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Course Overview (1)

* Day 1: Linear Control (time domain)
* Introduction
 Dynamical Linear Systems
* Observability & Controllability
* PID Controllers
* Luenberger Observer

* Day 2: Linear Control (frequency domain)
* From State-space to Transfer Function

* Classic Control Elements (Bode Diagram / Root Locus)
* Introduction to Simulink.
* Ctrl Lab (days 1,2)



Course Overview (2)

* Day 3: Optimal Control and KF Estimation
* Optimal Control (LQR)
* Model Predictive Control
« Kalman Filtering

» Sliding Mode Control (tentative)

* Day 4: Control Laboratory

* Kalman Filtering and Optimal Control
* Matlab/Simulink

» Cart-pole
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Control Systems History

 Water Clock

« Alexandria
(Ctesibius, 3 century BC)

* Centrifugal Governor

« Windmills
(C. Huygeens, 17t century)

« Steam Engine
(). Watt, 1788)




Control Systems History

T T

* First Automatic Transmission
(Hydramatic, 1939)




Control Systems History

* Classical control theory
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Stage -1 Uncompensated Bode Plot

formalized from circuits theory
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https://www.youtube.com/watch?v=XggxeuFDaDU

Day 1

Linear Control (time domain)



Control Systems Fundamentals,

REQUIRED

* Dynamical System MODEL
* Control Input (non-autonomous

systems)
* Reference Signal

CHALLANGES

* Missing/Noisy Information

* Physical limitations

L omtrodler

Controller
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Process
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Feedback




Dynamical Systems (1)

Past history (state) influences future output

 Continuous Time VS. Discrete Time

= f(x), te]0,00) r(k+1)=f(z(k)), k=0,1,2,...
* Autonomous VS. Non-autonomous

T = f(x) = f(x,u)
* Linear VS. Non-linear

C.Cl — —2513‘2 il — T

: 0.4

T2 = 0.521 + w2 + 0.4u io = 0.527 + sin(za) + —

u



Dynamical Systems (2)

* SISO VS. MIMO
r=Ax+b-u r = Ax + Bu
y = Cz(=0.521) y =Cxz
* Time Invariant VS. Time Variant
&= f(z,u) z(t) = f(x(t), u(t),t)
t = Ax + Bu z(t) = A(t)x(t) + B(t)u(t)
* Deterministic VS. Non-Deterministic (Stochastic, noisy, etc.)
T =—2°—x+u vk +1)=—-2+v)z(k)* — z(k) + u(k)
y = 0.5z y(k) = 0.5x(k) + 7

v~ N(u,o),n~U(0,1)



Dynamical Systems (3)

* LTI systems --- State-Space representation < (0) = Xp, T € R"

t(t) = Ax(t) + Bu(t) Acil: ZAAATT vk +1) =
y(t) = Cx(t) + Dul(?) Boz A e 8 y(k) =
A
(O I I

IIIIIIIIIIII
lllllllllll
IIIIIIIIIIII
IIIIIIIIIIII
lllllllllll




Dynamical Systems (3)

« LTI systems --- State-Space representation I (O) = 29, * € R"

t(t) = Ax(t) + Bu(t) Ag =BT x(k+1) = Agx(k) + Bau(k)
By = A"1(eA2T —1)B
y(t) = Cz(t) + Du(t) | — y(k) = Cz(k) + Du(k)
_ _ Stability condition (Hurwitz)
* Output response (continuous time) (1) = cal |
t a < O\ a >0
y(t) =|Cexo|+|C / e =T) Bu(7)dr|+ Du(t)
Free Response 0 TG&Z(GZQ(A)) < O
(homogeneous Effect of input ‘
solution) LU(]C) — CLk
Output response (discrete time) 4l <1 la] > 1
y(k) = CAljzo + C Y  AL'7'Bau(i) + Du(k) leig(Ag)| < 1

1=0



State-Space Realizations

Similarity Transformations

@ The choice of a state-space model for a given system is not unique.

@ For example, let T be an invertible matrix, and consider a coordinate
transpormation x = TX, i.e., X = T 'x. Thisis called a similarity
transformation.

@ The standard state-space model can be written as

X = Ax+Bu, _ Tx = ATX+ Bu,

y = Cx+ Du. y = CTX+ Du.
I.e.,

¥ = (T'AT)x+ (T 'B)u= A% + Bu

y = (CT)%+Du=Cx+ Du.

@ You can check that the time response is exactly the same for the two models
(A,B,C,D) and (A, B, C,D)!



LTI Systems Properties

Discrete case

r(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

Reaching a state

Uo, U%_ 1

“Observing” the initial state

Y1,Yty .- - Yn
f\
O




LTI Systems Properties

Conditions for all LTI systems:

» Controllability <= rank(C) =n

C=|B,AB,A’B,..., A" 'B]

« Observability <= rank(QO)=n

C
C'A
O = C A?

| cAn?

