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Course Overview (1)

• Day 1: Linear Control (time domain)
• Introduction
• Dynamical Linear Systems
• Observability & Controllability
• PID Controllers
• Luenberger Observer

• Day 2: Linear Control (frequency domain)
• From State-space to Transfer Function

• Classic Control Elements (Bode Diagram / Root Locus)
• Introduction to Simulink. 
• Ctrl Lab (days 1,2)



Course Overview (2)

• Day 3: Optimal Control and KF Estimation
• Optimal Control (LQR)
• Model Predictive Control
• Kalman Filtering
• Sliding Mode Control (tentative)

• Day 4: Control Laboratory 
• Kalman Filtering and Optimal Control
• Matlab/Simulink
• Cart-pole
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Calibration Routine Example

K_p = f_p (state, param_set)
K_i = f_i (state, param_set)
K_d = f_d (state, param_set)

loss = g(stability, risetime, overshoot, etc.)

while not (end condition):

loss = run_system (param_set)
optimization_step(param_set)

Used for NONLINEAR / unknown systems



Observation
R

R

● Problem:

– Control design with
(partially) unknown state

● Solution:

– Luenberger Observer

Obs



Luenberger Observer

● State-space representation

● Observer Error satisfies: 

● Required: Observability, Controllability

● Pole Placement

Control design 
parameters

Overall system is stable 
iff both observer and 
controller are stable



Example - DC Motor

State-space 
representation

b = 0.1  # friction coefficient ( Nm/(rad/sec) )
I = 0.01 # mechanical inertia (Kg*m^2)
k = 0.01 # motor torque constant (Nm/A)
R = 1    # armature resistance (Ohm)
L = 0.5  # armature inductance (H)



Day 2

Linear Control (frequency domain)



Signals Theory – Frequency Analysis

● Control Theory applications precede digital computing

● Classic control theory was developed for analog electronics applications

● Signals x(t) can be expressed as function of frequency X(f) without loss of information
(Fourier series, Fourier Transform, Laplace Transform)

● Classical LTI Systems Control Theory is frequency-domain based

● Modern tools and notation are influenced by historic development of theory



LTI Systems in the Frequency Domain

● Classic Control Theory Approach (derived from Circuits Theory)

● Motivation: complexity in using explicit form for               in State-Space representation:

 

● Laplace Transform of a signal          :

● Output of L-transform is a rational function with real coefficients
  

●

● Laplace Transform property:

 



LTI Systems in the Frequency Domain

● Intuition behind the Laplace Transform of a signal

● Imaginary components of complex numbers are always accompanied by conjugate, as 
complex numbers are defined as square roots of negative numbers, e.g. 

● Choose an elementary input

● If        is real,                 is an exponential

● If is imaginary then the elementary has to be considered with its conjugate:

(in this case u(t) is “half” sinusoidal signal)

● Laplace transform is equivalent to finding the complex representation               of a signal for each moment t :  



LTI Systems in the Frequency Domain

● Intuition behind the Laplace Transform of a system

● H(s) is the L-transform “impulse response” of a system (response to ideal input, Dirac or Kronecker delta ) 

● Output response to input u(t) is the convolution with impulse response h(t)

● H(s) represents the natural “modes” of system S = {A,B,C,D}

● Denominator is 

● H(s) is represented with zeros/poles on the complex plane



Frequency-domain controller design

● G(s) poles: 

LTI Systems in the Frequency Domain

R(s) G(s)

FeedForward Path
- Bode Plot
- Nyquist Plot

Poles allocation of 
FeedBack system
- Root Locus

W(s)



From Transfer Function to State-Space

● Controllable canonical form



DC Motor Example (ss → tf)



Classic Control System Design: Root Locus

● how do close-loop dynamics change with K?

● Additional material 
https://www.youtube.com/watch?v=eTVddYCeiKI



Bode Plot

● Stability of the feedback system is a hard constraint, but not the only one

● Control problem is always a trade-off: fast vs. smooth response

● Bode Plot offers a frequency view of an open loop system

● Complex conjugate system can yield “resonance effect” and influence 
oscillatory behaviour of a system


