an estimate for the mean value of the physical quantity A by writing

〈A〉 ≈ Am =

m∑
s=1

As e−βEs

m∑
s=1

e−βEs

. (17.4)

As is the value of the physical quantity A in microstate s. A crude Monte Carlo procedure is to
generate a microstate s at random, calculate Es, As, and e−βEs , and evaluate the corresponding
contribution of the microstate to the sums in (17.4). However, a microstate generated in this
way would likely be very improbable and hence contribute little to the sums. Instead, we use
an importance sampling method and generate microstates according to a probability distribution
function πs.

We follow the same procedure as in Section 11.7 and rewrite (17.4) by multiplying and dividing
by πs:

Am =

m∑
s=1

(As/πs) e−βEs πs

m∑
s=1

(1/πs) e−βEs πs

.(no importance sampling) (17.5)

If we generate microstates with probability πs, then (17.5) becomes

Am =

m∑
s=1

(As/πs) e−βEs

m∑
s=1

(1/πs) e−βEs

.(importance sampling) (17.6)

That is, if we average over a biased sample, we need to weight each microstate by 1/πs to eliminate
the bias. Although any form of πs could be used, the form of (17.6) suggests that a reasonable
choice of πs is the Boltzmann probability itself, that is,

πs =
e−βEs

m∑
s=1

e−βEs

. (17.7)

Ensemble averages (e.g. for the energy):
characterized by different Es

56

Boltzmann distribution

Averages in the canonical
ensemble

We can generate only a finite number m of the total
number M		of accessible microstates; we hope that:

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 580

We can use (17.1) to obtain the ensemble average of the physical quantities of interest. For
example, the mean energy is given by

〈E〉 =
M∑

s=1

Es Ps =
1
Z

M∑

s=1

Es e−βEs . (17.3)

Note that the energy fluctuates in the canonical ensemble.

17.2 The Metropolis Algorithm

How can we simulate a system of N particles confined in a volume V at a fixed temperature T?
Because we can generate only a finite number m of the total number of M microstates, we might
hope to obtain an estimate for the mean value of the physical quantity A by writing

〈A〉 ≈ Am =

m∑
s=1

As e−βEs

m∑
s=1

e−βEs

. (17.4)

As is the value of the physical quantity A in microstate s. A crude Monte Carlo procedure is to
generate a microstate s at random, calculate Es, As, and e−βEs , and evaluate the corresponding
contribution of the microstate to the sums in (17.4). However, a microstate generated in this
way would likely be very improbable and hence contribute little to the sums. Instead, we use
an importance sampling method and generate microstates according to a probability distribution
function πs.

We follow the same procedure as in Section 11.7 and rewrite (17.4) by multiplying and dividing
by πs:

Am =

m∑
s=1

(As/πs) e−βEs πs

m∑
s=1

(1/πs) e−βEs πs

.(no importance sampling) (17.5)

If we generate microstates with probability πs, then (17.5) becomes

Am =

m∑
s=1

(As/πs) e−βEs

m∑
s=1

(1/πs) e−βEs

.(importance sampling) (17.6)

That is, if we average over a biased sample, we need to weight each microstate by 1/πs to eliminate
the bias. Although any form of πs could be used, the form of (17.6) suggests that a reasonable
choice of πs is the Boltzmann probability itself, that is,

πs =
e−βEs

m∑
s=1

e−βEs

. (17.7)

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 580

We can use (17.1) to obtain the ensemble average of the physical quantities of interest. For
example, the mean energy is given by

〈E〉 =
M∑

s=1

Es Ps =
1
Z

M∑

s=1

Es e−βEs . (17.3)

Note that the energy fluctuates in the canonical ensemble.

17.2 The Metropolis Algorithm

How can we simulate a system of N particles confined in a volume V at a fixed temperature T?
Because we can generate only a finite number m of the total number of M microstates, we might
hope to obtain an estimate for the mean value of the physical quantity A by writing

〈A〉 ≈ Am =

m∑
s=1

As e−βEs

m∑
s=1

e−βEs

. (17.4)

As is the value of the physical quantity A in microstate s. A crude Monte Carlo procedure is to
generate a microstate s at random, calculate Es, As, and e−βEs , and evaluate the corresponding
contribution of the microstate to the sums in (17.4). However, a microstate generated in this
way would likely be very improbable and hence contribute little to the sums. Instead, we use
an importance sampling method and generate microstates according to a probability distribution
function πs.