Discrete case

r(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

Reaching a state

anuj.a-- f Up—1

2 v
“Observing” the initial state

/




LTI Systems Properties

+ Pair (A,B) is “Controllable” < rank(C) =n

 Pair (A,C) is “Observable”

& rank(0) =n

« LTI System S : {A, B,C} is a “minimal state-space realization” if it is both

observable and controllable.

 Example:

S() . {AO,B,C},

B =

Ay =

0

0
1
0

0
1
1
0

1]+

—_ O O

Sli{Al,B,C}
C=[1 0
0 1
Ai=10 O
_1 —1

oI

o — O

0 O

Co= 10 O

11
rank(Cy) =1

0 0

C:= |0 1

I 2

rank(él) =3

_ O O

W N =

Op =

_ O =

rank((bo) =2

Oy

o O =

rank(0O1)

—_ = O

| © — O

oS O O
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non-LTlI Systems (example)

Is the inverted pendulum (cartpole) controllable?

ut+m 162 sinf—m g cosfsinf
M +m sin 02

N g sinf@—cosOp u
\

In non-linear systems Controllability and Observability Matrices represent LOCAL
properties.

: 3
|




non-LTlI Systems (example)

Is the inverted pendulum (cartpole) controllable?

(.. u+m 162 sin@—m g cosfsiné

: 3
|

M +m sin 02

\ g sinf@—cosOp

[

o

In non-linear systems Controllability and Observability Matrices represent LOCAL

properties.

x.:f(x7u)7
r = Ax + Bu

Of (x,u)

Of (x,u)

[solieS

eq.point xq, ug

Oxr |x=xzg,u=ug

ou  |x=xg,u=ug

xr = [p, p, 0, G}T

of

1

o [O’ (M +m(1 = cos2(8))’

— cos(0)

0 L(M +m(1 — cos?(0))



non-LTlI Systems (example)

_ o u (=0, 0 =0, O =0, ug = 0)
Linearization
0 1 0 0] i 0
. {0 0 —gm/M O 1/M
. : Zloo o 1|*T 0
= f(x,u), eq.point xg,ug 00 o o | -10m
ZIZ‘:ACU—I—EU/ Oé_(m+M)g
Ml
M=1,m=01,g=981,1=05
A — 8f(a:,u) _ -
A= 0" e SR
_ Of(z,u ~
b = ou |r=xzp,u=ug e~ O =2 0 -43
-2 0 43 0 |




Reference Tracking

X = Ax + Bu

Controller Plant

Control objectives:

* Reject disturbances (if there is some perturbation in state, making it get back to initial state)
» Follow reference trajectories (if we want the system to have a certain X;., f )

« Make system follow some other “desired behavior”



Open-loop vs. Closed-loop

Open-loop or feed-forward control

Control action does not depend on
plant output

Cheaper, no sensors required.

Quality of control generally poor
without human intervention

OPEN FEEDBACK SYSTEM

Feed-back control

Controller adjusts controllable inputs in
response to observed outputs

Can respond better to variations in
disturbances

Performance depends on how well
outputs can be sensed, and how quickly
controller can track changes in output

CLOSED-LOOP FEEDBACK SYSTEM

Process

Feedback

Output




Proportional Controller

reference
signal—— r(t) u(t)
—> = Kp(r — x) X = AX + Bu
+
o Controller Plant

Common objective: make plant state track the reference signal r(t)
e = r — x is the error signal
Closed-loop dynamics: X = AX + BKp(r —x) = (A — BKp)x + BKpr

pick Kp s.t. the composite system is asymptotically stable, i.e. pick Kp such that eigenvalues of (A — BK)
have negative real-parts



P. Ctrl: eigenvalues assignment

* Initial LTI system A — ﬁ g} B = m

Note eigs(A) = 6,1 = unstable plant!

4 — 2k, 6-— ZkZ)
1—-k;y 33—k,
Solve the equation: det(4A — BK — AI)=0, i.e. 2> + 2k + k, —7)A + (6 — 2k,) =0
2 distinct solution if polynomial of the form (A — A;)(A — 1,)=A% + (=1; — A,)A + 1, 4,
That means: 2k; + k, —7 = (—4; — 4,) and 6 — 2k, = 4,1,
AM=—-1,A,=—-2givesk; =4, k,= 2

letK = (k; k3).Then,A— BK = (



Proportional Integral Derivative (PID) controllers

* Entire state in most cases is not available, feedback only based ony
 How do we evaluate the controlled system performance?

Controller

]

Kpe(t)

y(t)

r(®) e(t)

—»@———» K; fte(r)dr
_|_ 0

X = AX + Bu
y = (Cx+ Du

Plant




Measuring control performance

Step Response with Proportional Control

1.2 1 '

3

& Overshoot: The difference between the maximum value
06 of the system

= .

E output and the desired reference value.

S
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0 0.5 1 1.5 2 2.5 3 35 4 4.5
Time (seconds) (seconds)



Measuring control performance

Step Response with Proportional Control
1.2 T T T T T T T T

&
oo
]

Rise time: The time difference between the initial time
when the reference

signal changes and the time at which the output signal
crosses the desired

reference value.

