

Introduction to **Control Systems** Theory and applications

Bode plot, ω ₂=1, ζ =0.19 20 මූ itude -20 (deg) -90 -135 -180 ω (rad/sec

Enrico Regolin / Laura Nenzi

Course Overview (1)

- Day 1: Linear Control (time domain)
	- Introduction
	- Dynamical Linear Systems
	- Observability & Controllability
	- PID Controllers
	- Luenberger Observer
- Day 2: Linear Control (frequency domain)
	- From State-space to Transfer Function
	- Classic Control Elements (Bode Diagram / Root Locus)
	- Introduction to Simulink.
	- Ctrl Lab (days 1,2)

Course Overview (2)

• Day 3: Optimal Control and KF Estimation

- Optimal Control (LQR)
- Model Predictive Control
- Kalman Filtering
- Sliding Mode Control (tentative)
- Day 4: Control Laboratory
	- Kalman Filtering and Optimal Control
	- Matlab/Simulink
	- Cart-pole

Gain Scheduling Example

Used for NONLINEAR / unknown systems

Calibration Routine Example

K $p = f$ p (state, param set) $K_i = f_i$ (state, param_set) $K_d = f_d$ (state, param_set)

loss = g(stability, risetime, overshoot, etc.)

while not (end condition):

 $loss = run system (param set)$ optimization_step(param_set)

Observation

- Problem:
	- Control design with (partially) unknown state

- Solution:
	- Luenberger Observer

Luenberger Observer

- Observer Error satisfies: $\dot{e} = (A LC)e$
- Required: Observability, Controllability
- Pole Placement

$$
K: eig(A - BK) = {\lambda_{c1}, \dots, \lambda_{cn}}
$$

$$
L: eig(AT - LC) = {\lambda_{o1}, \dots, \lambda_{on}}
$$

Overall system is stable iff both observer and controller are stable

Example - DC Motor

 $b = 0.1$ # friction coefficient (Nm/(rad/sec)) $I = 0.01$ # mechanical inertia (Kg*m^2) $k = 0.01$ # motor torque constant (Nm/A) $R = 1$ # armature resistance (Ohm) $L = 0.5$ # armature inductance (H)

$$
V_s = Ri + L\frac{di(t)}{dt} + k\theta_v
$$

$$
I\frac{d\theta_v}{dt} + b\theta_v = ki
$$

State-space representation $\dot{x} = Ax + Bu$ $x = \begin{vmatrix} \theta_v \\ i \end{vmatrix}$ $u = V_s$

$$
A = \begin{bmatrix} -b/I & k \\ -k/L & -R \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

$$
C = \begin{bmatrix} 1 & 0 \end{bmatrix}
$$

Day 2

Linear Control (frequency domain)

Signals Theory – Frequency Analysis

- Control Theory applications precede digital computing
- Classic control theory was developed for analog electronics applications
- Signals $x(t)$ can be expressed as function of frequency $X(f)$ without loss of information (Fourier series, Fourier Transform, Laplace Transform)

- Classical LTI Systems Control Theory is frequency-domain based
- Modern tools and notation are influenced by historic development of theory

 $\mathbf{u}(t)$

 K

 $U_{\rm CC}$

 $\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$

 $\mathbf{x}(t)$

- Classic Control Theory Approach (derived from Circuits Theory)
- Motivation: complexity in using explicit form for $x(t)$ in State-Space representation:

$$
y(t) = Ce^{At}x_0 + C \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)
$$

• Laplace Transform of a signal $x(t)$: α

$$
X(s) = \mathcal{L}{x(t)} = \int_{-\infty}^{\infty} x(t)e^{-st}dt
$$

- Output of L-transform is a rational function with real coefficients
- $deg(num(s)) \leq deg(den(s))$ \bullet
- Laplace Transform property:

$$
H(s) = \mathcal{L}{h(t)}
$$

$$
X(s) = \mathcal{L}{x(t)}
$$

$$
\mathcal{L}^{-1}{H(s)X(s)} = (h * x)(t) := \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau
$$

 $s = \sigma + j\omega \in \mathbb{C}$

 $G(s) = \frac{s(s^2+1)}{s^3+2s^2-s-1}$

- Intuition behind the Laplace Transform of a signal
- Imaginary components of complex numbers are always accompanied by conjugate, as complex numbers are defined as square roots of negative numbers, e.g. $\sqrt{-1} = \pm i$
- Choose an elementary input $u(t)=e^{st}, \quad s\in \mathbb{C}$
- If $|S|$ is real, $|u(t)|$ is an exponential
- If S is imaginary then the elementary has to be considered with its conjugate:

$$
u(t) + u^*(t) = e^{j\omega t} + e^{-j\omega t} = 2\cos(\omega t)
$$

(in this case u(t) is "half" sinusoidal signal)

Laplace transform is equivalent to finding the complex representation $\ e^{st}\;$ of a signal for each moment t :

$$
u(t) = e^{\sigma t} \cos(\omega t)
$$

- Intuition behind the Laplace Transform of a system
- H(s) is the L-transform "impulse response" of a system (response to ideal input, Dirac or Kronecker delta)
- Output response to input $u(t)$ is the convolution with impulse response $h(t)$
- H(s) represents the natural "modes" of system $S = \{A, B, C, D\}$

$$
H(s) = C(sI - A)^{-1}B + D = \frac{num(s)}{den(s)}
$$

• Denominator is $den(s) = det(sI - A)$
• H(s) is represented with zeros/poles on the complex plane
 $F(s) = 10 \cdot \frac{(s+1)(s+2)}{(s+4)(s+5)(s+8)}$

 $\sqrt{2}$

 $\begin{array}{c|c}\n & \times & \times & \text{--} \\
\hline\n-8 & -5 & -4 & \n\end{array}$

Frequency-domain controller design

- G(s) poles:
$$
p_0=+1,\ p_{1,2}=-1\pm j
$$

$$
G(s) = \frac{s(s-2)}{(s-1)(s^2+2s+2)}
$$

$$
y(t) = R(s)G(s)e(t)
$$

$$
e(t) = r(t) - R(s)G(s)e(t)
$$

$$
e(t) = \frac{1}{1 + R(s)G(s)}r(t)
$$

$$
y(t) = \frac{R(s)G(s)}{1 + R(s)G(s)}r(t)
$$

From Transfer Function to State-Space

Controllable canonical form

DC Motor Example (ss \rightarrow tf)

$$
G(s) = C(sI-A)^{-1}B = [1 \ 0] \begin{bmatrix} s+b/I & -k \\ k/L & s+R \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

$$
= \frac{[1 \ 0] \begin{bmatrix} s+R & k \\ -k/L & s+b/I \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}}{(s+b/I)(s+R)+k^2/L} = \frac{k}{(s+b/I)(s+R)+k^2/L}
$$

Classic Control System Design: Root Locus

• how do close-loop dynamics change with K?

$$
L(s) = \frac{-20(s-2)(s+5)}{(s+4)(s+10)(s^2+2s+5)}
$$

• Additional material https://www.youtube.com/watch?v=eTVddYCeiKI

Bode Plot

- Stability of the feedback system is a hard constraint, but not the only one
- Control problem is always a trade-off: fast vs. smooth response
- Bode Plot offers a frequency view of an open loop system
- Complex conjugate system can yield "resonance effect" and influence oscillatory behaviour of a system