We follow the same procedure as in Section 11.7 and rewrite (17.4) by multiplying and dividing
by πs:

Am =

m∑
s=1

(As/πs) e−βEs πs

m∑
s=1

(1/πs) e−βEs πs

.(no importance sampling) (17.5)

If we generate microstates with probability πs, then (17.5) becomes

Am =

m∑
s=1

(As/πs) e−βEs

m∑
s=1

(1/πs) e−βEs

.(importance sampling) (17.6)

That is, if we average over a biased sample, we need to weight each microstate by 1/πs to eliminate
the bias. Although any form of πs could be used, the form of (17.6) suggests that a reasonable
choice of πs is the Boltzmann probability itself, that is,

πs =
e−βEs

m∑
s=1

e−βEs

. (17.7)

(*)

(*)

Poorly efficient! Ps for the generated microstates could be
rather small. An importance sampling method is better!

A crude MonteCarlo procedure:

(Note: m, not M !)

57

Importance sampling in the
canonical ensemble

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 581

This choice of πs implies that the estimate Am of the mean value of A can be written as

Am =
1
m

m∑

s=1

As. (17.8)

The choice (17.7) for πs is due to Metropolis et al.
Although we discussed the Metropolis sampling method in Section 11.8 in the context of

the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
context of the simulation of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

3. Compute ∆E ≡ Etrial −Eold, the change in the energy of the system due to the trial change.

4. If ∆E is less than or equal to zero, accept the new microstate and go to step 8.

5. If ∆E is positive, compute the quantity w = e−β∆E .

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous microstate.

8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)

(much more efficient than (*))

(Note : πs != Ps !)

with importance sampling

< A >≈ Am =

m∑

s=1

Ase
−βEs

m∑

s=1

e
−βEs

=

m∑

s=1

Asπs with πs =

e−βEs

m∑

s=1

e
−βEs

If we generate microstates according to πs, the calculation of Am reduces to:

(*) NO importance sampling:
generate m configurations

with uniform random distribution,
then make a weighted average of A)

(generate m configurations
with random distribution πs,

then make a simple average of A)

58

Importance sampling in the
canonical ensemble

Told,new = min

[

1,
πnew

πold

]

= min

[

1,
pnew

pold

]

= min

[

1,
e−βEnew

e−βEold

]

The transition matrix that generates microstates s according to πs is :

< A >≈

1

m

m∑

s=1

As with microstates s generated according to πs

Therefore, summarising: we aim at calculating

hence, using Metropolis, the procedure is as following:
59

Metropolis algorithm in the
canonical ensemble

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 581

This choice of πs implies that the estimate Am of the mean value of A can be written as

Am =
1
m

m∑

s=1

As. (17.8)

The choice (17.7) for πs is due to Metropolis et al.
Although we discussed the Metropolis sampling method in Section 11.8 in the context of

the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
context of the simulation of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

3. Compute ∆E ≡ Etrial −Eold, the change in the energy of the system due to the trial change.

4. If ∆E is less than or equal to zero, accept the new microstate and go to step 8.

5. If ∆E is positive, compute the quantity w = e−β∆E .

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous microstate.

8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)

60

Metropolis algorithm in the
canonical ensemble

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 581

This choice of πs implies that the estimate Am of the mean value of A can be written as

Am =
1
m

m∑

s=1

As. (17.8)

The choice (17.7) for πs is due to Metropolis et al.
Although we discussed the Metropolis sampling method in Section 11.8 in the context of

the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
context of the simulation of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

3. Compute ∆E ≡ Etrial −Eold, the change in the energy of the system due to the trial change.

4. If ∆E is less than or equal to zero, accept the new microstate and go to step 8.

5. If ∆E is positive, compute the quantity w = e−β∆E .

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous microstate.

8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)

T (i → j) = min(1, e−β∆E) (Metropolis algorithm),

Steps 2 to 7 give really the desired distribution using:

1) ERGODICITY implicitly assumed!

To study a model of a thermal system, it is hopeless to imagine investigating each config-
uration, or to average over all of them, unless we can manage the sums analytically. When
the particles don’t interact with one another, we can indeed manage the sums analytically;
this describes spins in an external magnetic field, ideal gases, black body radiation, lattice
vibrations, and a few other simple systems. When the particles do interact to an appreciable
extent, we can almost never perform the sums analytically. We have no choice but to seek
an approximation, either analytically or numerically.