Rotational velocity (rad/s)
= =
e o
|

&
)
|

(]
——

| l | | 1 l |
0.5 1 1.5 2 2.5 3 35 4 4.5
Time (seconds) (seconds)
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Measuring control performance

Step Response with Proportional Control

1.2 1 '

3
& Steady-state error: The difference between the steady-
905 state value of the output signal and the value of the

E reference signal.

S

g

o

o

0 0.5 1 1.5 2 2.5 3 35 4 4.5
Time (seconds) (seconds)



Measuring control performance

Step Response with Proportional Control
1.2 1 ] T 1 T T T T

ot
s

Settling time: The time difference between the initial
time when the reference signal changes and the time at
which the output signal reaches its steady-state value.

Rotational velocity (rad/s)
o o
e o
|

&
)
I

(]
——

| l | | 1 l |
0.5 1 1.5 2 2.5 3 35 4 4.5
Time (seconds) (seconds)

o=



Measuring control performance

Step Response with Proportional Control

1 T T T

2
3

2
~
T

2
)

0.4}

Rotational velocity (rad/s)

0 015 1 1.‘5 é 2;5 3I 3i5 4 4‘.5
Time (seconds) (seconds)

1.6

Rotational velocity (rad/s)

o
(S

Step Response with Proportional Contr
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P-only controller

* Compute error signale =r—y

* Proportional term K, e:
* K, proportional gain;
* Feedback correction proportional to error
* Cons:
* If K, is small, error can be large! [undercompensation]
* If K, is large,
* system may oscillate (i.e. unstable) [overcompensation]

* may not converge to set-point fast enough
* P-controller always has steady state error or offset error



Pl-controller

1.4

* Compute error signale =r —y
t ’_\1.2-
* Integral term: K, [ 'e(z)dzt @
K, integral gain; g
* Feedback action proportional to £ .
cumulative error over time L |
 If a small error persists, it will add up over time >
and push the system towards eliminating this o
error): eliminates offset/steady-state error L7,
@ 0.4
2
0.2]
. . 0 0.5 1 15 2 2.5 3 3.5 <& 4.5
* Disadva ntages' Time (seconds) (seconds)

* Integral action by itself can increase instability

* Integrator term can accumulate error and suggest
corrections that are not feasible for the actuators (integrator windup)

* Real systems “saturate” the integrator beyond a certain value



PD-controller

* Compute error signale =r —y -1

e Derivative term K e: (

* K, derivative gain; G
* Feedback proportional to how fast £
the error is increasing/decreasing %‘o_a-
o
* Purpose: ® o8]
* “Predictive” term, can reduce overshoot: Sos
if error is decreasing slowly, feedback is slower % .
* Can improve tolerance to disturbances 5.
* Disadvantages: | Time (seconds) (seconds) |

 Still cannot eliminate steady-state error
* High frequency disturbances can get amplified



PID-controller

1.2 T T T T

R

Rotational velocity (rad/s)

o
no

0 | L | | 1 | |
0 0.5 1 1.5 2 2.5 3 3.5

Time (seconds) (seconds)



PID controller in practice

s May often use only Pl or PD control

* Many heuristics to tune PID controllers, i.e., find values of Kp, K;, K},

* Several recipes to tune, usually rely on designer expertise

* E.g. Ziegler-Nichols method: increase Kp till system starts oscillating with

period T (say till Kp = K*), then set Kp = 0.6K",K; = “2—,Kp = = K'T

40
* Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities

 Work well with linear systems or for small perturbations,

* For non-linear systems use “gain-scheduling”
* (i.e. using different Kp, K;, K, gains in different operating regimes)



Observation

r(t) e et w(t z = Ax + Bu ¢
* Problem: ﬁ’ ( ) ( ) _y—>< )
o y=Cr
— Control design with
(partially) unknown state :E(t) =7
|

» Solution: ﬂ»@ e(t) u(t) T = Az + Bu y(t)l

- Luenberger Observer A y=Cx

Obs
(1)




Luenberger Observer

o State-space representation X ~ ~
SR :E:A:I:JrBqu@y—y)
r = Ax + Bu \ X )
y:Cx :> y_0x> Control design
U :®x’r€f L Q/\f) parameters

Observer Error satisfies: € = (A — LC')e

Required: Observability, Controllability Overall system is stable

Pole Placement » iff both observer and

controller are stable
K €ig(A — BK) — {)\cla IR )\cn}
L : ez’g(AT — LC) ={Ao1,---, Aon}



Example - DC Motor

Resistor B Inductor L

—_—
Current ¢

+
Voltage V; C)

Back EMF k6

Torque k¢
Displacement #

Damping resistance bf

\\

Inertial resistance [ 5"

State-space
representation

T = Ax + Bu

b =0.1 # friction coefficient ( Nm/(rad/sec) )
| = 0.01 # mechanical inertia (Kg*rm”"2)

k = 0.01 # motor torque constant (Nm/A)

R =1 # armature resistance (Ohm)

L = 0.5 # armature inductance (H)

U el

C=[1 0