A Numerical Approach

The Metropolis algorithm is based on the notion of detailed balance that describes equi-
librium for systems whose configurations have probability proportional to the Boltzmann
factor. We seek to sample the space of possible configurations in a thermal way; that is,
in a way that agrees with Eq. (2). We accomplish this by exploring possible transitions
between configurations.

Consider two configurations A and B, each of which occurs with probability proportional
to the Boltzmann factor. Then

P (A)
P (B)

=
e−EA/T

e−EB/T
= e−(EA−EB)/T (3)

The nice thing about forming the ratio is that it converts relative probabilities involving
an unknown proportionality constant (called the inverse of the partition function), into a
pure number. In a seminal paper of 1953,1 Metropolis et al. noted that we can achieve the
relative probability of Eq. (3) in a simulation by proceeding as follows:

1. Starting from a configuration A, with known energy EA, make a change in the con-
figuration to obtain a new (nearby) configuration B.

2. Compute EB (typically as a small change from EA.

3. If EB < EA, assume the new configuration, since it has lower energy (a desirable
thing, according to the Boltzmann factor).

4. If EB > EA, accept the new (higher energy) configuration with probability p =
e−(EB−EA)/T . This means that when the temperature is high, we don’t mind taking
steps in the “wrong” direction, but as the temperature is lowered, we are forced to
settle into the lowest configuration we can find in our neighborhood.

If we follow these rules, then we will sample points in the space of all possible configu-
rations with probability proportional to the Boltzmann factor, consistent with the theory
of equilibrium statistical mechanics. We can compute average properties by summing them
along the path we follow through possible configurations.

The hardest part about implementing the Metropolis algorithm is the first step: how
to generate “useful” new configurations. How to do this depends on the problem. As an
illustration, let’s consider that classic of computer science, The Traveling Salesperson.

1 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21
(1953) 1087-1092.

2

2) TEMPERATURE:

A few remarks:

61

/kBT

Metropolis algorithm in the
canonical ensemble:�

other remarks

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 581

This choice of πs implies that the estimate Am of the mean value of A can be written as

Am =
1
m

m∑

s=1

As. (17.8)

The choice (17.7) for πs is due to Metropolis et al.
Although we discussed the Metropolis sampling method in Section 11.8 in the context of

the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
context of the simulation of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

3. Compute ∆E ≡ Etrial −Eold, the change in the energy of the system due to the trial change.

4. If ∆E is less than or equal to zero, accept the new microstate and go to step 8.

5. If ∆E is positive, compute the quantity w = e−β∆E .

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous microstate.

8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 581

This choice of πs implies that the estimate Am of the mean value of A can be written as

Am =
1
m

m∑

s=1

As. (17.8)

The choice (17.7) for πs is due to Metropolis et al.
Although we discussed the Metropolis sampling method in Section 11.8 in the context of

the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
context of the simulation of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

3. Compute ∆E ≡ Etrial −Eold, the change in the energy of the system due to the trial change.

4. If ∆E is less than or equal to zero, accept the new microstate and go to step 8.

5. If ∆E is positive, compute the quantity w = e−β∆E .

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous microstate.

8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)

1)

(Pj/Pi = πj/πi)

62

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 580

We can use (17.1) to obtain the ensemble average of the physical quantities of interest. For
example, the mean energy is given by

〈E〉 =
M∑

s=1

Es Ps =
1
Z

M∑

s=1

Es e−βEs . (17.3)

Note that the energy fluctuates in the canonical ensemble.

17.2 The Metropolis Algorithm

How can we simulate a system of N particles confined in a volume V at a fixed temperature T?
Because we can generate only a finite number m of the total number of M microstates, we might
hope to obtain an estimate for the mean value of the physical quantity A by writing

〈A〉 ≈ Am =

m∑
s=1

As e−βEs

m∑
s=1

e−βEs

. (17.4)

As is the value of the physical quantity A in microstate s. A crude Monte Carlo procedure is to
generate a microstate s at random, calculate Es, As, and e−βEs , and evaluate the corresponding
contribution of the microstate to the sums in (17.4). However, a microstate generated in this
way would likely be very improbable and hence contribute little to the sums. Instead, we use
an importance sampling method and generate microstates according to a probability distribution
function πs.

We follow the same procedure as in Section 11.7 and rewrite (17.4) by multiplying and dividing
by πs:

Am =

m∑
s=1

(As/πs) e−βEs πs

m∑
s=1

(1/πs) e−βEs πs

.(no importance sampling) (17.5)

If we generate microstates with probability πs, then (17.5) becomes

Am =

m∑
s=1

(As/πs) e−βEs

m∑
s=1

(1/πs) e−βEs

.(importance sampling) (17.6)

That is, if we average over a biased sample, we need to weight each microstate by 1/πs to eliminate
the bias. Although any form of πs could be used, the form of (17.6) suggests that a reasonable
choice of πs is the Boltzmann probability itself, that is,

πs =
e−βEs

m∑
s=1

e−βEs

. (17.7)

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 580

We can use (17.1) to obtain the ensemble average of the physical quantities of interest. For
example, the mean energy is given by

〈E〉 =
M∑

s=1

Es Ps =
1
Z

M∑

s=1

Es e−βEs . (17.3)

Note that the energy fluctuates in the canonical ensemble.

17.2 The Metropolis Algorithm

How can we simulate a system of N particles confined in a volume V at a fixed temperature T?
Because we can generate only a finite number m of the total number of M microstates, we might
hope to obtain an estimate for the mean value of the physical quantity A by writing

〈A〉 ≈ Am =

m∑
s=1

As e−βEs

m∑
s=1

e−βEs

. (17.4)

As is the value of the physical quantity A in microstate s. A crude Monte Carlo procedure is to
generate a microstate s at random, calculate Es, As, and e−βEs , and evaluate the corresponding
contribution of the microstate to the sums in (17.4). However, a microstate generated in this
way would likely be very improbable and hence contribute little to the sums. Instead, we use
an importance sampling method and generate microstates according to a probability distribution
function πs.

We follow the same procedure as in Section 11.7 and rewrite (17.4) by multiplying and dividing
by πs:

Am =

m∑
s=1

(As/πs) e−βEs πs

m∑
s=1

(1/πs) e−βEs πs

.(no importance sampling) (17.5)

If we generate microstates with probability πs, then (17.5) becomes

Am =

m∑
s=1

(As/πs) e−βEs

m∑
s=1

(1/πs) e−βEs

.(importance sampling) (17.6)

That is, if we average over a biased sample, we need to weight each microstate by 1/πs to eliminate
the bias. Although any form of πs could be used, the form of (17.6) suggests that a reasonable
choice of πs is the Boltzmann probability itself, that is,

πs =
e−βEs

m∑
s=1

e−βEs

. (17.7)

, eq. becomes:

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 580

We can use (17.1) to obtain the ensemble average of the physical quantities of interest. For
example, the mean energy is given by

〈E〉 =
M∑

s=1

Es Ps =
1
Z

M∑

s=1

Es e−βEs . (17.3)

Note that the energy fluctuates in the canonical ensemble.

17.2 The Metropolis Algorithm

How can we simulate a system of N particles confined in a volume V at a fixed temperature T?
Because we can generate only a finite number m of the total number of M microstates, we might
hope to obtain an estimate for the mean value of the physical quantity A by writing

〈A〉 ≈ Am =

m∑
s=1

As e−βEs

m∑
s=1

e−βEs

. (17.4)

As is the value of the physical quantity A in microstate s. A crude Monte Carlo procedure is to
generate a microstate s at random, calculate Es, As, and e−βEs , and evaluate the corresponding
contribution of the microstate to the sums in (17.4). However, a microstate generated in this
way would likely be very improbable and hence contribute little to the sums. Instead, we use
an importance sampling method and generate microstates according to a probability distribution
function πs.

We follow the same procedure as in Section 11.7 and rewrite (17.4) by multiplying and dividing
by πs:

Am =

m∑
s=1

(As/πs) e−βEs πs

m∑
s=1

(1/πs) e−βEs πs

.(no importance sampling) (17.5)

If we generate microstates with probability πs, then (17.5) becomes

Am =

m∑
s=1

(As/πs) e−βEs

m∑
s=1

(1/πs) e−βEs

.(importance sampling) (17.6)

That is, if we average over a biased sample, we need to weight each microstate by 1/πs to eliminate
the bias. Although any form of πs could be used, the form of (17.6) suggests that a reasonable
choice of πs is the Boltzmann probability itself, that is,

πs =
e−βEs

m∑
s=1

e−βEs

. (17.7)

2) Other choices of πs are possible. Instead of writing:

< A >≈ Am =

m∑

s=1

Ase
−βEs

m∑

s=1

e
−βEs

=

m∑

s=1

Asπs =
1

m

m∑

s=1

As

rewrite:

(no importance

sampling)

(with importance

sampling)

63

3)
Metropolis algorithm generates states with Boltzmann distribution

(we will prove it empirically : see exercise)

If T (i → j)e−βEi = T (j → i)e−βEj (detailed balance),

64

in moodle2.units.it:

gauss_metropolis.f90

metropolis_sampling.f90
direct_sampling.f90
boltzmann_metropolis.f90

Some programs:

65

Boltzmann distribution�
in the canonical ensemble

The Metropolis algorithm really produces microstates
with the Boltzmann distribution:
application to ideal classical 1D gas (exercise n. 4)

1 free particle: Energy:
in this case, velocity or energy labels a microstate

(the energy with a factor of 2 , due to +/- sign of v);
we generate different microstates by random variations of the velocity and
we accept/reject with Metropolis

E =
1

2
mv

2

Important quantities are the probabilities:
P(v)dv that the system has a velocity between v and v+dv
or P(E)dE that the system has an energy between E and E+dE

66

A particle moving randomly has in each direction a distribution of the compo-
nent of the velocity:

f(vx) =

✓
m

2⇡kBT

◆1/2

e�mv2
x/2kBT (1)

hv2xi =
Z +1

�1
v2xf(vx)dvx =

kBT

m
(2)

In 1D:
f(v)2dv = P (E)dE

that gives: P (E) =
1

(⇡kBT)1/2
1p
E

e�E/kBT

In 3D, assuming independent motion along x, y, z, we have:

f(v) = f(vx, vy, vz) = f(vx)f(vy)f(vz) =

✓
m

2⇡kBT

◆3/2

e�mv2/2kBT (3)

The number of particles having velocity in the range dv about v is:

f(v)dv =

✓
m

2⇡kBT

◆3/2

e�mv2/2kBT dv

The number of particles having modulus of the velocity between v and v + dv
is:

f(v)dv =

Z

all directions of v
f(v)dv

Since: dv = v2dvd⌦, we have:

f(|v|) = f(v) =

Z

all directions of v
v2f(v)d⌦ = 4⇡

✓
m

2⇡kBT

◆3/2

v2e�mv2/2kBT

(4)

f(v)dv = P (E)dE =) P (E) =
2p
⇡

1

(kBT)3/2
p
E e�E/kBT (5)

1

ideal classical 1D gas

f(E) =
2p
⇡

1

(kBT)3/2
p
E exp

✓
� E

kBT

◆

hAi =
MX

s=1

AsPs =
1

Z

MX

s=1

Ase
��Es

P (Es) =
⌦(Es)

Z
e��Es

Ps =
1

Z
e��Es

=
1

2
�2

=
1

8�2

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

(3D)P

In 3D:

67

Boltzmann distribution�
in the canonical ensemble

T : 1.00000
<E0> : .000000
<v0> : .000000
dvmax : 2.00000
deltaE : 5.000000E-02
nbin : 79

==> boltzmann.1K <==
nMCsteps: 1000
<E> : .501263
<v> : 7.456664E-02
accept. : .692000
sigma : .713780

==> boltzmann.10K <==
nMCsteps: 10000
<E> : .507580
<v> : 3.366172E-02
accept. : .707700
sigma : .726145

==> boltzmann.1M <==
nMCsteps: 1000000
<E> : .500138
<v> : 1.833840E-04
accept. : .693837
sigma : .707472

NOTE:
- Accuracy of ~ 1% on <E> and 10% on <v> : NMCS=1000 is enough
- NOT ENOUGH to well reproduce the BOLTZMANN DISTRIBUTION! (1M needed!)
- ACCEPTANCE RATIO: constant, depends only on dvmax
- SIGMA also

1

T = 1 → 〈E〉(expected) = 0.5 (m = 1)

σ/
√

n = 0.022

σ/
√

n = 0.007

σ/
√

n = 0.0007

(σ is the variance of the energy)

68

Boltzmann distribution�
in the canonical ensemble

many particles: Energy:
in this case, the energy is NOT a label of a microstate
(there are several microstates with the same total energy)

E =

∑N

i=1

1

2
miv

2
i

Note: the energy histogram is NOT the distribution of microstates!

P (E) =
∑

states s

with Es=E

Ps Ps =
1

Z
e
−βEs

P (E) ∝= e
−(E−〈E〉)2

2σ2 with 〈E〉 average over all the microstates

with

What is P(E)? (exercise)
69

70

P(E), distribution of the kinetic energy of the system for different T

P(E)

